
Synthesis of Alkyl Halides from Aldehydes via Deformylative
Halogenation
Shengzong Liang,† Tatsuya Kumon,‡ Ricardo A. Angnes,§ Melissa Sanchez,∥ Bo Xu,*,⊥

and Gerald B. Hammond*,†

†Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
‡Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Matsugasaki, Kyoto 606-8585, Japan
§Chemistry Institute, State University of Campinas - Unicamp C.P. 6154, CEP.13083-970, Campinas, Saõ Paulo, Brazil
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ABSTRACT: An unprecedented deformylative halogenation
of aldehydes to alkyl halides is presented. Under oxidative
conditions, 1,4-dihydropyridine (DHP), derived from an
aldehyde, generated a C(sp3)− radical that coupled with a
halogen radical that was generated from inexpensive and
atom-economical halogen sources (NaBr, NaI, or HCl), to
yield an alkyl halide. Because of the mild conditions, a wide
range of functional groups were tolerated, and excellent site
selectivity was achieved.

Halogenated organic compounds are ubiquitous in organic
chemistry.1 They not only play significant roles as

synthetic intermediates and building blocks in organic
transformations such as cross-coupling reactions and nucleo-
philic substitutions,2 but they are also versatile precursors for
most organometallic species, including Grignard, organozinc,
and organocuprate reagents.3 Halogenated organic compounds
have also been used as essential designer molecules in the
pharmaceutical,4 agrochemical,5 and material science applica-
tions.6 Their syntheses have been carried out through
substitutions,7 Markovnikov additions,8 and less common
radical-based protocols9 such as the Hunsdiecker reaction10

and its variations.11

Recently, the use of visible light as an efficient, clean, and
inexpensive energy source for radical-based organic synthesis
has received much attention.12 However, halogenations using
photocatalysis are very rare.13 In particular, the chlorination or
bromination of arenes was usually restricted to electron-rich
substrates,14 while the construction of alkyl chloride or
bromide faced more challenges such as controlling site
selectivity, choice of appropriate substrates, and halogen
sources.15 Nicewicz and co-workers reported a photocatalyzed
anti-Markovnikov hydrochlorination of styrenes.16 They
utilized the stable benzylic radical to initiate the photoredox
reaction and achieve the site-selective installation of chlorine,
but only styryl substrates were showcased (Scheme 1a). The
Glorius’ group reported a Hunsdiecker decarboxylative
halogenation strategy using diethyl bromomalonate, NCS,
and NIS as halogen sources under photoirradiation (Scheme

1b).17 Alexanian and co-workers designed an amide-based
halogenating reagent for aliphatic C−H halogenation (Scheme
1c).18

This protocol exhibited predominant δ-selectivity, but the
formation of other regioisomers was also observed, in yields
ranging from 18% to 46%. Roizen and co-workers reported a γ-
selective intramolecular chlorination which required prein-
stallation of a chlorine-directing group, sulfamate ester
(Scheme 1d).19

Aldehydes are among the most common functionalities in
synthesis, and they are starting materials for a variety of organic
transformations, among which deformylative transformation
has significant synthetic value because it can integrate one-
carbon degradation and further functionalization in a single
step. However, such strategies are rare.20 The reported
methods relied on the generation of an acyl radical through
hydrogen-atom transfer (HAT), followed by CO extrusion to
form an alkyl radical for further functionalization. But the
dissociation of an acyl radical to generate an alkyl radical is a
high energy process, and acylated products are more
commonly observed.21 An alternative is an oxidative process
followed by elimination of CO2 to furnish a one-carbon-shorter
alkyl radical;22 however, the use of strong and stoichiometric
oxidants is not desirable in synthesis. Recently, 1,4-
dihydropyridines (DHP)easily prepared from aldehydes
under neutral redox conditionshave been used in
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deformylative transformations.23 Its robustness allows for a
wide range of structural derivatizations (see Supporting
Information (SI)). Under photoirradiation, DHPs undergo
homolysis to generate C(sp3)-centered alkyl radicals, which
can be employed for further radical coupling reactions.
However, these coupling reactions were primarily used in the
construction of C−C bonds. Herein we report the first
photoredox-catalyzed deformylative halogenation strategy to
achieve the transformation of aldehydes to alkyl halides using
readily available, inexpensive, and atom-economical NaBr and
HCl as halogen sources. In addition, we have successfully
developed a photocatalyst-free deformylative iodination using
NaI as a halogen source (Scheme 1).
First, we established the conditions for the deformylative

bromination using DHP 1a as the substrate (Table 1). After
extensive screening, the optimized conditions furnished the
desired brominated product 2a in 98% yield without the
formation of the regioisomer derived from the more stable
benzylic radical (Table 1, entry 1). H2O was important to
dissolve salts and achieve better yields (Table 1, entries 2−3).
Other commonly used photocatalysts (B−D) exhibited lower
efficacy (Table 1, entries 4−6). The use of organo-oxidants
DTBP and TBN or the lack of an oxidant led to poor yields or
no reaction (Table 1, entries 7−9). The yield was dramatically
decreased when only half the amount of NaBr was used (Table
1, entry 10). Both blue LED irradiation and photocatalyst A
were crucial to produce 2a in higher yields (Table 1, entries
11−13). A low yield was obtained when this reaction was
conducted under air (Table 1, entry 14).
With the optimized conditions established, we proceeded to

evaluate the scope of the deformylative bromination process.
As shown in Scheme 2, a myriad of DHPs were suitable
substrates, giving the corresponding brominated products in
good to excellent yields. Notably, no regioisomeric products
were observed even when active benzylic positions were
available (2a−2c). A diverse range of functional groups were
well tolerated, such as hydroxyl, ether, ester, ketone, aldehyde,

thioether, nitro, and nitrile groups (2d−2m). Heterocyclic
compounds such as furan (2n), thiophene (2o), thiazole (2p),
benzotriazole (2q), indole (2r), and N-Boc-piperidine (2s)
were suitable substrates. Benzylic DHPs also succeeded in
delivering the brominated products in good yields (2t−2x).
Once the versatility of the deformylative bromination was

demonstrated, we focused our attention on deformylative
chlorination. Our newly developed HCl/DMPU24,8b was
superior to other inorganic chloride salts (Table 2, entries
1−7), while Ir(ppy)3 (B) was a more efficient photocatalyst

Scheme 1. Major Photoinduced Synthetic Methods for Alkyl
Halides

Table 1. Optimization of Visible-Light-Mediated
Deformylative Bromination of 1aa

entry variations from the standard conditions yield (%)b

1 none 98
2 MeCN/H2O (v/v = 1/1) 89
3 MeCN 9
4 B instead of A 13
5 C instead of A 53
6 D instead of A 9
7 DTBP instead of K2S2O8 0
8 TBN instead of K2S2O8 11
9 Without K2S2O8 0
10 NaBr (1.5 equiv) 16
11 CFL as a light source 47
12 no light 0
13 without A 18
14 under air 17

aReaction conditions: 1a (0.1 mmol), NaBr (0.3 mmol), K2S2O8
(0.15 mmol), A (1 mol %), MeCN/H2O (v/v = 9/1) [0.2 M], blue
LEDs, rt, 24 h, Ar atmosphere. bYields were determined by 1H NMR
using 1,3,5-trimethoxybenzene as internal standard.A = Ru(bpy)3Cl2·
6H2O, B = Ir(ppy)3, C = Eosin Y (Green LEDs), D = 9-Mesityl-10-
methylacridinium perchlorate, DTBP = Di-tert-butyl peroxide, TBN =
tert-butyl nitrite.

Scheme 2. Scope of Deformylative Brominationa

aReaction conditions: as in Table 1 (entry 1); isolated yields.
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(Table 2, entries 7−9). Both light and photocatalyst were
crucial in the production of 3a (Table 2, entries 10−11). With
these modified conditions in hand, we examined the scope of
the deformylative chlorination protocol. As illustrated in
Scheme 3, our method produced the corresponding chlori-
nated products in good to excellent yields. Various functional
groups (3a−3p) as well as heterocyclic arenes (3q−3t) were
tolerated.

The scalability of our deformylative halogenation was
evaluated using 3 mmol of DHP substrate 1a. The halogenated
products were generated in yields of 79% and 67%, respectively
(Figure 1a). To highlight the excellent site selectivity of this
protocol, two similar but distinguishable DHPs (1x and 1y)
were prepared and subjected under the standard conditions to
both parallel and crossover experiments (Figure 1b). In the

former, only in situ DHP-substituted products were observed,
while, in the latter, two brominated products (2y and 2z) were
formed with the same mole ratio as the starting DHPs,
indicating that the reactivities of 1x and 1y were the same and
that no isomerization occurred during this reaction.
To gain insight into the reaction mechanism, the

bromination of 1a was monitored with the light on/off over
time. A smooth transformation under irradiation by blue LEDs
and no further production of 2a in the dark suggested that the
reaction proceeded through a photoredox catalytic pathway
rather than a radical chain pathway (Figure1c). A radical
quenching experiment was also conducted by adding the
radical scavenger 2,2,6,6-tetramethylpiperidine-1-oxyl
(TEMPO) to the reaction of 1a. We observed that the
bromination was completely inhibited (Figure 1d). Based on
the above observations, we proposed a plausible mechanism
for this bromination process, shown in Scheme 4a. Upon
visible light irradiation the excited photocatalyst *Ru(bpy)3

2+

is oxidized by K2S2O8 (Ered(S2O8
2−/SO4

2−) = +2.01 V vs
SCE)25 through single electron transfer (SET), resulting in the
formation of SO4

2−, SO4
•−, and a strong oxidative Ru(bpy)3

3+

(Ered
III/II = +1.29 V vs SCE) species.12o Then the single-

electron oxidization of DHP 1 (Ered = +1.03 V vs SCE)26,23g

yields radical II and reductively quench the photocatalyst. The
resulting radical II then fragments to an alkyl radical IV along
with pyridine derivative III, driven by aromatization. The high
reduction potential of the generated SO4

•− (Ered(SO4
•−/

SO4
2−) = +2.6 V vs SCE)25 enables the further oxidization of

Br− (Ered(Br
•/Br− = +0.8 V vs SCE)27 to its radical form, thus

rendering the radical coupling with alkyl radical IV to furnish
the brominated product 2. In the chlorination process,
however, the single electron transfer (SET) from the ground
state of DHP 1 (Ered = +1.03 V vs SCE)26,23g to either the
photoexcited Ir(III) (Ered*

III/II = +0.31 V vs SCE)12o or the
oxidized Ir(IV) (Ered

IV/III = +0.77 V vs SCE)12o is not favored.
Therefore, the possibility of generating radical V via photo-
excited DHP 1* was suggested, which has been experimentally
proved.23f This different radical initiation is also evident by the
formation of the chlorinated product in moderate yield when
only the blue LED was employed (Table 2, entry 10). The
radical V would reductively quench the oxidized photocatalyst
Ir(IV) to form the pyridine derivative III. The resulting alkyl
radical IV would follow a similar radical coupling route as the
bromination, giving rise to chlorinated product 3 (Scheme 4b).

Table 2. Screening of Chlorine Source and Photocatalyst for
Deformylative Chlorination of 1aa

entry [Cl] photocatalyst yield (%)b

1 LiCl A 37
2 NaCl A 31
3 KCl A 16
4 CsCl A 22
5 NH4Cl A 54
6 CaCl2 A 21
7 HCl/DMPU (43% w/w) A 62
8 HCl/DMPU (43% w/w) B 84
9 HCl/DMPU (43% w/w) C 44
10 HCl/DMPU (43% w/w) B 47c

11 HCl/DMPU (43% w/w) B 18d

aReaction conditions: as in Table 1 (entry 1). bYields were
determined by 1H NMR using 1,3,5-trimethoxybenzene as an internal
standard. DMPU = N,N′-Dimethylpropyleneurea. cWithout B. dNo
light.

Scheme 3. Scope of Deformylative Chlorinationa

aReaction conditions: as in Table 1 (entry 1); isolated yields.

Figure 1. (a) Gram-scale synthesis; (b) Light on/off experiment; (c)
Selectivity study; (d) Radical quenching experiment.
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Subsequently, we examined the deformylative iodination
using NaI as a halogen source.
Unlike in the case of bromination and chlorination, a

photoredox catalyst was not required in this protocol because a
iodine radical is generated from the NaI/K2S2O8 system.28

After extensive optimization (see SI), we found that 95% of the
product could be obtained in the presence of 1.5 equiv each of
NaI/K2S2O8. As shown in Scheme 5, various DHPs were
suitable substrates, giving the desired iodinated products in
good to excellent yields (4a−4l) although benzylic DHP 4m
showed less reactivity.
In conclusion, we have developed a highly efficient visible-

light-mediated deformylative halogenation protocol using
inexpensive and atom-economical halogen sources. This

protocol exhibited excellent site selectivity and functional
group tolerance, which are highly desired in late-stage
functionalization.

■ ASSOCIATED CONTENT
*S Supporting Information

The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acs.or-
glett.9b01337.

Experimental detail and copies of NMR spectra (PDF)

■ AUTHOR INFORMATION
Corresponding Authors

*E-mail: bo.xu@dhu.edu.cn.
*E-mail: gb.hammond@Louisville.edu.
ORCID

Ricardo A. Angnes: 0000-0001-7698-2299
Bo Xu: 0000-0001-8702-1872
Gerald B. Hammond: 0000-0002-9814-5536
Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
We are grateful to the National Institutes of Health for
financial support (R01GM121660). B.X. is grateful to the
National Science Foundation of China for financial support
(NSFC-21672035). R.A.A. thanks FAPESP for Grant 2017/
01779-2.

■ REFERENCES
(1) Petrone, D. A.; Ye, J.; Lautens, M. Modern Transition-Metal-
Catalyzed Carbon−Halogen Bond Formation. Chem. Rev. 2016, 116,
8003−8104.
(2) (a) Frisch, A. C.; Beller, M. Catalysts for Cross-Coupling
Reactions with Non-activated Alkyl Halides. Angew. Chem., Int. Ed.
2005, 44, 674−688. (b) Kambe, N.; Iwasaki, T.; Terao, J. Pd-
catalyzed cross-coupling reactions of alkyl halides. Chem. Soc. Rev.
2011, 40, 4937−4947. (c) Littke, A. F.; Fu, G. C. Palladium-
Catalyzed Coupling Reactions of Aryl Chlorides. Angew. Chem., Int.
Ed. 2002, 41, 4176−4211. (d) Rudolph, A.; Lautens, M. Secondary
Alkyl Halides in Transition-Metal-Catalyzed Cross-Coupling Reac-
tions. Angew. Chem., Int. Ed. 2009, 48, 2656−2670. (e) Tasker, S. Z.;
Standley, E. A.; Jamison, T. F. Recent advances in homogeneous
nickel catalysis. Nature 2014, 509, 299. (f) Terao, J.; Kambe, N.
Cross-Coupling Reaction of Alkyl Halides with Grignard Reagents
Catalyzed by Ni, Pd, or Cu Complexes with π-Carbon Ligand(s). Acc.
Chem. Res. 2008, 41, 1545−1554.
(3) (a) Boudier, A.; Bromm, L. O.; Lotz, M.; Knochel, P. New
Applications of Polyfunctional Organometallic Compounds in
Organic Synthesis. Angew. Chem., Int. Ed. 2000, 39, 4414−4435.
(b) Kim, J. H.; Ko, Y. O.; Bouffard, J.; Lee, S.-g. Advances in tandem
reactions with organozinc reagents. Chem. Soc. Rev. 2015, 44, 2489−
2507. (c) Sun, C.-L.; Shi, Z.-J. Transition-Metal-Free Coupling
Reactions. Chem. Rev. 2014, 114, 9219−9280.
(4) (a) Hernandes, M.; Cavalcanti, S. M.; Moreira, D. R.; de
Azevedo, W., Jr.; Leite, A. C. Halogen Atoms in the Modern
Medicinal Chemistry: Hints for the Drug Design. Curr. Drug Targets
2010, 11, 303−314. (b) Wilcken, R.; Zimmermann, M. O.; Lange, A.;
Joerger, A. C.; Boeckler, F. M. Principles and Applications of Halogen
Bonding in Medicinal Chemistry and Chemical Biology. J. Med. Chem.
2013, 56, 1363−1388.
(5) Jeschke, P. The unique role of halogen substituents in the design
of modern agrochemicals. Pest Manage. Sci. 2010, 66, 10−27.

Scheme 4. Plausible Reaction Mechanism

Scheme 5. Scope of Deformylative Iodinationa

aReaction conditions: 1 (0.1 mmol), NaI (0.15 mmol), K2S2O8 (0.15
mmol), H2O [0.2 M], rt, 24 h, under air; isolated yields.

Organic Letters Letter

DOI: 10.1021/acs.orglett.9b01337
Org. Lett. XXXX, XXX, XXX−XXX

D

http://pubs.acs.org/doi/suppl/10.1021/acs.orglett.9b01337/suppl_file/ol9b01337_si_001.pdf
http://pubs.acs.org
http://pubs.acs.org/doi/abs/10.1021/acs.orglett.9b01337
http://pubs.acs.org/doi/abs/10.1021/acs.orglett.9b01337
http://pubs.acs.org/doi/suppl/10.1021/acs.orglett.9b01337/suppl_file/ol9b01337_si_001.pdf
mailto:bo.xu@dhu.edu.cn
mailto:gb.hammond@Louisville.edu
http://orcid.org/0000-0001-7698-2299
http://orcid.org/0000-0001-8702-1872
http://orcid.org/0000-0002-9814-5536
http://dx.doi.org/10.1021/acs.orglett.9b01337


(6) (a) Amanchukwu, C. V.; Harding, J. R.; Shao-Horn, Y.;
Hammond, P. T. Understanding the Chemical Stability of Polymers
for Lithium−Air Batteries. Chem. Mater. 2015, 27, 550−561.
(b) Tang, M. L.; Bao, Z. Halogenated Materials as Organic
Semiconductors. Chem. Mater. 2011, 23, 446−455.
(7) (a) Huy, P. H.; Motsch, S.; Kappler, S. M. Formamides as Lewis
Base Catalysts in SN ReactionsEfficient Transformation of
Alcohols into Chlorides, Amines, and Ethers. Angew. Chem., Int. Ed.
2016, 55, 10145−10149. (b) Munyemana, F.; George, I.; Devos, A.;
Colens, A.; Badarau, E.; Frisque-Hesbain, A.-M.; Loudet, A.;
Differding, E.; Damien, J.-M.; Reḿion, J.; Van Uytbergen, J.;
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