High Esterolytic Activity of a Novel Water-soluble Polymer Catalyst Imprinted by a Transition-state Analogue

Katsutoshi Ohkubo,*a Yoshio Funakoshi,b Yasuo Urata,b Shogo Hirota,b Satoshi Usuib and Takashi Sagawab

- ^a Institute for Fundamental Research of Organic Chemistry, Kyushu University, Fukuoka 812, Japan
- Department of Applied Chemistry, Faculty of Engineering, Kumamoto University, Kumamoto 860, Japan

A novel water-soluble polymer catalyst containing a ι -histidyl group as a catalytic site, prepared by imprinting of a transition-state analogue of phenyl 1-benzyloxycarbonyl-3-methylpentyl phosphonate, accelerates the substrate-specific esterolysis of p-nitrophenyl N-(benzyloxycarbonyl)- ι -leucinate (Z- ι -Leu-PNP) in 10 vol% Me $_2$ O-Tris buffer (pH 7.15) at 293–308 K.

Although polymer catalysts imprinted by transition-state analogues (TSAs) have recently received considerable attention as plastic enzymes, 1-4 the catalysis of water-soluble, TSA-recorded polymers has hitherto been the subject of only limited investigation; there is only one report on the esterolytic activity of a TSA-imprinted poly(ethylene imine)s. 4 This paper reports the catalytic activities of a water-soluble polymer (TP-2) and a water-insoluble one (TP-1), both of which were imprinted using phenyl 1-benzyloxycarbonylamino-3-methylpentyl phosphonate (TSA) for the esterolysis of *p*-nitrophenyl *N*-(benzyloxycarbonyl)-L-leucinate (Z-L-Leu-PNP).

The TP-1 and TP-2 catalysts possessing a L-histidyl group as a catalytic site were prepared by radical polymerization as follows. Equivalent amounts (0.26 mmol) of methyl *N*-acryloyl-L-histidinate (His monomer) and TSA⁴ were mixed in DMSO (12 cm⁻³) for 1 h at room temperature under N₂,† followed by the addition of acrylamide (2.65 or 1.33 mmol), *N*-acryloyl-*N*-(*tert*-butyloxycarbonyl)-1,2-diamine (0.0 or 1.33 mmol), a cross-linker, *N*,*N*'-ethylenebis(prop-2-eneamide) (0.265 mmol), and AIBN (0.08 mmol) to the Me₂SO solution, and then polymerized at 60 °C to produce polymers (Polymer 1 and Polymer 2) possessing the same cross-linker content (8.4%).

The complete removal of TSA from Polymer 1 with 5 vol% $\rm Et_3N$ –MeOH gave TP-1, while the treatment of Polymer 2 with 4 mol dm⁻³ HCl in 1,4-dioxane for 8 h and then with Bun₃N and MeI in DMF for 36 h at room temperature resulted in TP-2 including TSA, from which TSA was washed out with ethyl acetate–MeOH–Et₃N (10:5:3 ν/ν) and 60 vol% ethyl acetate–MeOH. The TP-2 catalyst possesses the randomly distributed quaternary trimethylammonium group through its framework and was found to be very soluble in water.

The hydrolyses of amino acid esters ($10.0 \,\mu\text{mol dm}^{-3}$) by the polymer catalysts (His unit concentration = 65.1– $112.0 \,\mu\text{mol dm}^{-3}$) or His monomer ($100.0 \,\mu\text{mol dm}^{-3}$) were carried out in $10 \,\text{vol}\%$ Me₂SO–Tris buffer (pH 7.15) at 293–308 K, and the pseudo-first-order reaction rate constants obtained with and without the catalyst (k_{cat} and k_{uncat} respectively) were determined by monitoring the amount of PNP anion produced spectrophotometrically at $400 \,\text{nm.}$; The second-order catalytic rate constant $k_{\text{cat}}^{\text{app}}$ was evaluated by the equation $k_{\text{cat}}^{\text{app}} = (k_{\text{cat}} - k_{\text{uncat}})/[\text{His}]$, where [His] denotes the concentration of His units in the catalyst. These kinetic parameters, especially $k_{\text{cat}}^{\text{app}}$ values, listed in Table 1 indicate that both the polymer catalysts exhibited higher catalytic activities than His monomer in the

Scheme 1 Transition-state analogue (TSA) and TSA-imprinted polymers (assumed structures) for the esterolysis of Z-L-Leu-PNP

Table 1 Catalytic activities of TSA-imprinted polymer catalysts for the esterolysis of Z-L-Leu-PNP^a

Catalyst	$10^5 k_{cat}/$ s ⁻¹	$k_{\rm cat}/k_{\rm uncat}$	$10^2 k_{\text{cat}}^{\text{app}}/$ $\text{mol}^{-1} \text{dm}^3 \text{s}^{-1}$	Relative activity ^b	$\Delta H^{\ddagger/}$ kcal mol ⁻¹	ΔS^{\ddagger} / cal mol ⁻¹ K ⁻¹	ΔG^{\ddagger} (303 K)/kcal mol ⁻¹
None	4.00				22.6	-4.35	23.9
His monomer	5.73	1.4	17.3	1.0	4.52	-47.1	18.5
TP-1	10.2	2.6	95.2	5.5	20.2	7.85	17.8
TP-2	47.0	11.8	383	22.1	31.9	49.4	16.9

^a [His] = 100.0, 65.1 and 112.0 μmol dm⁻³ for His monomer, TP-1 and TP-2, respectively, and [Z-L-Leu-PNP] = 10.0 μmol dm⁻³ in 10 vol% Me₂SO-Tris buffer (pH 7.15) at 303 K. ^b Obtained from $k_{\text{cat}}^{\text{app}}$ ratio.

Table 2 Substrate-specificity of TP-2 in the esterolyses of Z-L-Ala-PNP, Z-L-Leu-PNP and Z-L-Phe-PNPa

	Z-L-Ala-PNP	Z-L-Leu-PNP	Z-L-Phe-PNP
$k_{\text{cat}}/k_{\text{uncat}}$	2.21	5.78	1.79
10 ² $k_{\text{cat}}^{\text{app}}/\text{mol dm}^{-3}$ s ⁻¹	82.8	174	60.8

^a Reaction conditions are the same as those in Table 1 except 10 vol% MeCN-Tris buffer (pH 7.15).

esterolysis of Z-L-Leu-PNP, and the order of relative catalytic activities (TP-2 > TP-1 > His monomer > None) indicates the high catalytic efficiency of TP-2.

The esterolysis of Z-L-Leu-PNP with or without the catalysts at 293-308 K gave the activation parameters (Table 1) in good Eyring relationships (correlation coefficient 0.993–0.999). As Table 1 indicates, the order of the ΔG^{\ddagger} values reflects that of the catalytic activities mentioned above; TP-2 lowered the ΔG^{\ddagger} value from 23.9 (uncatalysed reaction) to 16.9 kcal mol⁻¹ (1 cal = 4.184 J), and the smallest ΔG^{\ddagger} value of TP-2 results from the largest ΔS^{\ddagger} value. Therefore, the high esterolytic activity of TP-2 is presumably due to the possible reaction between the histidyl group and the incorporated substrate in its reaction cavity. In this regard, the TP-2-catalysed esterolysis of Z-L-Leu-PNP was appreciably inhibited by the addition of TSA into the present reaction system; for example, the $k_{\text{cat}}^{\text{app}}$ value at 289 K was decreased from 159 to 124, 76.3 or $31.6 \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1} \text{ under [TSP]/[substrate]} = 1.0, 2.0 \text{ or}$ 3.0, respectively. The substrate specificity of TP-2 was also examined in the hydrolyses of Z-L-Ala-PNP, Z-L-Leu-PNP, and Z-L-Phe-PNP in 10 vol% MeCN-Tris buffer (pH 7.15) at 303 K (Table 2). § The k_{cat}/k_{uncat} or k_{cat}^{app} values for the esterolysis of Z-L-Leu-PNP were considerably larger than those for Z-L-AlaPNP and Z-L-Phe-PNP. Moreover, the hydrolysis of Z-D-Leu-PNP by TP-2 under the same conditions as those in Table 1 resulted in $10^5 k_{cat} = 3.81 \text{ s}^{-1}$ and $k_{cat}/k_{uncat} = 0.95$; the ratio of $k_{\text{cat}}/k_{\text{uncat}}$ for Z-L-Leu-PNP to that of the other enantiomer is estimated to be 12.4. Therefore, it is possible to demonstrate that the present soluble, TSA-imprinted polymer catalyst of TP-2 facilitated the efficient esterolysis of Z-L-Leu-PNP in its reaction cavity through substrate specificity.

Received, 12th June 1995; Com. 5/03747F

Footnotes

- * E-mail ohkuboscc@mbox.uc.kyushu-u.ac.jp
- † This procedure was carried out to induce some interaction between His monomer and TSA before the polymerization; 400 MHz ¹H NMR analysis of the [2H₆]Me₂SO solution of the two molecules suggested hydrogen bond formation between them, because the chemical shifts of the imidazolyl NH proton in His monomer and the amide C(=O)NH proton in TSA changed from δ 6.60 to 7.20 and from δ 7.53 to 6.90, respectively.
- ‡ In the case of the esterolysis with the water-insoluble TP-1 catalyst, aliquots of the reaction mixture were analysed every 10 min after centrifuging TP-1 from the aliquots.
- § The 10 vol% MeCN-Tris buffer solution was used due to the low solubility of Z-L-Phe-PNP in the 10 vol% Me_2SO -Tris buffer.

References

- 1 D. K. Robinson and K. Mosbach, J. Chem. Soc., Chem. Commun., 1989, 969.
- 2 K. Ohkubo, Y. Urata, S. Hirota, Y. Honda and T. Sagawa, J. Mol. Cat., 1994, 87, L21.
- 3 K. Ohkubo, Y. Urata, S. Hirota, Y. Honda, Y. Fujishita and T. Sagawa, 1994 93 189.
- 4 K. Ohkubo, Y. Urata, Y. Honda, Y. Nakashima and K. Yoshinaga, Polymer Commun., 1994, 35, 5372.