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A simple and efficient method for the synthesis of alcohols from the corresponding carboxylic acids
is described. Activation of carboxylic acid with 1-propanephosphonic acid cyclic anhydride (T3P) and
subsequent reduction using NaBH4 yield the alcohol in excellent yields with good purity. Reduction of
several alkyl/aryl carboxylic acids and Na-protected amino acids/peptide acids as well as Nb-protected
amino acids was successfully carried out to obtain corresponding alcohols in good yields. All the products
were fully characterized by 1H NMR and mass spectral analyses. The procedure is mild, simple and the
isolation of the products is easy.

� 2012 Elsevier Ltd. All rights reserved.
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Figure 1. Applications of T3P in organic synthesis.
Reduction of carboxylic acids, ketones, and aldehydes to alco-
hols is an important functional group transformation. Though there
are several procedures known, more efficient and convenient proto-
cols are continously being explored. The reduction of carboxylic
acids was achieved by a variety of metal hydride based reducing
agents such as LiAlH4, AlH3, sodium bis(2-methoxyethoxy)alumi-
num hydride, diisobutyl aluminum hydride, etc.1 Several borane
reagent systems are also developed for the reduction of carboxyic
acids.2 Reduction using NaBH4 in combination with I2,3 ZrCl4,4 cat-
ecol-TFA,5 H2SO4,6 TiCl4,7 CaCl2,8 diglyme,9 and Br2

10 were also
reported in the literature. BOP reagent was used to activate carbox-
ylic group prior to NaBH4 treatment.11 Cardenas group reported an
elegant procedure for the reduction of caboxylic acids through the
reaction of in situ formed hydroxybenzotriazole esters with NaBH4

in water.12

1-Propanephosphonic acid cyclic anhydride (T3P) is known as
an efficient and reliable coupling agent and also a water scavenger.
It has been employed for the conversion of carboxylic acids to alde-
hydes, amides to nitriles, and formamides to isonitriles. It has also
been utilized in the synthesis of heterocycles, Weinreb amides,
b-lactams, hydroxamic acids, acylazides, esters, imidazopyridines,
dihydropyrimidinones as well as peptides ( Fig. 1).13 T3P offers
ll rights reserved.
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u).
several advantages over traditional reagents such as solubility, ease
of work-up, broad variety of functional group tolerance, low epi-
merization, and high yielding. Hence T3P is being explored in sev-
eral organic reactions.14 Recently we reported an application of
T3P as carboxylic acid activator in the synthesis of Na-protected
amino acid derived acyl azides and hydroxamic acids.15 Now we
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Scheme 1. General scheme for the reduction of carboxylic acids using T3P/NaBH4.

Table 1
Reduction of aryl and alkyl carboxylic acids to corresponding alcohols

Entry Alcohol Time (min) Mp (�C) Yielda (%)

2a
OH

25 Liq. 83

2b
OH

O2N
25 91–93 91

2c
OH

30 58–60 89

2d
OH

F3C
28 Liq. 90

2e

OH
30 Liq. 80

2f

HO OH

30 108–110 86b

2g
OO2N

OH 22 Liq. 93

2h

CH2OH

18 113–115 89

2i
OH

20 Liq. 90

2j OH
Br 22 Liq. 92

2k HO
OH 28 Semi solid 84b

a Isolated yields.
b 2.2 equiv of DIPEA, 4.0 equiv of 50% T3P in EtOAc, and 4.0 equiv of NaBH4 were

used.

Figure 2. Crude RP-HPLC profile of Na-Fmoc-Phe-ol 4a.
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herein report a simple approach for the synthesis of alcohols from
corresponding carboxylic acids using T3P–NaBH4 reduction
(Scheme 1).

Initially, the reduction of 4-methylbenzoic acid 1c was under-
taken. 4-Methylbenzoic acid dissolved in THF was cooled to 0 �C.
To this diisopropyl ethylamine (DIPEA) and 50% T3P in ethyl acetate
(EtOAc) were added and the reaction mixture was stirred for about
5 min. Then aqueous NaBH4 was added and the reaction was
allowed to stir at the same temperature. After the complete con-
sumption of 4-methylbenzoic acid 1c, as indicated by TLC (took
about 30 min), the solvent was evaporated and the crude com-
pound was extracted into EtOAc. The organic phase was washed
with 10% Na2CO3 solution, water, and brine followed by evapora-
tion of the solvent to yield (4-methylphenyl)methanol 2c in 89%
yield. The efficacy of the protocol was further studied by reducing
a series of aryl and alkyl carboxylic acids 1a–1k to their correspond-
ing alcohols 2a–2k (Scheme 2, Table 1). All the products were iso-
lated in good yields (above 80%) and were well characterized.16,17

Further, the utility of T3P to reduce the Na-protected amino
acids/peptide acids 3a–3n to their corresponding alcohols 4a–4n
was undertaken. The Na-protected aminols/peptibols serve as pre-
cursors for the preparation of novel amino acid derived building
blocks such as aldehydes, oxymethylene peptides, mesylates, and
diamines.18,19 They have also been extensively used in asymmetric
synthesis,20 in the synthesis of insecticidal compounds,21 reduced
amide bonds,22 used as intermediates in the synthesis of ureido-
peptides, vicinal diamines,23 and peptidosulfonamides.24 In addi-
tion, b-amino alcohols serve as precursors for the synthesis of N-
protected amino alkyl p-nitrophenyl carbonates and N-Fmoc-b-
amino alkoxy carbonyl chlorides which are the building blocks in
the construction of oligopeptidyl carbamates.25 In general, the
Na-protected aminols/peptibols were prepared by borane medi-
ated reduction of N-protected amino acids.18b The reduction was
carried out employing activated carboxylic acid derivatives such
as mixed anhydrides,26 acid halides,27 acyl benzotriazoles,28 N-car-
boxy anhydrides (NCA’s)29 active esters30, and NaBH4. Reaction of
N-protected amino acids with cyanuric chloride and NaBH4 was
also documented.31 In the present work, we started our initial
study by reducing Na-Fmoc-Phe-OH 3a to the corresponding ami-
nol 4a. For this, initially Na-Fmoc-Phe-OH 3a was dissolved in THF
and was treated with DIPEA and 50% T3P in EtOAc at 0 �C and the
reaction mixture was stirred for 5 min. Then aqueous NaBH4 was
added to the reaction mixture and the stirring was continued at
the same temperature till the complete consumption of the start-
ing material (as indicated by TLC analysis). A simple work-up led
to the isolation of Fmoc-Phe-ol 4a in 96% yield and the purity of
the crude product was found to be 99% as determined by RP-
HPLC35 analysis (Fig. 2). Following successful isolation of product
4a, several Na-protected amino acids/peptide acids 3b–3n were
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Table 2
Reduction of Na-protected amino acids/peptide acids to corresponding alco

Entry Alcohol

4a

FmocHN
OH

4b
FmocHN

OH

4c
FmocHN

OH

4d

FmocHN
OH

4e
CbzHN

OH

4f

CbzHN
OH

4g
BocN

OH

4h

BocHN
OH

CbzHN
4

4i

BocHN
OH

OBzl

4j FmocHN

H
N

OH

O

4k

FmocHN

H
N

OH

O

O

BzlO

4l

CbzHN

H
N

OH

O

4m BocHN

H
N

OH

O

4n

BocHN

H
N

OH
O

O

BzlO

a nd: not determined.
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Scheme 3. Reduction of Na-protected amino acid/peptide acids to corresponding
aminols/peptibols.
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were characterized by NMR and mass spectroscopy (Scheme 3, Ta-
ble 2). 16,32

The c-aminols serve as useful precursors in the synthesis of
b-amino aldehydes which are used in the construction of a/b-
unsaturated peptidomimetics as well as in the synthesis of several
heterocycles. The amino aldehydes can be obtained through the
IBX mediated oxidation of N-protected b-aminols.33 In the present
work, we prepared few N-Fmoc/Boc and Z-protected c-aminols
hols

Time (min) Mp (�C) Yield (%)

25 130–132 96

25 120–122 88

28 107–109 85

24 128–130 91

22 55–57 90

25 86–88 92

28 61-63 88

35 liq. 82

35 liq. 84

35 180–182 88

40 108–110 80

36 141–143 91

32 nda 86

42 78–80 88
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Scheme 4. Reduction of Nb-protected amino acids to corresponding c-amino
alcohols.

Table 3
Reduction of Nb-protected amino acids to corresponding alcohols

b-Amino acid, 3 c-Amino alcohol, 4 Mp (�C) Yield (%)

Fmoc-b-Ala-OH, 3o Fmoc-c-Ala-ol, 4o 129–131 96
Fmoc-b-Lys(Z)-OH, 3p Fmoc-c-Lys(Z)-ol, 4p 95–97 84
Fmoc-b-Asp(Bzl)-OH, 3q Fmoc-c-Asp(Bzl)-ol, 4q 122–124 91
Boc-b-Val-OH, 3r Boc-c-Val-ol, 4r 44–46 89
Boc-b-Leu-OH, 3s Boc-c-Leu-ol, 4s 64–66 90
Z-b-Phe-OH, 3t Z-c-Phe-ol, 4t nda 88

a nd: not determined.
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through T3P–NaBH4 mediated reduction of corresponding N-pro-
tected b-amino acids (Scheme 4). The results are summarized in
Table 3.16,34

During this study, we also synthesized a set of enantiomeric
aminols N-Fmoc-L-Ala-ol 4b, and N-Fmoc-D-Ala-ol 4b⁄ through
the present protocol. The synthesis of aminols using T3P was found
to be racemization-free as indicated by its chiral-HPLC profile. In
the chiral-HPLC profile a single peak was observed at Rt

12.18 min for compound 4b, and for its epimer 4b⁄, the Rt value
was observed at 18.73 min36 ( Fig. 3). This clearly confirms that
the T3P mediated reduction of Na-protected amino acids was
found to be free from racemization.

In summary, the facile synthesis of alcohols by the reduction of
corresponding carboxylic acids using T3P–NaBH4 is described. The
protocol is simple, fast, and efficient for the reduction of both alkyl/
aryl aromatic carboxylic acids and Na-protected amino acids/pep-
tide acids. The isolation of the alcohol was easy and devoid of the
pre-filtration step prior to NaBH4 addition. The protocol furnishes
high yields of alcohols.
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