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Abstract
The presilylation of purine and pyrimidine nucleobases as well as other related N-heterocycles with HMDS utilizing chi-
tosan–silica sulfate nanohybrid (CSSNH) is described. CSSNH is proved to be a useful, highly efficient and eco-friendly 
heterogeneous nanohybrid catalyst for silylation of nucleobases. The presilylated nucleobases then underwent the reaction 
with different sources of carbon electrophiles to afford the desired N-alkyl-substituted derivatives in good-to-excellent yields. 
CSSNH exhibits several advantageous involving ease of handling and preparation, low cost, reusability and environmental 
benignity. These unique properties render the CSSNH to be an ideal candidate for use in green industrial processes.
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Introduction

The organosilicon derivatives are versatile and important 
substrates in chemistry. Over the years, the employment of 
organosilicons is found enormous growth for both synthetic 
and analytical purposes (Auner and Weis 1994; Lee 2017a, 
b; Knapp 1979). The silylation of organic compounds are 
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extensively applied in multistep synthesis of drugs and 
natural products, in particular, nucleosides and nucleotides 
(Auner and Weis 1994; Lee 2017a, b; Knapp 1979; Lukevics 
et al. 1974). Silylated organic materials are widely applied 
in analytical techniques such as GC, GLC, MS, GC–MS, 
and HPLC (Knapp 1979). The incorporation of silyl groups 
into organic molecules provide numerous benefits such as 
protection of the desired functional groups, enhancement of 
chemical stability under different conditions, thermal stabil-
ity, solubility, and volatility, selective operation, ease of han-
dling and simple removal via basic and/or acidic hydrolysis. 
The trimethylsilyl (TMS) group is one of the most popular 
and known silyl groups which were largely used to pro-
tect the organic functionalities (Auner and Weis 1994; Lee 
2017a, b; Knapp 1979; Lukevics et al. 1974). The numerous 
trimethylsilylating reagents with different reactivities have 
been developed so far (Auner and Weis 1994; Lee 2017a, 
b; Knapp 1979; Lukevics et al. 1974). Among them, hexa-
methyldisilazane (HMDS) is a very famous reagent owing 
to its cheapness, low boiling point, high selectivity, ease of 
handling and workup, stability, and commercial availability 
(Torkelson and Ainsworth 1976). In addition, HMDS can be 
used as both silylating agent and solvent that merely release 
ammonia as a by-product which can leave from the reaction 
mixture to push the reaction to completion (Torkelson and 
Ainsworth 1976). Despite multifarious advantages of uti-
lizing HMDS, HMDS exhibits the poor TMS transferring 
tendency which is the main known drawback for HMDS 
(Bruynes and Jurrines 1982). To overcome this drawback, 
different catalysts have been applied in combination with 
HMDS (Nikbakht et al. 2014; Lee and Kadam 2011; Ros-
tami et al. 2010; Zareyee and Karimi 2007; Rajagopal et al. 
2009; Narsaiah 2007; Ko et al. 2014; Ghafuri et al. 2017; 
Shaterian et al. 2007).While various efficient protocols have 
been reported so far, plenty of them exhibit one or more dis-
advantages such as harsh reaction condition, low yield, and 
prolonged reaction time as well as the use of non-reusable 
and non-recyclable catalysts.

Nucleoside and their derivatives are extremely important 
molecules in pharmaceutical chemistry especially due to 
their extensive applications such as anticancer and antiviral 
drugs (Kleeman et al. 1999). To obtain the nucleosides, the 
N-alkylation reaction of nucleobases with different sources 
of carbon electrophiles is a well established and custom-
ized method (Khalafi-Nezhad et al. 2004; Soltani Rad et al. 
2009a, 2014, 2015; Amblard et al. 2005). To this end, the 
use of purine and pyrimidine nucleobases in presilylated 
form rather than their naked shapes affords remarkable 
benefits such as mild reaction condition, high yield, ease of 
workup and separation process, regioselectivity at the site of 
N-alkylation, and good solubility in organic solvents (Chu 
and Cutler 1986). Numerous famous antiviral and anticancer 
drugs such as acyclovir, cladribine, gemcitabine, stavudine, 

tegafur, and trifluridine were synthesized by the presilyla-
tion of the corresponding purine or pyrimidine nucleobases 
(Kleeman et al. 1999). HMDS is the most extensively used 
TMS transfer reagent for silylation of nucleobases. Thanks 
to marginal nucleophilic power of nucleobases and low 
silylating ability of HMDS, the use of a potent catalyst is 
crucial for the reaction to progress efficiently. Traditionally, 
HMDS/(NH4)2SO4 and HMDS/TMSCl (Lukevics et  al. 
1974; Chu and Cutler 1986; Nishimura and Iwai 1964; 
Tachallait et al. 2018; Voight et al. 2019) have been mostly 
used for the silylation of nucleobases. Practically, the high 
moisture sensitivity, non-recoverability, and non-reusability 
of (NH4)2SO4 and TMSCl as well as their low efficiency in 
silylation of purine nucleobases have restricted the applica-
tion of these catalysts. Previously, our group reported the 
application of silica–sulfuric acid (SSA) as the first het-
erogeneous catalyst for silylation of nucleobases and other 
N-heterocycles using HMDS (Soltani Rad et  al. 2010). 
Although SSA is a highly proficient heterogeneous catalyst 
for this purpose, the strong acidity of SSA has restricted its 
application in the case of acid-sensitive substrates. Conse-
quently, the search for a mild, chemically and thermally sta-
ble, cheap, recyclable and eco-friendly heterogeneous cata-
lyst for efficient silylation of nucleobases is still underway.

Natural biopolymers are outstanding substrates from both 
economic and environmental aspects. Nowadays, many sci-
entists have focused their research activities on the applica-
tion of natural biopolymers in different areas of sciences. 
In particular, natural biopolymers have been extensively 
employed as eco-friendly material to prepare heterogene-
ous catalysts (Primo et al. 2009; Rovira-Truitt et al. 2009). 
Chitosan (CS, Fig. 1) is a well-known naturally occurring 
polysaccharide which has gained increasing applications in 
numerous scientific and industrial fields owing to its unique 
properties (Honarkar and Barikani 2009). Additionally, chi-
tosan is widely present in industrial waste which can be eas-
ily prepared from alkaline deacetylation of chitin from crus-
taceans (Aranaz et al. 2009). Chitosan is a biocompatible, 
biodegradable, very cheap, inert towards air and moisture, 
hydrophilic, chemically reactive, and non-toxic naturally 
occurring biosolid (Honarkar and Barikani 2009). Due to 
the presence of amine and hydroxyl functional groups in 
the chitosan scaffold, this biopolymer can easily undergo 
chemical modifications and also afford appropriate chelating 
properties (Honarkar and Barikani 2009; Nasir Baig et al. 
2014; Rai et al. 2004; Zarnegar and Safari 2014; Ahmed and 
Siddiqui 2015; Shen et al. 2014; Molnár 2019).

In recent decades, the (bio)organic–inorganic hybrid 
materials have been a subject of research interest in different 
aspects of science (Nalwa 2003). Practically, these hybrid 
materials have found numerous applications in various areas 
such as medicine, chemistry, bio(techno)logy, tissue engi-
neering, photonic, cosmetics, electronics, energy, coatings, 
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dyes and pigments (Nalwa 2003; Bucur et al. 2017; Um et al. 
2017; Kaushik et al. 2015; Vallet-Regí et al. 2011). Indeed, 
the biopolymers can be usefully applied to the preparation 
of biopolymer–inorganic hybrid catalysts to afford the new 
environmentally benign catalysts. In this context, the immo-
bilized chitosan or chitosan–metal complexes on the surface 
of porous silica gel have been employed in several organic 
transformations (Guibal 2005). Along this line, we recently 
reported the synthesis and characterization of chitosan–silica 
sulfate nanohybrid (CSSNH) as a novel, green, eco-friendly, 
highly efficient and inexpensive heterogeneous nanocata-
lyst. CSSNH was successfully employed in the synthesis 
of thiiranes from epoxides (Behrouz et al. 2018) and 1,2-
diol mono-esters via regioselective ring opening reaction 
of epoxides with carboxylic acids (Behrouz et al. 2017). In 
another attempt to discover the new applications for CSSNH 
and also in continuation of our ongoing research interest 
in developing new synthetic protocols for the synthesis of 
N-alkyl nucleobases, we now report CSSNH as a highly effi-
cient and green biopolymer–inorganic hybrid nanocatalyst 
for the presilylation of nucleobases and other N-heterocycles 
in HMDS at 90 °C (Scheme 1). To ascertain the efficiency 

of CSSNH and HMDS for silylation of nucleobases, these 
presilylated nucleobases were then coupled with different 
carbon electrophiles to afford the various acyclic nucleosides 
in good-to-excellent yields (Scheme 1).

Experimental

General

All chemicals were purchased from Merck or Sigma-
Aldrich. CSSNH was prepared as per the reported procedure 
(Behrouz et al. 2018). Solvents were purified by standard 
procedures, and stored over 3 Å molecular sieves. Reactions 
were followed by TLC using SILG/UV 254 silica gel plates. 
Column chromatography was performed on silica gel 60 
(0.063–0.200 mm, 70–230 mesh; ASTM). 1H- and 13C-NMR 
spectrum was recorded on Brüker Avance-DPX-250/400 
spectrometer operating at 250/62.5  MHz, respectively. 
Chemical shifts are given in δ relative to tetramethylsilane 
(TMS) as an internal standard; coupling constants J are 
given in Hz. GC–MS was performed on a Shimadzu GC/
MS-QP 1000-EX apparatus (m/z; rel. %). IR spectra were 
obtained using a Shimadzu FT-IR-8300 spectrophotometer. 
Elemental analyses were performed on a PerkinElmer 240-B 
micro-analyzer. Melting points were measured using Elec-
trothermal IA 9000 melting point apparatus in open capillary 
tubes and are uncorrected.

General procedure for silylation of nucleobases 
or other N‑heterocycles using CSSNH

To a round-bottom flask (50 mL) was added a mixture of 
the desired nucleobases or other N-heterocycles (1 mmol), 
CSSNH (0.05 g), and HMDS (10 mL). The reaction mixture 
was heated at 90 °C until a clear liquid was attained (Table 3). 
Subsequently, the catalyst was filtered and the filtrate was 
then evaporated using vacuum to separate the crude silylated 

Fig. 1   The general structure of 
chitosan (CS), silica–sulfuric 
acid (SSA) and chitosan–silica 
sulfate nanohybrid (CSSNH)
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product from HMDS. The crude product was pure enough to 
be applied in the next step without further purification.

General procedure for N‑alkylation of silylated 
nucleobases or other related N‑heterocycles

To a double-necked round-bottom flask (250 mL) equipped 
with a condenser was added a mixture of the desired 
silylated nucleobase (10 mmol), an appropriate electro-
phile (13 mmol), anhydrous THF (80 mL), and anhydrous 
TBAF (10 mmol). The reaction mixture was heated at reflux 
until TLC monitoring indicated no further progress of the 
reaction. Afterward, the reaction mixture was evaporated 
under vacuum to remove the solvent. The residue was 
then dissolved in CHCl3 (100 mL) and washed with H2O 
(3 × 100 mL). The organic layer was dried using Na2SO4 
and evaporated to afford the crude product. The crude was 
purified by column chromatography on silica gel eluted with 
proper solvent.

Recycling the catalyst

After completion of the reaction (Table 3), CSSNH was vac-
uum-filtered and separated from the reaction mixture using a 
sintered glass funnel and washed with hot THF (2 × 3 mL). 
Afterward, the catalyst was dried in vacuum oven at 50°C for 
2 h. The recovered CSSNH was then employed in the next 
silylation reaction without further purification.

Data for synthesized compounds

1‑(2‑(4‑Chlorophenoxy)ethyl)pyrimidine‑2,4(1H,3H)‑dione 
(entry 1)

Column chromatography on silica gel eluted with hexane/
EtOAc (1:1) afforded pure product as white solid (2.29 g, 
86%); m.p. 216–217 °C. IR (KBr): 3200, 3041, 2949, 2871, 
1725, 1712, 1492, 1236, 1039 cm−1. 1H NMR (DMSO-d6, 
250 MHz) δppm = 4.08 (t, J = 4.8 Hz, 2H, NCH2), 4.20 (t, 
J = 4.8 Hz, 2H, OCH2), 5.57 (d, J = 7.8 Hz, 1H, C(5)–H of 
uracil), 6.96 (d, J = 8.9 Hz, 2H, aryl), 7.32 (d, J = 8.9 Hz, 
2H, aryl), 7.71 (d, J = 7.8 Hz, 1H, C(6)–H of uracil), 11.34 
(s, 1H, NH, exchangeable with D2O). 13C NMR (DMSO-
d6, 62.5 MHz) δppm = 46.78, 65.54, 100.61, 116.18, 124.62, 
129.19, 146.15, 150.90, 156.77, 163.67. MS (EI): m/z 
(%) = 266 (27.2) [M+]. Anal. Calc. for C12H11ClN2O3: C, 
54.05; H, 4.16; N, 10.50; found: C, 53.84; H, 4.28; N, 10.31.

1‑(4‑Methoxybenzyl) pyrimidine‑2, 4(1H,3H)‑dione (entry 
2, Soltani Rad et al. 2009b)

Column chromatography on silica gel eluted with hexane/
EtOAc (1:1) afforded pure product as white solid (2.09 g, 

90%); m.p. 118–119 °C. IR (KBr): 3250, 3100, 2895, 1728, 
1715, 1456, 1248 cm−1. 1H NMR (DMSO-d6, 250 MHz) 
δppm = 3.70 (s, 3H, OCH3), 4.76 (s, 2H, NCH2), 5.58 (d, 
J = 7.8 Hz, 1H, C(5)–H of uracil), 6.84 (d, J = 8.6 Hz, 2H, 
aryl), 7.14 (d, J = 8.6 Hz, 2H, aryl), 7.72 (d, J = 7.8 Hz, 1H, 
C(6)–H of uracil), 11.17 (s, 1H, NH, exchangeable with 
D2O). 13C NMR (DMSO-d6, 62.5 MHz) δppm = 49.66, 54.99, 
101.19, 113.55, 128.67, 129.12, 145.38, 150.95, 158.79, 
163.62. MS (EI): m/z (%) = 232 (16.5) [M+]. Anal. Calc. for 
C12H12N2O3: C, 62.06; H, 5.21; N, 12.06; found: C, 62.14; 
H, 5.34; N, 12.21.

1‑(3‑(4‑Chlorophenoxy)propyl)‑5‑methylpyrimi‑
dine‑2,4(1H,3H)‑dione (entry 3)

Column chromatography on silica gel eluted with hexane/
EtOAc (1:1) afforded pure product as white solid (2.56 g, 
87%); m.p. 169–170 °C. IR (KBr): 3151, 3075, 2867, 2806, 
1730, 1718, 1456, 1247, 1052 cm−1. 1H NMR (DMSO-
d6, 250  MHz) δppm = 1.73 (s, 3H, CH3), 2.03–2.10 (m, 
2H, OCH2CH2), 3.82 (t, J = 6.7 Hz, 2H, NCH2), 4.00 (t, 
J = 5.8 Hz, 2H, OCH2), 6.94 (d, J = 8.9 Hz, 2H, aryl), 7.33 
(d, J = 8.9 Hz, 2H, aryl), 7.62 (s, 1H, C(6)–H of thymine), 
11.24 (s, 1H, NH, exchangeable with D2O). 13C NMR 
(DMSO-d6, 62.5 MHz) δppm = 11.83, 27.83, 44.94, 65.36, 
108.34, 116.05, 124.21, 129.09, 141.49, 150.87, 157.14, 
164.26. MS (EI): m/z (%) = 294 (29.4) [M+]. Anal. Calc. 
For C14H15ClN2O3: C, 57.05; H, 5.13; N, 9.50; found: C, 
57.18; H, 5.29; N, 9.71.

Butyl 3‑(6‑oxo‑1,6‑dihydropyrimidin‑2‑ylthio)propanoate 
(entry 4, Soltani Rad et al. 2010)

Column chromatography on silica gel eluted with hexane/
EtOAc (1:1) afforded pure product as white solid (2.18 g, 
85%); m.p. 80–81 °C. IR (KBr): 3200, 3050, 2895, 1750, 
1725, 1710, 1300, 1240  cm−1. 1H NMR (DMSO-d6, 
250 MHz) δppm = 0.83 (t, J = 7.2 Hz, 3H, CH3), 1.25–1.34 
(m, 2H, CH3CH2), 1.47-1.55 (m, 2H, OCH2CH2), 2.71 (t, 
J = 6.6 Hz, 2H, O = CCH2), 3.26 (t, J = 6.6 Hz, 2H, SCH2), 
4.00 (t, J = 6.4 Hz, 2H, OCH2), 6.08 (d, J = 6.5 Hz, 1H, 
C(5)–H of thiouracil), 7.84 (d, J = 6.5 Hz, 1H, C(6)–H of 
thiouracil), 12.54 (s, 1H, NH exchangeable with D2O). 
13C NMR (DMSO-d6, 62.5  MHz) δppm = 13.43, 18.52, 
24.96, 30.07, 33.58, 63.82, 109.61, 146.44, 153.70, 171.21, 
175.96. MS (EI): m/z (%) = 256 (16.8) [M+]. Anal. Calc. for 
C11H16N2O3S: C, 51.54; H, 6.29; N, 10.93; found: C, 51.65; 
H, 6.42; N, 11.05.

9‑(2‑(4‑Benzylphenoxy)ethyl)‑9H‑purin‑6‑amine (entry 5)

Column chromatography on silica gel eluted with EtOAc 
afforded pure product as yellow solid (2.83 g, 82%); m.p. 
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201–202 °C. IR (KBr): 3332, 3109, 3010, 2929, 2875, 1595, 
1487, 1242, 1047 cm−1; 1H NMR (DMSO-d6, 250 MHz) 
δppm = 3.81 (s, 2H, NH2, exchangeable with D2O), 4.29 (t, 
J = 4.9 Hz, 2H, NCH2), 4.49 (t, J = 4.9 Hz, 2H, OCH2), 6.82 
(s, 2H, PhCH2), 7.05–7.25 (complex, 10 H, aryl, C(2)–H 
of adenine), 8.14 (s, 1H, C(8)–H of adenine). 13C NMR 
(DMSO-d6, 62.5 MHz) δppm = 40.11, 42.48, 65.58, 114.43, 
118.58, 125.76, 128.29, 128.48, 129.64, 133.72, 141.10, 
141.56, 149.47, 152.40, 155.90, 156.18. MS (EI): m/z 
(%) = 345 (15.3) [M+]. Anal. Calc. for C20H19N5O: C, 69.55; 
H, 5.54; N, 20.28; found: C, 69.38; H, 5.70; N, 20.07.

9‑(Hex‑5‑enyl)‑9H‑purin‑6‑amine (entry 6, Soltani Rad et al. 
2009b)

Column chromatography on silica gel eluted with EtOAc 
afforded pure product as white solid (1.74 g, 80%); m.p. 
140–141 °C. IR (KBr): 3330, 3115, 2948, 1489 cm−1. 1H 
NMR (DMSO-d6, 250 MHz) δppm = 1.31–1.40 (m, 2H, CH2), 
1.81-1.90 (m, 2H, CH2), 2.03–2.09 (m, 2H, CH2), 4.20 (t, 
J = 7.0 Hz, 2H, NCH2), 4.93 (dd, J = 1.3, 9.2 Hz, 2H, = CH2), 
5.69–5.78 (m, 1H, = CH), 7.32 (br. s, 2H, NH2, exchange-
able with D2O), 8.22 (s, 1H, C(2)–H of adenine), 8.25 (s, 
1H, C(8)–H of adenine). 13C NMR (DMSO-d6, 62.5 MHz) 
δppm = 25.18, 29.07, 32.45, 42.64, 114.85, 118.68, 138.15, 
140.76, 149.48, 152.31, 155.90. MS (EI): m/z (%) = 217 (21) 
[M+]. Anal. Calc. for C11H15N5: C, 60.81; H, 6.96; N, 32.23; 
found: C, 60.96; H, 7.08; N, 32.35.

(E)‑9‑Cinnamyl‑9H‑purin‑6‑amine (entry 7, Soltani Rad 
et al. 2009b)

Column chromatography on silica gel eluted with EtOAc 
afforded pure product as yellow solid (2.11 g, 84%); m.p. 
237–238 °C. IR (KBr): 3355, 3130, 2950, 1492, 1453 cm−1. 
1H NMR (DMSO-d6, 250 MHz) δppm = 4.93 (d, J = 5.0 Hz, 
2H, NCH2), 6.43 (d, J = 16.4 Hz, 1H, PhCH), 7.21–7.31 
(complex, 6H, NCH2CH, aryl), 7.37 (s, 1H, C(2)–H of ade-
nine), 7.40 (s, 2H, NH2, exchangeable with D2O), 8.15 (s, 
1H, C(8)–H of adenine). 13C NMR (DMSO-d6, 62.5 MHz) 
δppm = 44.50, 118.63, 124.56, 126.38, 127.85, 128.57, 
132.31, 135.80, 140.58, 149.35, 152.49, 155.93. MS (EI): 
m/z (%) = 251 (29.8) [M+]. Anal. Calc. for C14H13N5: C, 
66.92; H, 5.21; N, 27.87; found: C, 66.81; H, 5.36; N, 27.96.

1‑(6‑Amino‑9H‑purin‑9‑yl)‑3‑phenoxypropan‑2‑ol (entry 8, 
Soltani Rad et al. 2010)

Column chromatography on silica gel eluted with hexane/
EtOAc (2:1) afforded pure product as white solid (2.25 g, 
79%); m.p. 137–138  °C. IR (KBr): 3500, 3350, 3090, 
2974, 1467, 1238 cm−1. 1H NMR (DMSO-d6, 250 MHz) 
δppm = 4.14 (dd, J = 6.2, 10.2 Hz, H, NCHAHB), 4.30 (dd, 

J = 3.7, 10.2 Hz, 1H, NCHAHB), 4.38–4.44 (m, 1H, CHOH), 
4.47 (s, 1H, OH, exchangeable with D2O), 4.60–4.65 (m, 
2H, OCH2), 7.14 (br s, 2H, NH2, exchangeable with D2O), 
7.45–7.51 (m, 5H, aryl), 8.30 (s, 1H, C(2)–H of adenine), 
8.42 (s, 1H, C(8)–H of adenine). 13C NMR (DMSO-d6, 
62.5  MHz) δppm = 46.72, 69.48, 70.07, 114.64, 119.09, 
121.11, 129.85, 141.92, 150.05, 152.76, 156.32, 158.56. 
MS (EI): m/z (%) = 285 (14.6) [M+]. Anal. Calc. for 
C14H15N5O2: C, 58.94; H, 5.30; N, 24.55; found: C, 59.03; 
H, 5.21; N, 24.67.

6‑Chloro‑9‑(4‑(4‑chlorophenoxy)butyl)‑9H‑purine (entry 9)

Column chromatography on silica gel eluted with hex-
ane/EtOAc (2:1) afforded pure product as white solid 
(2.73 g, 81%); m.p. 110–111 °C. IR (KBr): 3095, 2947, 
2873, 1591, 1473, 1238, 1045 cm−1. 1H NMR (DMSO-d6, 
250 MHz) δppm = 1.61–1.72 (m, 2H, NCH2CH2), 1.94–2.05 
(m, 2H, OCH2CH2), 3.91 (t, J = 6.3 Hz, 2H, NCH2), 4.34 
(t, J = 7.0 Hz, 2H, OCH2), 6.83–6.89 (complex, 3H, aryl, 
C(2)–H of purine), 7.21–7.27 (m, 2H, aryl), 8.69 (s, 1H, 
C(8)–H of purine). 13C NMR (DMSO-d6, 62.5  MHz) 
δppm = 25.65, 25.78, 43.53, 67.07, 116.04, 124.07, 129.06, 
130.78, 147.41, 148.91, 151.33, 151.88, 157.21. MS (EI): 
m/z (%) = 336 (30.8) [M+]. Anal. Calc. for C15H14Cl2N4O: 
C, 53.43; H, 4.18; N, 16.62; found: C, 53.28; H, 4.34; N, 
16.53.

7‑Allyl‑1,3‑dimethyl‑1H‑purine‑2,6(3H,7H)‑dione (entry 10, 
Soltani Rad et al. 2009b)

Column chromatography on silica gel eluted with hexane/
EtOAc (1:1) afforded pure product as white solid (2.09 g, 
95%); m.p. 103–104  °C. IR (KBr): 3050, 2987, 2890, 
1725, 1708, 1473 cm−1. 1H NMR (DMSO-d6, 250 MHz) 
δppm = 3.17 (s, 3H, N(3)–CH3), 3.36 (s, 3H, N(1)–CH3), 
4.73 (d, J = 5.2 Hz, 2H, NCH2), 5.00–5.13 (dd, J = 11.5, 
16.4 Hz, 2H, = CH2), 5.77–5.93 (m, 1H, = CH), 7.40 (s, 1H, 
C(8)–H of theophylline). 13C NMR (DMSO-d6, 62.5 MHz) 
δppm = 27.80, 29.61, 48.83, 106.71, 119.18, 132.06, 140.71, 
148.64, 151.50, 154.95. MS (EI): m/z (%) = 220 (25.4) [M+]. 
Anal. Calc. for C10H12N4O2: C, 54.54; H, 5.49; N, 25.44; 
found: C, 54.68; H, 5.57; N, 25.32.

7‑Benzyl‑1, 3‑dimethyl‑1H‑purine‑2,6 (3H,7H)‑dione (entry 
11, Soltani Rad et al. 2009b)

Column chromatography on silica gel eluted with hexane/
EtOAc (1:1) afforded pure product as white solid (2.51 g, 
93%); m.p. 158–159  °C. IR (KBr): 3100, 2980, 2895, 
1720, 1705, 1471 cm−1. 1H NMR (DMSO-d6, 250 MHz) 
δppm = 3.31 (s, 3H, N(3)–CH3), 3.49 (s, 3H, N(1)–CH3), 
5.42 (s, 2H, NCH2), 7.12–7.31 (m, 5H, aryl), 7.54 (s, 1H, 
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C(8)–H of theophylline). 13C NMR (DMSO-d6, 62.5 MHz) 
δppm = 27.92, 29.68, 50.16, 106.87, 127.37, 127.88, 128.68, 
135.39, 140.89, 148.77, 151.55, 155.14. MS (EI): m/z 
(%) = 270 (31.4) [M+]. Anal. Calc. for C14H14N4O2: C, 
62.21; H, 5.22; N, 20.73; found: C, 62.35; H, 5.31; N, 20.61.

7‑(2‑Hydroxy‑3‑phenoxypropyl)‑1,3‑dimethyl‑1H‑pu‑
rine‑2,6(3H,7H)‑dione (entry 12, Soltani Rad et al. 2010)

Column chromatography on silica gel eluted with hexane/
EtOAc (2:1) afforded pure product as white solid (2.97 g, 
90%); m.p. 129–130 °C. IR (KBr): 3500, 3100, 2943, 1725, 
1710, 1462, 1303, 1055 cm−1. 1H NMR (CDCl3, 250 MHz) 
δppm = 3.37 (s, 3H, N(3)–CH3), 3.56 (s, 3H, N(1)–CH3), 4.07 
(dd, J = 3.5, 13.4 Hz, 2H, NCH2), 4.18 (s, 1H, OH exchange-
able with D2O), 4.41–4.51 (complex, 2H, OCHAHB, CHOH), 
4.65 (dd, J = 2.5, 13.4 Hz, 1H, OCHAHB), 6.87-7.01 (m, 3H, 
aryl), 7.25–7.32 (m, 2H, aryl), 7.66 (s, 1H, C(8)–H of theo-
phylline). 13C NMR (CDCl3, 62.5 MHz) δppm = 27.96, 29.76, 
49.65, 68.68, 68.82, 106.97, 114.35, 121.36, 129.49, 142.66, 
148.75, 151.29, 155.59, 158.04. MS (EI): m/z (%) = 330 
(19.2) [M+]. Anal. Calc. for C16H18N4O4: C, 58.17; H, 5.49; 
N, 16.96; found: C, 58.29; H, 5.36; N, 17.08.

Butyl 3‑(1H‑benzo[d]imidazol‑1‑yl)propanoate (entry 13, 
Soltani Rad et al. 2010)

Column chromatography on silica gel eluted with hexane/
EtOAc (2:1) afforded pure product as white solid (2.27 g, 
92%); m.p. 114–115  °C. IR (KBr): 3088, 2960, 1735, 
1493, 1245 cm−1. 1H NMR (CDCl3, 250 MHz) δppm = 0.73 
(t, J = 7.3  Hz, 3H, CH3), 1.09–1.23 (m, 2H, CH3CH2), 
1.35–1.47 (m, 2H, OCH2CH2), 2.69 (t, J = 6.7 Hz, 2H, 
O = CCH2), 3.90 (t, J = 6.7  Hz, 2H, NCH2), 4.30 (t, 
J = 6.5 Hz, 2H, OCH2), 7.13–7.29 (m, 2H, aryl), 7.67–7.71 
(m, 2H, aryl), 7.84 (s, 1H, C(2)–H of benzimidazole). 
13C NMR (CDCl3, 62.5 MHz) δppm = 13.55, 18.91, 30.36, 
34.30, 40.26, 64.93, 109.32, 120.33, 122.11, 122.92, 133.32, 
143.31, 143.73, 170.64. MS (EI): m/z (%) = 246 (17.8) [M+]. 
Anal. Calc. for C14H18N2O2: C, 68.27; H, 7.37; N, 11.37; 
found: C, 68.42; H, 7.48; N, 11.26.

2‑(1H‑Benzo[d]imidazol‑1‑yl)acetonitrile (entry 14, Soltani 
Rad et al. 2010)

Column chromatography on silica gel eluted with hexane/
EtOAc (2:1) afforded pure product as white solid (1.43 g, 
91%); m.p. 58–59 °C. IR (KBr): 3090, 2984, 2837, 2200, 
1450 cm−1. 1H NMR (DMSO-d6, 250 MHz) δppm = 5.69 (s, 
2H, NCH2), 7.18–7.39 (m, 2H, aryl), 7.61-7.78 (m, 2H, aryl), 
8.37 (s, 1H, C(2)–H of benzimidazole). 13C NMR (DMSO-
d6, 62.5 MHz) δppm = 46.77, 111.17, 116.14, 119.47, 121.84, 
122.06, 122.40, 129.12, 143.99. MS (EI): m/z (%) = 157 

(12.7) [M+]. Anal. Calc. for C9H7N3: C, 68.78; H, 4.49; N, 
26.74; found: C, 68.64; H, 4.59; N, 26.83.

1‑(3‑(Naphthalen‑2‑yloxy)propyl)‑1H‑imidazole (entry 15, 
Soltani Rad et al. 2009b)

Column chromatography on silica gel eluted with EtOAc 
afforded pure product as white solid (2.37 g, 94%); m.p. 
99–100 °C. IR (KBr): 3150, 2948, 2887, 1462 cm−1. 1H 
NMR (CDCl3, 250 MHz) δppm = 2.15–2.25 (m, 2H, CH2), 
3.93 (t, J = 5.6 Hz, 2H, NCH2), 4.11 (t, J = 5.6 Hz, 2H, 
OCH2), 6.89 (s, 1H, C(5)–H of imidazole), 7.06 (s, 1H, 
C(4)–H of imidazole), 7.12–7.15 (m, 2H, aryl), 7.30–7.40 
(m, 2H, aryl), 7.46 (s, 1H, C(2)–H of imidazole), 7.68 (s, 1H, 
aryl), 7.72–7.76 (m, 2H, aryl). 13C NMR (CDCl3, 62.5 MHz) 
δppm = 30.71, 43.45, 63.74, 106.74, 118.59, 119.02, 123.84, 
126.51, 126.77, 127.66, 129.10, 129.57, 129.63, 134.46, 
137.31, 156.37. MS (EI): m/z (%) = 252 (21.6) [M+]. Anal. 
Calc. for C16H16N2O: C, 76.16; H, 6.39; N, 11.10; found: C, 
76.07; H, 6.50; N, 11.25.

Results and discussion

To optimize the reaction condition, the silylation of uracil 
with HMDS in the presence of CSSNH was investigated as 
a sample reaction. To this end, the effect of temperature and 
the amount of catalyst was studied on the silylation of uracil.

Since the reaction temperature has a significant role on 
the reaction progress, the impact of temperature variations 
was investigated on sample reaction (Table 1). As shown in 
Table 1, the reaction was not achieved at room temperature 
even after 120 min (entry 1). When the reaction time was 
prolonged up to 720 min at R.T., a trace amount of silylated 
uracil was obtained (entry 2). The data in Table 1 demon-
strate that elevation in temperature resulted in enhancement 
of reaction efficiency. The silylated uracil was quantitatively 
obtained when the reaction was performed at 90 °C (Table 1, 
entry 6). However, no more improvement in terms of reac-
tion time and yield was obtained by the increment of tem-
perature from 90 °C up to reflux condition (Table 1, entries 
6–9). Therefore, all silylation reactions of nucleobases were 
carried out 90 °C. It is also worth mentioning that the previ-
ous methods used for silylation of nucleobases were con-
ducted in refluxing HMDS.

In another experiment, different amounts of loaded cata-
lyst were studied to obtain an efficient progress of sample 
reaction (Table 2). As can be seen in Table 2, the amount of 
CSSNH plays a significant role in upgrading of the silylation 
reaction of uracil. Practically, it was found that the silyla-
tion of uracil in the absence of catalyst acquires low yield of 
silylated adduct in a long reaction time.
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As shown in Table 2, the increase in loading of catalyst 
up to 0.05 g enhances the reaction yield and accelerates the 
reaction rate (entries 2–5). The best result was obtained when 
the silylation of uracil was achieved in the presence of 0.05 g 
CSSNH at 90 °C (Table 2, entry 5). Additionally, loading 
more catalyst from 0.05 up to 0.07 had no considerable effect 
on the progress of sample reaction (Table 2, entries 5–7).

With optimized reaction conditions in hand, we then 
screened the scope, versatility, and general applicability of 
the present protocol in trimethylsilylation of structurally 

diverse purine and pyrimidine nucleobases as well as other 
N-heterocycles (Table 3). As can be seen in Table 3, all 
examined substrates efficiently undergo the silylation reac-
tion in the presence of CSSNH using HMDS at 90 °C to 
afford their corresponding trimethylsilyl derivatives in 
almost quantitative yields. Practically, CSSNH is a highly 
efficient heterogeneous nanocatalyst for trimethylsilyla-
tion of pyrimidine and purine nucleobases as well as their 
related analogues (Table 3, entries 1–11). Although guanine 
is known as the most insoluble and unreactive purine nucle-
obase; however, trimethylsilylation of guanine was compe-
tently achieved using the current protocol (Table 3, entry 
7). Furthermore, the other examined N-heterocycles includ-
ing benzimidazole, imidazole, 2-phenyl imidazole, and 
2-methyl-4-nitro-1H-imidazole were completely converted 
to their corresponding trimethylsilyl derivatives (Table 3, 
entries 12–15).

We also compared the potency of CSSNH with that of 
SSA as the only reported heterogeneous catalyst for silyla-
tion of nucleobases and other N-heterocycles (Soltani Rad 
et al. 2010). The results in Table 3 clearly indicate that there 
are no distinguishable differences between the potency of 
CSSNH and SSA in the case of pyrimidine nucleobases 
(entries 1, 3–5) and some azole derivatives (entries 12–14). 
However, when the CSSNH is used for silylation of 2-thio-
uracil and 2-methyl-4(5)-nitroimidazole, the corresponding 
silylated derivatives were obtained in shorter reaction times 
compared to SSA (entries 2 and 15, respectively). More sat-
isfactory results were obtained in the case of purine nucle-
obases and their analogues when CSSNH was employed 
as the catalyst (entries 6–11). It is also worthy to mention 
that CSSNH unlike SSA has a very mild acidic character 
and consequently its application has a preference compared 
to SSA especially in the case of acid-sensitive substrates. 
The acid content of CSSNH was also measured by a simple 
titration using standard NaOH solution. The titration result 
has clearly indicated that each 0.05 g of CSSNH contains 
0.04 mmol of H+ whereas the same titration for 0.05 g of 
SSA resulted in 0.13 mmol of H+ (Shaterian et al. 2008; 
Shah et al. 2014).

To evaluate the efficiency and catalytic potency of 
CSSNH, the trimethylsilylation of uracil, adenine, and 
benzimidazole was achieved using CSSNH, TMSCl, and 
(NH4)2SO4 under the optimized condition. The comparative 
results are depicted in Table 4. As shown in Table 4, TMSCl 
and (NH4)2SO4 are less efficient than CSSNH for silylation 
of nucleobases especially in the case of reaction times.

To prove the recyclability and heterogeneous nature of 
CSSNH, after completion of the sample reaction, the cata-
lyst was filtered using a sintered glass funnel and washed 
twice with hot THF (2 × 3 mL). After recovering and drying 
the catalyst, CSSNH was directly employed for silylation of 
uracil in the next run while the fresh CSSNH was not added 

Table 1   Effect of temperature variation on silylation of uracil

Reaction conditions: uracil (1 mmol), HMDS (10 mL), and CSSNH 
(0.05 g)
a GC yield
b No reaction

Entry Temperature (°C) Time (min) Yielda (%)

1 r.t. 120 NRb

2 r.t. 720 Trace
3 40 120 14
4 60 75 32
5 80 40 61
6 90 22 100
7 100 22 100
8 110 22 100
9 Reflux 20 100

Table 2   Effect of loaded catalyst on silylation of uracil

Reaction conditions: uracil (1  mmol) and HMDS (10  mL)CSSNH 
(× g)
a GC yield

Entry × g CSSNH Time (min) Yielda (%)

1 – 420 12
2 0.02 60 64
3 0.03 50 76
4 0.04 35 89
5 0.05 22 100
6 0.06 22 100
7 0.07 21 100
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Table 3   Silylation of nucleobases and other N-heterocycles with HMDS using CSSNH and SSA catalysts

Entry Substrate Product

CSSNH SSA

Time (min.)/Yield a (%) Time (min.)/Yield a (%)

1 22/100 30/100

2 85/100 120/100

3 22/100 30/100

4 22/100 30/100

5 24/100 35/100

6 150/100 180/199

7 1200/91 1440/90

8 55/100 80/100

9 70/100 90/100

10 85/100 120/100

11 40/100 60/100

12 20/100 30/100

13 7/100 9.6/100

14 20/100 30/100

15 90/100 120/100
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to the reaction flask. The reusability of catalyst was evalu-
ated for seven runs (Fig. 2). As shown in Fig. 2, CSSNH is 
an efficient recyclable and reusable heterogeneous catalyst 
with negligible decline in its reactivity (Molnár and Papp 
2017). To determine the catalyst stability, the IR spectrum of 

recycled catalyst after seven sequential runs was taken and 
compared with that of the fresh catalyst (Fig. 3). As can be 
seen in Fig. 3, no noticeable alteration or change in structure 
and functionalities of CSSNH is observed and this can be 
attributed to stability of catalyst.

To evaluate the feasibility of the present protocol on a 
large-scale synthesis, the trimethylsilylation of uracil was 
achieved on a 200-mmol scale using the optimized reac-
tion conditions. Interestingly, the corresponding trimethyl-
silyl uracil was obtained almost in a quantitative yield after 
35 min.

In the next step of this approach, the obtained presilylated 
nucleobases and other N-heterocycles underwent the reac-
tion with different alkyl halides, butyl acrylate as a Michael 
acceptor, and 2-(phenoxymethyl)oxirane as an epoxide. 
To this end, tetra-n-butylammonium fluoride (TBAF) was 
applied as a desilylating reagent (Scheme 1). The structures 
of synthesized acyclic nucleosides are depicted in Table 5. 
As shown in Table 5, the corresponding N-alkylated prod-
ucts were obtained in good-to-excellent yields.

Table 4   The comparative results for silylation of nucleobases and other N-heterocycles using HMDS in the presence of CSSNH, TMSCl, and 
(NH4)2SO4

Entry Substrate Product

Time (min.)/ Yield a (%)

CSSNH TMSCl (NH4)2SO4

1 22/100 210/100 120/100

2 150/100 970/78 650/86

3 20/100 60/100 50/100

a GC yield.
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Fig. 2   The reusability of CSSNH for silylation of uracil

Fig. 3   Comparison between IR 
spectrum of fresh CSSNH and 
recovered CSSNH after seven 
sequential runs
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Table 5   The synthesized N-alkyl nucleobases and other related N-heterocycles
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Entry Substrate Electrophile Product a Yield b (%)

1 86

2 90

3 87

4 85
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a All products were characterized by 1H and 13C NMR, IR, CHN, and MS analysis. b Isolated yield.
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Conclusions

In summary, a rapid, simple and highly efficient protocol 
for silylation of structurally diverse nucleobases and other 
related N-heterocycles using CSSNH as a green heteroge-
neous hybrid nanocatalyst is described. The efficiency of 
CSSNH for silylation of nucleobases was proved by conveni-
ent N-alkylation of the presilylated substrates with different 
carbon electrophiles. CSSNH affords remarkable advantages 
such as recoverability and reusability for at least seven reac-
tion runs, eco-friendly nature, ease of preparation and han-
dling, cheapness, and feasibility of application in large-scale 
synthesis. In addition, CSSNH proved to be a more efficient 
catalyst in comparison with SSA, TMSCl, and (NH4)2SO4 
for silylation of purine nucleobases and their analogues.
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