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In situ activation of 3-arylpropiolic acids with T3P® (n-propylphosphonic acid anhydride) initiates a domino reaction furnishing

4-arylnaphtho[2,3-c]furan-1,3-diones in excellent yields. Upon employing these anhydrides as reactive intermediates blue-lumines-

cent 4-aryl-1H-benzo[f]isoindole-1,3(2H)-diones are formed by consecutive pseudo three-component syntheses in a one-pot

fashion. The Stokes shifts correlate excellently with the Hammett-Taft og parameter indicating an extended degree of resonance

stabilization in the vibrationally relaxed excited singlet state.

Introduction

Luminophores as functional z-electron systems [1] are crucial
in modern illumination technologies, such as organic light-emit-
ting diodes (OLEDs) [2-5]. As a consequence efficient and effi-
cacious syntheses of fluorescent molecules can be most advan-
tageously addressed by diversity-oriented syntheses [6-8],
namely by multicomponent [9-21] and domino reactions [22-
24] where fundamental organic reactions are combined in one-

pot sequences [25-29]. Multicomponent reactions (MCR) take

advantage of creating and transforming reactive functionalities
in the same reaction vessel without intermediary work-up [30].
Syntheses of functional chromophores by MCR [31,32] have
indeed become a powerful tool in synthetic chemistry for
convergently approaching substance libraries of luminescent
molecules. In particular, blue-emissive heterocyclic chro-
mophores, intensively requested in illumination research, are

equally accessible by MCR strategies [33].

2340


http://www.beilstein-journals.org/bjoc/about/openAccess.htm
mailto:ThomasJJ.Mueller@uni-duesseldorf.de
https://doi.org/10.3762%2Fbjoc.13.231

Cyclic imides are often prepared by condensation of acid anhy-
drides and amines [34]. Their applications are widespread,
ranging from pharmaceutically active compounds [35] to agro-
chemicals [36] and fluorophores [37]. The characteristic photo-
physical properties of 1,8- and 2,3-naphthalene imides render
the substance class particularly attractive for the development of
novel sensors and fluorescent dyes [38], for instance 6-chloro-
2,3-naphthaleneimide derivatives were successfully used for
labeling amino acids, and for studying peptide protein interac-
tions [39]. Even the superficial attachment to a binding domain
can be detected and monitored by absorption and emission
spectroscopy. Furthermore, the investigation of a substance
library of various 2,3- and 1,8-naphthalene imides has shown
that the electronic nature of the ground and the excited state is
decisively influenced by variation of the substitution pattern of
the naphthalene scaffold. Even the smallest polarity change in
the solvent system effects their absorption and emission behav-
ior [34,40]. Very recent investigations on naphthaleneimide de-
rivatives revealed enormous phosphorescence lifetimes that are
particularly interesting for imaging, sensing and display appli-

cations [41].

4-Phenylnaphtho[2,3-c]furan-1,3-diones can well serve as reac-
tive intermediates in multicomponent reactions, e.g., for synthe-
sizing the corresponding imides. A particularly intriguing
access to 4-phenylnaphtho[2,3-c]furan-1,3-diones is the intra-
molecular [4 + 2]-cycloaddition of phenylpropiolic acid anhy-
drides. Usually, this synthesis requires harsh reaction condi-
tions starting from phenylpropiolic acids [42,43]. However, em-
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ploying bis(2-oxooxazolidin-3-yl)phosphinic chloride as an
activating agent represents a suitable access [44]. Alternative
approaches include the use of phenylpropiolic acid chloride and
phenylpropiolic acid as starting materials [45], and as well oxi-
dative arene—alkyne cyclization with dichloro-5,6-dicyano-
benzoquinone (DDQ) [46].

Based upon our experience in using propylphosphonic acid an-
hydride (T3P®) [47] as a condensation agent for in situ activa-
tion of benzyl alcohols in the synthesis of N-benzylphenothi-
azine derivatives [48], we reasoned that T3P® might be equally
well suited for furnishing 4-phenylnaphtho[2,3-c]furan-1,3-
diones, and thereby opening a straightforward entry to 4-aryl-
1H-benzo[f]isoindole-1,3(2H)-diones in a diversity-oriented
one-pot process. Here, we report the development of the one-
pot synthesis of these title compounds by a consecutive pseudo
three-component approach and the investigation of the lumines-
cence behavior by absorption and emission spectroscopy.

Results and Discussion

Synthesis and structure of
4-arylnaphtho[2,3-c]furan-1,3-diones and
4-aryl-1H-benzolflisoindole-1,3(2H)-diones
Starting from phenylpropiolic acids 1 we first set out to opti-
mize the reaction conditions for the domino synthesis of the
4-arylnaphtho[2,3-c]furan-1,3-diones 2a and 2b with T3P® as
an activating agent, varying temperature and reaction time
(Scheme 1, Table 1).

1.0 equiv T3P® (50 wt % in 1,2-dichloroethane) OO 0o
R

solvent, 0 °C, 30 min

=,

R=H (1a)
R = OCHj (1b)
T3pP®

0

then: T, t

intramolecular Diels—Alder reaction

Y
R=H (2a)
R = OCHj (2b)

~H

Scheme 1: Mechanistic rationale and optimization of the domino synthesis of 4-arylnaphtho[2,3-c]furan-1,3-diones 2.
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Table 1: Optimization of the reaction conditions for the synthesis of 4-arylnaphtho[2,3-c]furan-1,3-diones 2.

entry arylpropiolic acid 1 solvent T[°C]
1 R=H1a CHyCly 20
2 R=H1a CHCly 20
3 R=H1a CHCl, 40
4a R=H1a CH,Cl, 20
5 R =0OCH3 1b CHCly 20
6 R =0OCH31b THF 20

aWwithout addition of T3P®.

T3P®, employed as a 50 wt % solution in 1,2-dichloroethane
(DCE), is added to a solution of phenylpropiolic acid (1a) in
dichloromethane at 0 °C over the course of 30 min. After
warming the reaction mixture to room temperature, stirring for
4 h and aqueous work-up the desired product 2a can be ob-
tained in good yield (Table 1, entry 1). A prolonged reaction
time indicates that product 2a is stable under the reaction condi-
tions (Table 1, entry 2). However, a temperature increase to
40 °C already causes decomposition as indicated by a dimin-
ished isolated yield (Table 1, entry 3). The addition of T3P® as
an activation agent is a prerequisite for achieving the transfor-
mation (Table 1, entry 4).

With these conditions in hand, 3-(4-methoxyphenyl)propiolic
acid (1b) was also chosen as a model substrate (Table 1, entries
5 and 6). The optimized reaction conditions for the synthesis of
4-phenylnaphtho[2,3-c]furan-1,3-dione (2a) cannot directly be

4

t[h] 4-arylnaphtho[2,3-c]furan-1,3-dione 2 (isolated yield) [%]
4 2a (81)
20 2a (81)
20 2a (21)
20 2a (-)
20 2b (3)
20 2b (2)

transferred to give the desired product 2b, which was only ob-
tained in traces. This is probably caused by the poor solubility
of starting material 1b. This problem can be circumvented by
the addition of triethylamine as a deprotonating solubilizer [44].
Under these modified conditions four substituted 4-arylnaphtho-
[2,3-c]furan-1,3-dione derivatives 2 can be synthesized in very
good to quantitative yields (Scheme 2, Table 2).

Interestingly, in this domino synthesis of 4-phenylnaphtho[2,3-
c]furan-1,3-diones electron-rich and electro-neutral substrates
are equally well tolerated (Table 2, entries 1-3), while the elec-
tron-poor derivative 1d results in a slightly decreased yield of
88% due to the increased formation of side products (Table 2,
entry 4). Expectedly, the products 2 are not stable under acidic
aqueous conditions (e.g., hydrochloric acid, silica gel and satu-
rated aqueous solution of ammonium chloride) [49]. After 48 h
in the presence of deuterated hydrochloric acid (36% in D,0),

0O

i 998
OH  EtsN (1.0 equiv), CH,Clp, 20 °C, 90 min R

then: T3P® (50 wt % in 1,2-dichloroethane)

R 0°C, 30 min
then: 20 °C, 20 h

(0]

R
2 (88-100%)

Scheme 2: Domino synthesis of 4-arylnaphtho[2,3-c]furan-1,3-diones 2 via in situ activation of arylpropiolic acids 1.

Table 2: Synthesized 4-arylnaphtho[2,3-c]furan-1,3-diones 2.

entry arylpropiolic acid 1
1 R=H(1a)

2 R = OCHgs (1b)

3 R =CHj (1c)

4 R = Cl (1d)

4-arylnaphtho[2,3-c]furan-1,3-dione 2 (isolated yield [%)])

2a (100)
2b (94)
2c (91)
2d (88)
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complete conversion of compound 2a to the free deuterated
dicarboxylic acid was observed (20% conversion after 60 min)
by NMR spectroscopy. For verification of the structure by
NMR and IR spectroscopy, the hydrolysis was performed on a
preparative scale with ammonium chloride in a mixture of water
and acetone. After complete removal of water, the IR spectrum
shows the characteristic OH-stretching vibrations of the free
carboxylic acid (v 2901-3082 cm™!). The signals at & 12.70
and 12.98 in the "H NMR spectrum can be assigned to the two
carboxylic acid functionalities (see Supporting Information
File 1). The extraction of the crude anhydrides with a saturated
aqueous solution of sodium bicarbonate can be achieved
uneventfully, leaving the anhydride unimpaired.

For employing 4-phenylnaphtho[2,3-c]furan-1,3-diones 2 as
reactive intermediates for the en route conversion with primary
amines 3 into 4-aryl-1H-benzo[f]isoindole-1,3(2H)-diones 4 the
reaction conditions were optimized with 4-phenylnaphtho[2,3-
c]furan-1,3-dione (2a) and aniline (3a) as model substrates
(Scheme 3, Table 3).

In dichloromethane at only slightly elevated temperatures imide
4a is not formed (Table 3, entry 1). Upon addition of N,N-
dimethylformamide as a cosolvent at 80 °C the desired product
4a can be isolated in 15% yield (Table 3, entry 2). The yield of
4a can be increased to 47% upon raising the reaction tempera-

ture to 115 °C (Table 3, entry 3), however, higher temperatures,
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aniline (3a), O
solvent
T,24h N
g g )
2a 4a

Scheme 3: Optimization of the synthesis of 2,4-diphenyl-1H-
benzo[flisoindole-1,3(2H)-dione (4a) by imidation of
4-phenylnaphtho[2,3-c]furan-1,3-dione (2a) with aniline (3a).

such as 160 °C, cause a significant drop in yield. Finally, at
115 °C with two equivalents of aniline the highest yield can be
achieved (Table 3, entry 6).

These imidation conditions are well-suited for concatenating the
arylpropiolic anhydride formation, intramolecular cycloaddi-
tion and imidation in a one-pot fashion in the sense of a
consecutive pseudo three-component synthesis of 4-aryl-1H-
benzo[f]isoindole-1,3(2H)-diones 4, which was first probed
with an electroneutral (1a), an electron-rich (1b) and electron-
poor (1c¢) propiolic acid substrate (Scheme 4, Table 4). Al-
though the electroneutral and electron-rich substrates give good
to excellent yields in the sequence (Table 4, entries 1-3), even

higher (Table 4, entry 1) than for a stepwise synthesis

Table 3: Optimization of the reaction conditions for the synthesis of 2,4-diphenyl-1H-benzolflisoindole-1,3(2H)-dione (4a).

entry equivalents solvent ¢(3a) = 0.125 M
of aniline (3a)

1 1.0 CH.Cly

2 1.0 CH2Clo/DMF 1:1 (v/v)
3 1.0 CH,Clo/DMF 1:1 (v/v)
4 1.0 CH,Clo/DMF 1:1 (viv)
5 2.0 CH,Clo/DMF 1:1 (viv)
6 2.0 CH2Clo/DMF 1:1 (viv)

(0]
R1©%/<
OH

T[°C] 2,4-diphenyl-1H-benzol[flisoindole-1,3(2H)-dione (4a)
(isolated yield [%])
50 -
80 15
115 47
160 33
160 71
115 80

EtsN (1.0 equiv), CH,Cl,, 20 °C, 90 min

then: T3P® (50 wt % in 1,2-dichloroethane) (0]
0 °C, 30 min O
then: 20 °C, 20 h
then: R2-NH, 3 (1.0 equiv), DMF, 115 °C, 24 h R1
1 4

Scheme 4: Pseudo three-component synthesis of 4-aryl-1H-benzolflisoindole-1,3(2H)-diones 4.
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Table 4: Pseudo three-component synthesis of 1H-benzolflisoindole-1,3(2H)-diones 4.

entry arylpropiolic acid 1 amine 3

1 R'=H (1a) R2 = CgH5 (3a)

2 R'=0OCHjs (1b) 3a

38 1a R2 = CHy(10-methyl-10H-
phenothiazine-3-yl)-HCI (3b)

4 R'=CN (1c) 3a

4-aryl-1H-benzol[flisoindole-1,3(2H)-dione 4 (isolated yield [%])

4a (95)
4b (79)

4c (85)
4d (27)

aCompound 3b was employed as the corresponding hydrochloride with 202 mg (2.00 mmol) Et3N in CH,Cl, (1.0 mL) at rt for 1 h.

furnishing an overall yield of 4a of 80%, the cyano-substituted
substrate 1c¢ furnishes a significantly lower yield of 27%
(Table 4, entry 4), originating from the lower reactivity in the

anhydride formation.

Therefore, for accessing acceptor-substituted derivatives of 4,
an intermediate extraction with bicarbonate after the anhydride
formation—cycloaddition was attempted (Scheme 5). With this

variation acceptor-substituted arylpropiolic acids 1c—e can be

EtsN (1.0 equiv), CH,Cl,

transformed to the corresponding 1H-benzo[f]isoindole-
1,3(2H)-diones 4d—f in moderate yields.

Upon lowering the amount of T3P® to 0.5 equiv, electron-
neutral and electron-donating phenylpropiolic acids 1 can be
employed with comparable efficiency applying various amines
3 and giving rise to a series of 4-aryl-1H-benzo[f]isoindole-
1,3(2H)-diones 4 in moderate to good yield (Table 5). Varia-

tion of the amine nucleophile 3 allows for the introduction of

0

I e
R1

(0]
R1©%<
OH then: T3P® (50 wt % in DCE) (0]

then: work-up with NaHCO3, extraction R

20 °C, 90 min
0 °C, 30 min
then: 20 °C, 20 h
1c (R' = CN) )
14 (R" = C) 115°C, 24 h
1e (R' = CF3)

then: Ph-NH, (3a) (1.0 equiv), DMF

4d (R' = CN, 41%)
4e (R' = Cl, 53%)
4f (R" = CF, 65%)

Scheme 5: Modified sequence for the synthesis of acceptor-substituted 4-aryl-1H-benzolflisoindole-1,3(2H)-diones 4.

Table 5: Variation of the amine 3 in pseudo three-component syntheses of 1H-benzo[flisoindole-1,3(2H)-diones 4.

entry arylpropiolic acid 1 amine 3

1 1a R2 = CgHs5 (3a)

2 R' = CHs (1f) 3a

3 R'=1a R2 = p-FCgH4 (3¢)

4 1a R2 = p-CICgH4 (3d)

5 1a R2 = p-ICgH4 (3e)

6 1a R2 = p-EtO,CCgH4 (3f)
7 1a R2 = 3,5-Me,CgH3 (39)
8 1a R2 = 2,6-MeyCgH3 (3h)
9 1a R2 = 3,5-(MeQ),CgH3 (3i)
10 1a R2 = CH,Ph (3])

112 1a R2 = CH,CCH (3k)

12 1a R2 = n-hexyl (31)

13 1a R2 = n-butyl (3m)

14 1b 3h

1H-benzo[flisoindole-1,3(2H)-dione 4 (isolated yield [%])

4a (92)
4g (48)
4h (55)
4i (65)
4j (51)
4k (57)
41 (69)
4m (56)
4n (64)
40 (41)
4p (26)
4q (53)
4r (61)
4s (57)
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functional groups for consecutive transformations. For instance,
para-substituted halogenated anilines 3 (Table 5, entries 3-5)
and ethyl 4-aminobenzoate (Table 5, entry 6) furnish the desired
products in 51-65% yield. Interestingly, also sterically hindered
anilines, such as 2,6-dimethylaniline can be obtained in 56%
yield (Table 5, entry 8). In addition, aliphatic amines (Table 5,
entries 10—13) are readily tolerated in the established reaction

sequence.

Besides comprehensive NMR spectroscopic and mass spectro-
metric characterization the structures of the title compounds 4
were additionally corroborated by a crystal structure determina-
tion of compound 4b (Figure 1). The twist angle of the phenyl
substituent (ring A) and the 1H-pyrrole-2,5-dionyl moiety is
51.37(7)°, whereas the p-anisyl substituent (ring B) is consider-
ably twisted against the adjacent six-membered ring by
70.95(7)° (Figure 1) [50].

Upon slightly varying the reaction conditions the potential of
the sequence can be extended. An increase of the T3P® concen-
tration to 2.0 equiv leads to the regioselective formation of (E)-
2,9-diphenyl-3-(phenylimino)-2,3-dihydro-1H-benzo[f]isoindol-
1-one (5) in 15% yield in the sense of a pseudo four-component
reaction (Scheme 6).

The increased amount of the condensation agent T3P®

obviously enables further activation of the initially formed

Beilstein J. Org. Chem. 2017, 13, 2340-2351.

02
YK

Vap'® N1
A X
TR
PR

01

Figure 1: The ORTEP-style plot of crystal structure 4b (ellipsoids are
draw at the 40% probability level).

1H-benzo[f]isoindole-1,3(2H)-dione by electrophilic attack on
the sterically easier accessible carbonyl group. As a conse-
quence the imine condensation proceeds also with thermo-
dynamic control giving exclusively the formation of the
E-configured product 5. Interestingly the corresponding reac-
tion with ortho-phenylenediamine (3n) gives rise to the regiose-
lective formation of the pentacyclic condensation product 6,
where the intramolecular imine formation formally occurred at

the sterically more biased carbonyl group (Scheme 7).

0 EtsN (1.0 equiv), CH,Cl,

< > — < 20 °C, 90 min
OH

1a

then: T3P® (50 wt % in DCE) (2.0 equiv)
0 °C, 30 min

then: 20 °C, 20 h

then: Ph-NH; (3a, 1.0 equiv), DMF
115°C,24 h

T¥e
9

Ne N0

5 (15%)

Scheme 6: Pseudo four-component synthesis of (E)-2,9-diphenyl-3-(phenylimino)-2,3-dihydro-1H-benzo[flisoindol-1-one (5).

Et3N (1.0 equiv), CH,Cl,
20 °C, 90 min

::: :o
OH then: T3P® (50 wt % in DCE) (2.0 equiv)
0 °C, 30 min
then: 20 °C, 20 h
then: ortho-phenylenediamine (3n, 1.0 equiv)

DMF, 115 °C, 24 h

1a

Scheme 7: Synthesis of 6-phenyl-12H-benzo[flbenzo[4,5]imidazo[2,1-a]isoindol-12-one (6).

6 (7%)
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In addition to NMR spectroscopic and mass spectrometric char-
acterization the crystal structures of the imine condensation
products 5 and 6 were determined (Figure 2 and Figure 3) [50].
In similarity to 4b the twist angles of the phenyl substituents
(rings A and B) are 61.1(1)° and 66.8(1)°, respectively
(Figure 2, left part). Interestingly, the crystal structure of 5
shows centrosymmetric dimers, formed by a close n—n interac-
tion of the planar naphthyl moieties (Figure 2, right part). The
intermolecular distance of the naphthalene moieties of the two
molecules accounts to 3.435(7) A.

This intermolecular plane distance of the two adjacent naphthyl
moieties (C2—C11) must be understood as a n— interaction of
two fused aromatic systems [51]. The twist angle of the at-
tached phenyl substituent (ring B) of the asymmetric unit of the
crystal structure 6 were determined as 62.28(5)° (Figure 3). The
significant difference of the twist angles in 4b, 5, and 6 could be
a consequence of packing in the individual crystal structure.
The crystal structure of the pentacyclic molecules 6 shows
stacks with an antiparallel arrangement of the monomers. The
found interplanar distance is 3.437(4) A. Consequently, n—x
interactions must be considered for this structure [51,52]. Bond
lengths and angles of the reported crystal structures 4b, 5, and 6
are in the expected range. The tricyclic 1H-benzo[f]isoindole-
1,3(2H)-dionyl moiety in 4b, 5 and the corresponding 3-imino-
1-0x0-2,3-dihydro-1H-benzo[f]isoindolyl moiety in 6 are
absolutely planar.

Photophysical properties
The pseudo three-component synthesis of 1H-benzo[f]isoin-
dole-1,3(2H)-diones 4 furnishes a substance library with elec-

Beilstein J. Org. Chem. 2017, 13, 2340-2351.

Figure 3: The ORTEP-type plot of the asymmetric unit of the crystal
structure 6 (top) and mr-stacking interactions (bottom) (ellipsoids are
drawn at the 40% probability level).

tronically diverse substitution patterns and already upon
eyesight several derivatives are intensively blue and greenish
luminescent in solution at low concentration (Figure 4). There-

Figure 2: The ORTEP-type plot of the crystal structure 5 (left) and a centrosymmetric dimer formation by T interactions (right) (ellipsoids are drawn

at the 40% probability level).
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4a

4b 4d 4e

Beilstein J. Org. Chem. 2017, 13, 2340-2351.

Figure 4: Emission properties of compounds 4a,b,d—f, 5, and 6 under handheld UV-lamp (Agxc = 350 nm).

fore, the 1H-benzo[f]isoindole-1,3(2H)-diones 4 and 5 and the
pentacyclic compound 6 were investigated with absorption and
static fluorescence spectroscopy (Table 6).

All 1-aryl-2,3-naphthaleneimides 4 possess two characteristic
absorption maxima Amgax abs between 258.5 and 273.5 nm with
molar extinction coefficients & of 55000 L-mol™'-cm™! and be-
tween 359.0 and 379.0 nm with molar extinction coefficients &
of about 3500 L-mol™'-cm™!. While electron-withdrawing sub-
stituents R! in tendency shift the absorption maxima slightly
hypsochromically (Table 6, entries 1, and 3-6) the electron-do-
nating methoxy group (Table 6, entry 2) clearly causes a red
shift. The absorption spectra of the imine condensation prod-
ucts 5 and 6 essentially display a similar appearance; however,
the pentacycle 6 possesses a considerably more intense longest
wavelength absorption, which appears in the spectrum at

388.5 nm as a shoulder with a molar extinction coefficients € of
21600 L-mol™'-cm™ (Table 6, entry 12).

Although most of the 1H-benzo[f]isoindole-1,3(2H)-diones 4
fluorescence upon excitation with UV light, a closer inspection,
by comparing the relative intensities of the emission maxima at
identical concentrations, reveals that only the methoxy deriva-
tive 4b (Table 6, entry 2) is substantially fluorescent (Figure 5).
With this exception all qualitatively determined emission spec-
tra reveal a broad unstructured maximum followed by a
shoulder. This appearance might result from the free rotation of
the N-phenyl substituents, furnishing emissive conformers that
arise from a coplanar (Apgx em at 468.0 nm as a shoulder for
compound 4a) and torsional orientation (Amax em at 408.5 nm as
a maximum for compound 4a) of the N-phenyl substituent in
the corresponding excited Franck—Condon states [54]. Qualita-

Table 6: Selected photophysical properties (absorption and emission maxima,2 fluorescence quantum yields (@5 [53]),¢ and Stokes shifts AV 9) of

compounds 4a—-g,m,n,s, 5, and 6.

entry compound Amax abs (€) [NM] ([L-(mol-cm)‘1])

Amax,em [nm] (Ps) Stokes shift AV [cm™"]

1 4a 364.5 (3900), 264.0 (49500) 468.0 sh, 408.5 (0.01) 3000
2 4b 379.0 (4000), 273.5 (55300) 444.0 (0.14) 3900
3 4c 363.0 (5080), 300.5 (13510), 262.5 (77840) 525.0 sh, 450.0 5300
4 4d 365.0 (3600), 266.5 (57300) 512.5, 401.0 sh 2500
5 4e 366.0 (3000), 268.5 (52600) 499.5,417.0 sh 3300
6 4f 359.0 (3100), 343.0 (2600), 258.5 (50700) 500.0, 397.0 sh 2700
7 4g 369.5 (4200), 270.5 (53000) 415.0 3000
8 4m 364.0 (5400), 263.5 (58000) 391.0 2000
9 4n 364.0 (5600), 264.5 (67000) 520.0 8200
10 4s 371.5 (4700), 271.5 (56300) 437.0 (0.17) 4000
11 5 362.5 (5900), 350.0 (4800) 265.5 (52900), 261.0 (52500) - -

2 6 388.5 sh (21600), 360.0 (54900) 296.0 (53000), 255.5 5000 (0.10)¢ 5700

(21500)

aRecorded in CH,Cl, UVASOL® at T = 293 K. PRecorded in CH,Cl, UVASOL® at T = 293 K with Agye = 360.0/380.0 nm. “Quantum yields ®f were
determined with coumarine 1 in ethanol as a standard, ®; = 0.73, at T = 293 K with Agxc = 360.0 nm. Ay = 1/Amax.abs — 1/Amax,em [cm™"]. €Quantum
yields @ were determined with coumarine 30 in acetonitrile as a standard, ®; = 0.67, at T = 293 K with Agyc = 380.0 nm.
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tively, also a red shift of the emission maximum can be detected
upon increasing the electron-withdrawing character of the sub-
stituent R!. In the consanguineous series of 1H-benzo[f]isoin-
dole-1,3(2H)-diones 4a,b,d—f the emission maxima Apgx em are
found in a range from 408.5 to 512.5 nm with Stokes shifts
lying between 3900 and 2500 cm™! (Table 6, entries 1, 2 and
4-6, Figure 6).
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Figure 5: Relative emission intensities of compounds 4a,b,d—f (re-
corded in CHoCly UVASOL® at T = 293 K; Agye = 350 nm.
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Figure 6: Absorption and emission properties of selected imides 4
measured in CHyCly UVASOL® at 293 K with Agyc = 360 nm.

This electronic substituent effect of R! on the Stokes shifts was
further corroborated by linear structure—property relationships
based upon Hammett-Taft correlations with the consan-
guineous series 4a,b,d—f. Correlation studies of the longest
wavelength absorption maxima Amax abs, the shortest wave-
length emission maxima Amax em, and the Stokes shifts AV with
the Hammett-Taft parameters o, GR, Op+, and op,— [55] disclose

an interesting insight on electronic substituent effects in the

Beilstein J. Org. Chem. 2017, 13, 2340-2351.

electronic ground and excited states (see Table S6 in Support-
ing Information File 1). Although the linear correlations of
Amax,abs With all o parameters are relatively poor, the correla-
tions of Apax em With og and o, indicate a strong influence of
resonance stabilization in the vibrationally relaxed excited state.
This is even more the case in the nearly perfect linear correla-
tion of the Stokes shift with og (r? = 0.989) and can be inter-
preted as a significant structural change upon photonic excita-
tion and excited state relaxation resulting from a considerable
charge transfer character, as supported by the influence of the
remote polar substitution (Figure 7).
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Figure 7: Hammett—Taft correlations of the emission maxima (red
circles, Imax,.em = 4274 - sg + 24495 [cm™~"], R? = 0.925) and Stokes
shifts (blue triangles, A = 2319 - sg + 2909 [cm~"], R? = 0.989) of
compounds 4a,b,d—f with sg (black squares are the corresponding
absorption maxima).

Interestingly, compound 4a, which has a fluorescence quantum
yield @¢ of less than 0.01 in dichloromethane solution, experi-
ences an over eightfold increase to 0.08 in the solid state emis-
sion as determined from the powder by an integrating sphere.
The emission maximum appears at 468.5 nm, i.e., at the same
longest wavelength band as in solution. Therefore, 1 H-benzo[f]-
isoindole-1,3(2H)-diones 4 can be considered as AIE (aggrega-
tion induced emission) chromophores [56-58].

In comparison to the 1-phenyl-[2,3-c]-naphthalencimide 5,
which is only weakly luminescent, the pentacycle 6 displays a
relative enhancement of the greenish emission at 500 nm by a
factor of 340 (relative to compound 4a, Figure 8) and can be
quantified with a fluorescence quantum yield of 0.10 (Table 6,
entry 12).

Conclusion

3-Arylpropiolic acids can be readily activated with T3P®
(n-propylphosphonic acid anhydride) to initiate a domino reac-
tion furnishing 4-arylnaphtho[2,3-c]furan-1,3-diones in excel-
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Figure 8: Relative emission intensities of the 1-phenyl-2,3-naph-
thaleneimide 4a (blue) and the pentacyclus 6 (green, normalized on
the absorptivity at the excitation wavelength Agyc = 350 nm).

lent yields. These anhydrides can be considered as reactive
intermediates for a subsequent imidation with primary amines
and, therefore, a one-pot reaction in the sense of a consecutive
pseudo three-component process evolved. The resulting 4-aryl-
1 H-benzo[f]isoindole-1,3(2H)-diones are interestingly blue to
greenish-blue emissive upon excitation of the longest wave-
length absorption bands. The photophysical characterization by
absorption and emission spectroscopy revealed that the Stokes
shifts are excellently correlated with Hammett—Taft's og param-
eters indicating an extended degree of resonance stabilization as
a result of a charge transfer character in the vibrationally
relaxed Si-state. The fluorescence can be redshifted by employ-
ing 1,2-phenylenediamine as a reaction partner in the terminal
step of the sequence furnishing a rigidified planar pentacyclic
condensation product. The interesting emission properties and
the straightforward diversity-oriented synthetic approach are
therefore well-suited for the design of covalently ligated, conju-
gated and non-conjugated bichromophores in a rapid fashion.
Studies directed towards the one-pot synthesis of more com-

plex polycyclic emitters are currently underway.

Beilstein J. Org. Chem. 2017, 13, 2340-2351.

Supporting Information

The Supporting Information contains all experimental
procedures, spectroscopic and analytical data as well as
copies of NMR spectra of compounds 2, 4, 5, and 6. X-ray
structure analyses of compounds 4b, 5, and 6, and
Hammett—Taft correlations of compounds 4a,b,d—f are also
given.

Supporting Information File 1
Experimental part.
[http://www.beilstein-journals.org/bjoc/content/
supplementary/1860-5397-13-231-S1.pdf]
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