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Abstract A concise approach to the total syntheses of racemic panicu-
lidines B and C is described. The route features a combined Tamaru al-
lylation/olefin cross-metathesis sequence for the regiocontrolled syn-
thesis of prenylindole intermediates. In addition, we report a
transformation of the prenylated indole into 2-methylcarbazole cata-
lyzed by sulfonic acid-functionalized silica gel.

Key words prenylindoles, Tamaru allylation, cross-metathesis, carba-
zoles, total synthesis, alkaloids

Murraya paniculata (Linn.) Jack, commonly known as
orange jessamine, is an evergreen shrub found widely
throughout tropical and subtropical Asia. Folk-medicine
practitioners have long exploited various parts of this plant
as therapeutic agents. The reported pharmacological ef-
fects, such as antidiarrheal, antinociceptive, and antiin-
flammatory activities imply considerable biomedical po-
tential for chemical constituents of M. paniculata.1 The
search for bioactive substances in this plant has led to the
identification of some alkaloids featuring a biogenetically
uncommon 3-prenylindole motif. These alkaloids, among
many others, include paniculidine B (1),2 paniculidine C
(2),3 and yuehchukene (3)4 (Figure 1). From a chemotaxo-
nomic standpoint, Kinoshita and co-workers have suggest-
ed that 1 and 2 are biosynthetically related to the apparent
dimeric alkaloid 3.5 Intriguingly, Chakraborty suggested
that 3-prenylated indoles might be biosynthetic precursors
for naturally occurring 2-methylcarbazole derivatives.6

The unique structural features and possible roles in the
biosynthesis of carbazole alkaloids have stimulated several
laboratories to conceive synthetic strategies for the synthe-
sis of prenylindoles. In 1985, Somei and Ohnishi achieved

the first total synthesis of racemic paniculidine B (1) in sev-
en steps; the route involves the use of a modified Heck re-
action7 for the introduction of an oxoalkyl side chain onto
the N-methoxyindole framework.8 On the other hand, the
Kinoshita group described the first total synthesis of pa-
niculidine C (2) via a Japp–Klingemann reaction, followed
by a Fisher indolization.9 Selvakumar and Rajulu disclosed
an eight-step synthesis of racemic 1 employing a novel con-
version of an ortho-substituted nitroarene into a highly
functionalized N-methoxyindole; they also completed the
synthesis of paniculidine C (2) through a facile hydrogeno-
lysis of the N−OMe bond of 1.10 Significantly, Moissenkov
and co-workers accomplished the first asymmetric synthe-
sis of paniculidine C (2) based on a chiron approach.11 Nev-
ertheless, new routes featuring the employment of catalyt-
ic, operationally simple transformations are still highly de-
sirable.

Nature conducts selective normal or reverse prenylation
of indoles with an array of prenyltransferases under re-
markably mild conditions.12 From a synthetic perspective,
the selective incorporation of a prenyl or tert-prenyl group
into one position of indole raises issues of chemoselectivity
and regioselectivity.13 Despite these challenges, a few effi-
cacious reaction systems for the C3-prenylation of indoles

Figure 1  Prenylindole-type alkaloids from Murraya paniculata
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have been disclosed.14 In our quest for syntheses of pre-
nylated alkaloids, we sought to develop a formal C3-pre-
nylation of indole involving sequential catalytic Tamaru
allylation and olefin cross-metathesis (Scheme 1).15 Here,
we report a concise total syntheses of (±)-paniculidines B
(1) and C (2), and we present an unexpected synthesis of
2-methylcarbazole (4) from the common 3-prenylindole
intermediate 6.

Scheme 1  Retrosynthetic analysis of 1 and 2

Our synthesis commenced with a palladium-catalyzed
Tamaru allylation16 to give the known 3-allylindole (7) in
89% yield (Scheme 2). Reduction of 7 with sodium cyanobo-
rohydride in acetic acid furnished the corresponding indo-
line 8. By applying a modified Somei oxidation,17 we were
able to convert compound 8 into 3-allyl-1-methoxyindole
(9) in moderate yield without affecting the alkene moiety.
To our delight, the terminal alkene groups of 9 and 2-meth-
ylprop-2-en-1-ol underwent a cross-metathesis reaction in
the presence of the Grubbs second-generation catalyst
(Grubbs II)18 to give enol 5 containing a hydroxyprenyl frag-
ment. In this case, the use of the Grubbs first-generation
catalyst under various conditions delivered the desired
product 5 in low yields (<10%).

Equation 1  C3-tert-prenylation of indole

Note that Tamaru and co-workers have shown that the
reaction of indole with 3-methylbut-2-en-1-ol (prenyl alco-
hol) resulted in the exclusive generation of C3-tert-pre-
nylated indole in good yield (Equation 1).16 Therefore, our
designed normal-prenylation sequence, which conveniently
facilitates completely regioselective installation of a prenyl
group at the C3 position of indoles, is complementary to
Tamaru’s method.

Our initial attempts to execute selective hydrogenation
of the trisubstituted alkene 5 encountered difficulties due
to the labile nature of the N−OMe bond under reductive
conditions. After much experimentation, we found that a

judicious selection of solvent was critical in realizing the
desired reduction in a chemoselective manner. By treating
compound 5 in THF19 with Pd/C under a hydrogen atmo-
sphere (balloon) and then with sodium borohydride, pa-
niculidine B (1) was successfully obtained in 90% yield.20

The spectral data (IR, 1H and 13C NMR, and mass spectra) of
the synthetic compound 1 were in good agreement with
those of the natural product, as reported in the literature.2

Borrowing from our experiences in the synthesis of 1,
we also completed a short synthesis of paniculidine C (2) in
racemic form by taking advantage of the two-step formal
prenylation sequence (Scheme 3). Our synthetic material 2
proved identical to the naturally occurring compound,
based on spectral comparisons (IR, 1H NMR, and mass spec-
tra).3

Scheme 3  Total synthesis of (±)-paniculidine C (3)
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Scheme 2 Total synthesis of (±)-paniculidine B (1)
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Several research groups have reported racemic synthe-
ses of yuehchukene (3) through the biomimetic dimeriza-
tion of 3-isoprenylindole (11) or its synthetic equivalents
(e.g., 10) under acidic or neutral conditions.21 Inspired by
Sheu’s studies ,22 we surmised that allylic alcohol 6 might
be first converted into diene 11 through an E1-type elimi-
nation and this would then undergo dimerization to give 3.
In the event, the trifluoroacetic acid-catalyzed reaction of 6
did not proceed to any noticeable extent (Table 1, entry 1).23

The conversion of 6 in ethylene glycol (EG)–water failed to
give 3, but instead furnished 2-methylcarbazole (4)24 as the
sole identifiable product in 7% yield (entry 2).25 The unex-
pected formation of the carbazole nucleus illustrates the
distinctive reactivity of the allyl alcohol 6 compared with
the analogous homoallyl alcohol 10 under thermal condi-
tions. This intriguing finding prompted us to examine a few
more variations in the reaction parameters. The use of tri-
flic acid in acetonitrile resulted in the formation of a com-
plex mixture (entry 3).26 With the application of sulfonic
acid functionalized silica gel (HO-SAS) as a heterogeneous
Brønsted acid catalyst,27 compound 4 was also generated
(entry 4), and we observed that the reaction conducted in
polar protic solvent at an elevated temperature was rela-
tively more efficient (entries 4–6).28 A plausible mechanism
that might account for the formation of 4 entails an initial

Friedel–Crafts-type spirocyclization and a subsequent
1,2-alkyl migration, followed by an autooxidative aromati-
zation.29 From a biosynthetic perspective, our preliminary
results provide an intriguing piece of experimental evi-
dence supporting the view that 2-methylcarbazole-based
alkaloids might be formed from 3-prenylated indoles.30

In summary, we accomplished concise total syntheses
of (±)-paniculidines B (1) and C (2) from indole in 19.4% and
33.3% overall yield, respectively. Although the individual
catalytic protocols are well established, our indirect C3-pre-
nylation sequence of indole is the first to showcase the use
of a combined Tamaru allylation/olefin cross-metathesis
process. Whereas the attempts to convert 6 into yueh-
chukene (3) were unfruitful, we discovered an unprece-
dented route to 2-methylcarbazole (4), albeit with modest
efficiency. This experiment suggests a possible biosynthetic
link between 3-prenylated indoles and 2-methylcarbazole
alkaloids.
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