# Asymmetric Total Synthesis of TAN-1085 Facilitated by Pd-Catalyzed Atroposelective C-H Olefination

Jun Fan, Qi-Jun Yao, Yan-Hua Liu,<sup>®</sup> Gang Liao, Shuo Zhang, and Bing-Feng Shi\*®

Department of Chemistry, Zhejiang University, Hangzhou 310027, China

Supporting Information



ABSTRACT: Asymmetric total synthesis of TAN-1085 via Pd-catalyzed atroposelective C-H olefination is described. This synthesis features the gram-scale construction of axially chiral biaryls in an enantiopure form employing the readily available Ltert-leucine as the chiral transient auxiliary. The synthetic approach might provide a unified strategy for the total synthesis of natural products containing trans-9,10-dihydrophenanthrene-9,10-diol motifs.

he *trans*-9,10-dihydrophenanthrene-9,10-diol scaffold (I) is the core structural subunit of a wide range of biologically active natural products, such as the anticancer angucycline PD 116740 and TAN-1085,<sup>1a,b</sup> the cytotoxic antibiotic FD 594,<sup>1c,d</sup> and the benanimicin and pradimicin antibiotics (BPAs) (Scheme 1a).<sup>1e-h</sup> The significant biological activity of these natural products as well as their unique molecular architecture have triggered a number of synthetic studies.<sup>2–6</sup> The stereoselective and efficient construction of the core structure of 9,10-dihydrophenanthrene with trans-vicinal hydroxyl groups is particularly challenging and has been a central topic of these synthetic efforts. In the seminal work by Suzuki,<sup>3-6</sup> a modified pinacol coupling that stereospecifically transfers the biaryl axial chirality (II) to the pseudo- $C_2$ symmetric trans diols (I) was elegantly established as the key step (Scheme 1a).<sup>3</sup> Thereby, the synthetic challenge shifted to the stereoselective synthesis of the axially chiral biaryldialdehydes (II), and several strategies were developed (Scheme 1b): (a) a stereochemical-relay strategy involving two chirality transfer steps (central-to-axial and then axial-to-axial) for the synthesis of TAN-1085;<sup>4b</sup> (b) the Bringmann-type asymmetric ring-opening reaction of the biaryl lactone with a chiral nucleophile for the construction of the FD-594 aglycon;<sup>5b,7a,b</sup> and (c) the introduction of a chiral auxiliary to enable an optical resolution via chromatographic separation of the resulting diastereomers for pradimicinone.<sup>6</sup> However, these previous endeavors suffered from the use of stoichiometric chiral reagents, lengthy steps, and/or poor stereocontrol. We envisioned that the development of a general method to efficiently and stereoselectively construct the axially chiral biaryldialdehydes followed by pinacol cyclization would provide a unified strategy to greatly facilitate the total synthesis of these natural products. Undoubtedly, such a unified strategy

would offer a great opportunity to access related compounds and elucidate their biological activities.

In recent years, great efforts have been expanded to the asymmetric synthesis of axially chiral biaryl skeletons.<sup>7,8</sup> In particular, asymmetric C-H activation has emerged as a powerful tool to access the axial chirality.9,10 Recently, a pioneering work of Pd-catalyzed enantioselective  $C(sp^3)$ -H functionalization to create point chirality by the use of tertleucine (Tle) as a transient directing group was developed by the Yu group.<sup>10</sup> Inspired by these elegant workd, we applied this strategy to the highly atroposelective synthesis of axially chiral biaryl aldehydes via asymmetric C-H functionalizations.<sup>11</sup> We speculated that our previously developed Pdcatalyzed atroposelective C-H olefination could streamline the synthesis of *trans-9*,10-dihydrophenanthrene-9,10-diol<sup>11a</sup> since the resulting olefins can be easily transferred to aldehydes. Notably, despite the significant advance as well as the promising prospect of enantioselective C-H activation in organic synthesis,<sup>9</sup> examples of using the enantioselective C-H activation strategy to expedite the synthesis of natural products were still rare.<sup>12-14</sup> As part of our persistent pursuit to promote concise synthesis of natural products via C-H activation,<sup>11b</sup> herein, we report a novel approach that enables the asymmetric total synthesis of TAN-1085 based on palladium-catalyzed asymmetric C-H olefination (Scheme 1c).

Our retrosynthetic analysis for TAN-1085 is shown in Scheme 2. The axially chiral biaryldialdehyde 1 would be the crucial precursor for TAN-1085, which would undergo pinacol

Received: March 28, 2019

Scheme 1. Natural Products Containing *trans*-9,10-Dihydrophenanthrene-9,10-diol Motifs and the Synthetic Strategies

 a) Natural products containing trans-9,10-dihydrophenanthrene-9,10-diol motifs and the unified synthetic stratey: Pinacol cyclization



axially chiral biaryldialdehyde (II) trans-9,10-dihydrophenanthrene-9,10-diol (I) b) Previous Work: Strategies for the construction of chiral biaryldialdehyde precursors for the asymmetric total synthesis of TAN-1085, FD-594 and pradimicine



Scheme 2. Retrosynthetic Analysis for TAN-1085



cyclization to form diol I stereoselectively.3-6 The formvl group could be generated by oxidative cleavage of the double bond in 2, which would be obtained via Pd-catalyzed atroposelective C-H olefination of 3.11a 3 could be easily accessed by Suzuki coupling of 4 and 5. Though promising as it seemed, the direct subjection of 3 to the atroposelective C-H olefination might be encountered with several challenges: (i) the substrate 3 used in this reaction is extremely electron-rich, and its compatibility with the oxidative conditions would be a potential challenge; (ii) the vicinal methoxy group coupled with the *in situ* formed imine group and the carboxylate of Tle might act as a tridentate chelating group, which might deactivate the palladium catalyst; (iii) whether benzyloxy and methoxy substituents are sterically bulky enough to prevent rotation about the biaryl axis;<sup>15</sup> (iv) the scalability (gram scale) of this reaction for further transformations would be another challenge.

Our synthesis commenced with the preparation of building blocks 4 and 5 (Scheme 3). A modified procedure was





developed for the preparation of compound 4 with high efficiency and simplified operations on a multigram scale. Acetate protection of the free phenolic hydroxyl group of commercially available 6, followed by treatment with Nbromosuccinimide, afforded 7 in 63% yield upon recrystallization.<sup>17</sup> Allylation of 7 with but-3-enoic acid in the presence of  $(NH_4)_2S_2O_8$  and catalytic amount of AgNO<sub>3</sub><sup>16</sup> and subsequent deacylation and benzylation provided 8 in a 48% overall yield for 3 steps on a 5.6 g scale. Napthoquinone 8 was transferred to its dimethoxy benzyl form 9 in 82% yield. 9 was then converted to the bromo-aldehyde 4 in 75% yield for 2 steps on a 2.6 g scale.<sup>16</sup> Overall, the coupling partner 4 was prepared in a total yield of 19% over 9 steps on a multigram scale with one recrystallization and three chromatography operations. Then, we set out to prepare fragment 5 for Suzuki coupling. A bismethoxymethyl (MOM) protected phenol was used in the first total synthesis of TAN-1085 developed by Suzuki, and subsequent three-step transformation of the MOM ether to  $CO_2$  Me was needed, due to the incompatibility of  $CO_2$  Me with the reaction conditions.<sup>4</sup> Considering the mild reaction conditions of our route, we decided to introduce CO<sub>2</sub> Me at the beginning to simplify the synthesis. Benzyl protection of the phenolic hydroxyl of 10, followed by borylation under Miyaura coupling conditions,<sup>18</sup> afforded 5 in excellent yield.

The sugar motif 13 was prepared according to literature procedure.<sup>4,19</sup>

Suzuki coupling between 4 and 5 led to the formation of the desired racemic biaryl 3 in 85% yield on a 1 g scale (Scheme 4). The reaction was better conducted in a sealed tube, and the



reaction under reflux resulted in relatively lower yield. Then, we focused our attention on the asymmetric C-H olefination of 3. At the outset, 3 was directly subjected to our previously reported conditions, that is  $Pd(OAc)_2$  (10 mol %), BQ (0.1 equiv), and L-Tle (0.2 equiv) in HFIP/HOAc (0.5 mL) at 60  $^{\circ}$ C under O<sub>2</sub> for 72 h. However, (M)-2 was obtained in only 31% yield with 90% ee (Table 1, entry 1).<sup>20</sup> Despite that an unsatisfactory yield and ee were obtained, the reaction system was relatively clean, and most unreacted starting material 3 could be recovered, indicating the robustness of 3 under the oxidative and acidic conditions. Further optimization showed that the equivalent of L-Tle was crucial for the enantioselectivity, and the ee value was elevated to >99% when using 40 mol % of L-Tle (entry 2). Increasing the amount of BQ only resulted in a little bit of improved yield (entry 3). Then we screened different Ag salts as oxidants. Gratifyingly, when 4 equiv of Ag<sub>2</sub>CO<sub>3</sub> was used, the reaction could be conducted on a 1.2 g scale, and the desired product (M)-2 could be obtained in 75% isolated yield with 99% ee (entry 9, (M)-2, 1.08 g).<sup>21</sup>

With gram-scale enantiopure 3 in hand, our attention was turned to the oxidative cleavage of the double bond. Elevated temperature and extended reaction time were required for the complete conversion, and portionwise addition of  $K_2OsO_4$  and NaIO<sub>4</sub> under 50 °C enabled the preparation of biaryldialdehyde 1 in high yield and ee (98%, 98% ee, 1.03 g). Hitherto, we have succeeded in the gram-scale preparation of the key axially chiral biaryldialdehyde precursor of TAN-1085 with 98% ee. Subsequently, treatment of 1 with SmI<sub>2</sub>, followed by *in* 

Table 1. Asymmetric C–H Olefination of  $3^{a}$ 



<sup>*a*</sup>Reaction conditions: **3** (0.05 mmol), butyl acrylate (4.0 equiv),  $Pd(OAc)_2$  (10 mol %), oxidant (*x* equiv), and L-Tle (*y* equiv) in HFIP/HOAc (0.5 mL) at 60 °C under O<sub>2</sub> for 72 h. <sup>*b*</sup>Isolated yield. <sup>*c*</sup>The ee value was determined by HPLC. <sup>*d*</sup>N<sub>2</sub> instead of O<sub>2</sub>. <sup>*e*</sup>**3** (1.2 g, 2.1 mmol) was used.

*situ* monoprotection with 3-methylbenzoyl chloride, gave **12** in 54% yield over two steps.<sup>4</sup> Finally, TAN-1085 was obtained in enantio- and diastereomerically pure form after glycosylation and deprotection.<sup>4</sup> The spectroscopic data of TAN-1085 were in good agreement with that reported by Suzuki et al.<sup>4b</sup>

In conclusion, a concise total synthesis of TAN-1085 has been achieved in 17 linear steps with 3% overall yield. The route features a scalable, atroposelective axial-chirality construction as a key step via Pd-catalyzed asymmetric C–H olefination, which employs commercially available L-Tle as an inexpensive, catalytic transient chiral auxiliary. We believe this asymmetric synthetic strategy would serve as a unified strategy to facilitate the total synthesis of other natural products containing *trans*-9,10-dihydrophenanthrene-9,10-diol motifs, and related works are currently underway in our lab.

### ASSOCIATED CONTENT

#### Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.or-glett.9b01099.

Experimental details and spectral data for all new compounds (PDF)

#### AUTHOR INFORMATION

#### **Corresponding Author**

\*E-mail: bfshi@zju.edu.cn (B.-F. Shi). ORCID <sup>®</sup>

Yan-Hua Liu: 0000-0001-5524-4799 Bing-Feng Shi: 0000-0003-0375-955X Notes

The authors declare no competing financial interest.

## ACKNOWLEDGMENTS

Financial support from the NSFC (21572201, 21772170), the National Basic Research Program of China (2015CB856600), the Fundamental Research Funds for the Central Universities (2018XZZX001-02), and Zhejiang Provincial NSFC (LR17B020001) is gratefully acknowledged.

## REFERENCES

(1) (a) Wilton, J. H.; Cheney, D. C.; Hokanson, G. C.; French, J. C.; He, C.; Clardy, J. A New Dihydrobenz[a]anthraquinone Antitumor Antibiotic (PD 116740). J. Org. Chem. 1985, 50, 3936-3938. (b) Kanamaru, T.; Nozaki, Y.; Muroi, M. (KokaiTokkyoKoho), JP 02-289-532/1990, 1991. Chem. Abstr 1991, 115, 47759n. (c) Kondo, K.; Eguchi, T.; Kakinuma, K.; Mizoue, K.; Qiao, Y.-F. Structure and Biosynthesis of FD-594; a New Antitumor Antibiotic. J. Antibiot. 1998, 51, 288-295. (d) Qiao, Y.-F.; Okazaki, T.; Ando, T.; Mizoue, K. Isolation and Characterization of a New Pyrano-[4',3':6,7]naphtho[1,2-b]xanthene Antibiotic FD-594. J. Antibiot. 1998, 51, 282-287. (e) Gomi, S.; Sezaki, M.; Kondo, S.; Hara, T.; Naganawa, H.; Takeuchi, T. The Structures of New Antifungal Antibiotics, Benanomicins A and B. J. Antibiot. 1988, 41, 1019-1028. (f) Takeuchi, T.; Hara, T.; Naganawa, H.; Okada, M.; Hamada, M.; Umezawa, H.; Gomi, S.; Sezaki, M.; Kondo, S. New Antifungal Antibiotics, Benanomicins A and B, from an Actinomycete. J. Antibiot. 1988, 41, 807-811. (g) Kondo, S.; Gomi, S.; Ikeda, D.; Hamada, M.; Takeuchi, T.; Iwai, H.; Seki, J.; Hoshino, H. Antifungal and Antiviral Activities of Benanomicins and Their Analogs. J. Antibiot. 1991, 44, 1228-1236. (h) Oki, T.; Konishi, M.; Tomatsu, K.; Tomita, K.; Saitoh, K.-I.; Tsunakawa, M.; Nishio, M.; Miyaki, T.; Kawaguchi, H. Pradimicin, a Novel Class of Potent Antifungan Antibiotics. J. Antibiot. 1988, 41, 1701-1704.

(2) (a) Larsen, D. S.; O'Shea, M. D. Synthetic Approaches to the Angucycline Antibiotics: A Concise Entry to the Ring System of PD 116740 and TAN 1085. J. Org. Chem. 1996, 61, 5681-5683. (b) Mal, D.; Roy, H. N.; Hazra, N. K.; Adhikari, S. A Rapid Access to Hydroxylated Benz[a]anthraquinones: Hypervalent Iodine Oxidation of β-Naphthols. Tetrahedron 1997, 53, 2177–2184. (c) Hauser, F. M.; Dorsch, W. A.; Mal, D. Total Synthesis of (±)-O-Methyl PD 116740. Org. Lett. 2002, 4, 2237-2239. (d) Hirosawa, S.; Nishizuka, T.; Kondo, S.; Ikeda, D. A Synthetic Approach to Benanomicin A: Synthesis of the Substituted 5,6-Dihydrobenzo[a]naphthacenequinone. Chem. Lett. 1997, 26, 305-306. (e) Hauser, F. M.; Liao, H.; Sun, Y. Regiospecific Synthesis of a Benanomicinone/ Pradimicinone Analogue. Org. Lett. 2002, 4, 2241-2243. (f) Kitamura, M.; Takahashi, S.; Okauchi, T. Rh-Catalyzed Cyclization of 3-Aryloxycarbonyldiazonaphthoquinones for the Synthesis of  $\beta$ -Phenylnaphthalene Lactones and Formal Synthesis of Pradimicinone. J. Org. Chem. 2015, 80, 8406-8416.

(3) Ohmori, K.; Kitamura, M.; Suzuki, K. From Axial Chirality to Central Chiralities: Pinacol Cyclization of 2,2'-Biaryldicarbaldehyde to *trans*-9,10-Dihydrophenanthrene-9,10-diol. *Angew. Chem., Int. Ed.* **1999**, 38, 1226–1229.

(4) (a) Ohmori, K.; Mori, K.; Ishikawa, Y.; Tsuruta, H.; Kuwahara, S.; Harada, N.; Suzuki, K. Concise Total Synthesis and Structure Assignment of TAN-1085. *Angew. Chem., Int. Ed.* **2004**, *43*, 3167–3171. (b) Mori, K.; Ohmori, K.; Suzuki, K. Stereochemical Relay via Axially Chiral Styrenes: Asymmetric Synthesis of the Antibiotic TAN-1085. *Angew. Chem., Int. Ed.* **2009**, *48*, 5633–5637.

(5) (a) Mori, K.; Tanaka, Y.; Ohmori, K.; Suzuki, K. Synthesis and Stereochemical Assignment of Angucycline Antibiotic, PD-116740. *Chem. Lett.* **2008**, *37*, 470–471. (b) Masuo, R.; Ohmori, K.; Hintermann, L.; Yoshida, S.; Suzuki, K. First Stereoselective Total Synthesis of FD-594 Aglycon. *Angew. Chem., Int. Ed.* **2009**, *48*, 3462–3465.

(6) Kitamura, M.; Ohmori, K.; Kawase, T.; Suzuki, K. Total Synthesis of Pradimicinone, the Common Aglycon of the Pradimicin-Benanomicin Antibiotics. *Angew. Chem., Int. Ed.* **1999**, *38*, 1229–1232.

(7) For recent reviews on the synthesis of axially chiral biaryls, see: (a) Bringmann, G.; Menche, D. Stereoselective Total Synthesis of Axially Chiral Natural Products via Biaryl Lactones. Acc. Chem. Res. 2001, 34, 615-624. (b) Bringmann, G.; Price Mortimer, A. J.; Keller, P. A.; Gresser, M. J.; Garner, J.; Breuning, M. Atroposelective Synthesis of Axially Chiral Biaryl Compounds. Angew. Chem., Int. Ed. 2005, 44, 5384-5427. (c) Baudoin, O. The Asymmetric Suzuki Coupling Route to Axially Chiral Biaryls. Eur. J. Org. Chem. 2005, 2005, 4223-4229. (d) Wallace, T. W. Biaryl Synthesis with Control of Axial Chirality. Org. Biomol. Chem. 2006, 4, 3197-3210. (e) Wencel-Delord, J.; Panossian, A.; Leroux, F. R.; Colobert, F. Recent Advances and New Concepts for the Synthesis of Axially Stereoenriched Biaryls. Chem. Soc. Rev. 2015, 44, 3418-3430. (f) Ma, G.; Sibi, M. P. Catalytic Kinetic Resolution of Biaryl Compounds. Chem. - Eur. J. 2015, 21, 11644-11657. (g) Kumarasamy, E.; Raghunathan, R.; Sibi, M. P.; Sivaguru, J. Nonbiaryl and Heterobiaryl Atropisomers: Molecular Templates with Promise for Atropselective Chemical Transformations. Chem. Rev. 2015, 115, 11239-11300. (h) Loxq, P.; Manoury, E.; Poli, R.; Deydier, E.; Labande, A. Synthesis of Axially Chiral Biaryl Compounds by Asymmetric Catalytic Reactions with Transition metals. Coord. Chem. Rev. 2016, 308, 131-190. (i) Mori, K.; Itakura, T.; Akiyama, T. Enantiodivergent Atroposelective Synthesis of Chiral Biaryls by Asymmetric Transfer Hydrogenation: Chiral Phosphoric Acid Catalyzed Dynamic Kinetic Resolution. Angew. Chem., Int. Ed. 2016, 55, 11642-11646. (j) Zilate, B.; Castrogiovanni, A.; Sparr, C. Catalyst-Controlled Stereoselective Synthesis of Atropisomers. ACS Catal. 2018, 8, 2981-2988. (k) Link, A.; Sparr, C. Stereoselective Arene Formation. Chem. Soc. Rev. 2018, 47, 3804-3815. (1) Wang, Y.-B.; Tan, B. Construction of Axially Chiral Compounds via Asymmetric Organocatalysis. Acc. Chem. Res. 2018, 51, 534-547.

(8) Atroposeletive Suzuki coupling has become an attractive strategy to facilitate the total synthesis of natural products: (a) Huang, S.; Petersen, T. B.; Lipshutz, B. H. Total Synthesis of (+)-Korupensamine B via an Atropselective Intermolecular Biaryl Coupling. *J. Am. Chem. Soc.* **2010**, *132*, 14021–14023. (b) Xu, G.; Fu, W.; Liu, G.; Senanayake, C. H.; Tang, W. Efficient Syntheses of Korupensamines A, B and Michellamine B by Asymmetric Suzuki-Miyaura Coupling Reactions. *J. Am. Chem. Soc.* **2014**, *136*, 570–573.

(9) For selected reviews on asymmetric C-H functionalization, see: (a) Giri, R.; Shi, B.-F.; Engle, K. M.; Maugel, N.; Yu, J.-Q. Transition Metal-Catalyzed C-H Activation Reactions: Diastereoselectivity and Enantioselectivity. Chem. Soc. Rev. 2009, 38, 3242-3272. (b) Wencel-Delord, J.; Colobert, F. Asymmetric C(sp<sup>2</sup>)-H Activation. *Chem. - Eur.* J. 2013, 19, 14010-14017. (c) Zheng, C.; You, S.-L. Recent Development of Direct Asymmetric Functionalization of Inert C-H Bonds. RSC Adv. 2014, 4, 6173-6214. (d) Pedroni, J.; Cramer, N. TADDOL-based Phosphorus(III)-Ligands in Enantioselective Pd(0)-Catalysed C-H Functionalisations. Chem. Commun. 2015, 51, 17647-17657. (e) Newton, C. G.; Wang, S.-G.; Oliveira, C. C.; Cramer, N. Catalytic Enantioselective Transformations Involving C-H Bond Cleavage by Transition-Metal Complexes. Chem. Rev. 2017, 117, 8908-8976. (f) Qin, Y.; Zhu, L.; Luo, S. Organocatalysis in Inert C-H Bond Functionalization. Chem. Rev. 2017, 117, 9433-9520. (g) Saint-Denis, T. G.; Zhu, R.-Y.; Chen, G.; Wu, Q.-F.; Yu, J.-Q. Enantioselective C(sp<sup>3</sup>)-H Bond Activation by Chiral Transition Metal Catalysts. Science 2018, 359, No. eaao4798.

(10) Zhang, F.-L.; Hong, K.; Li, T.-J.; Park, H.; Yu, J.-Q. Functionalization of  $C(sp^3)$ -H Bonds Using a Transient Directing Group. *Science* **2016**, 351, 252–256. Park, H.; Verma, P.; Hong, K.; Yu, J.-Q. Controlling Pd(IV) reductive elimination pathways enables Pd(II)-catalysed enantioselective  $C(sp^3)$ -H fluorination. *Nat. Chem.* **2018**, 10, 755–762.

(11) (a) Yao, Q.-J.; Zhang, S.; Zhan, B.-B.; Shi, B.-F. Atroposelective Synthesis of Axially Chiral Biaryls by Palladium-Catalyzed Asymmetric C-H Olefination Enabled by a Transient Chiral Auxiliary. *Angew. Chem., Int. Ed.* **2017**, *56*, 6617–6621. (b) Liao, G.; Yao, Q.-J.; Zhang, Z.-Z.; Wu, Y.-J.; Huang, D.-Y.; Shi, B.-F. Scalable, Stereocontrolled Formal Syntheses of (+)-Isoschizandrin and (+)-Steganone: Development and Applications of Palladium(II)-Catalyzed Atroposelective C-H Alkynylation. Angew. Chem., Int. Ed. **2018**, 57, 3661–3665. Liao, G.; Li, B.; Chen, H.-M.; Yao, Q.-J.; Xia, Y.-N.; Luo, J.; Shi, B.-F. Pd-Catalyzed Atroposelective C-H Allylation through  $\beta$ -O Elimination: Diverse Synthesis of Axially Chiral Biaryls. Angew. Chem., Int. Ed. **2018**, 57, 17151–17155. Zhang, S.; Yao, Q.-J.; Liao, G.; Li, X.; Li, H.; Chen, H.-M.; Hong, X.; Shi, B.-F. Enantioselective Synthesis of Atropisomers Featuring Pentatomic Heteroaromatics by Pd-Catalyzed C-H Alkynylation. ACS Catal. **2019**, 9, 1956–1961.

(12) Godula, K.; Sames, D. C-H Bond Functionalization in Complex Organic Synthesis. *Science* 2006, 312, 67–72. Gutekunst, W. R.; Baran, P. S. C-H Functionalization Logic in Total Synthesis. *Chem. Soc. Rev.* 2011, 40, 1976–1991. McMurray, L.; O'Hara, F.; Gaunt, M. J. Recent Developments in Natural Product Synthesis Using Metal-Catalysed C-H Bond Functionalisation. *Chem. Soc. Rev.* 2011, 40, 1885–1898. Yamaguchi, J.; Yamaguchi, A. D.; Itami, K. C-H Bond Functionalization: Emerging Synthetic Tools for Natural Products and Pharmaceuticals. *Angew. Chem., Int. Ed.* 2012, 51, 8960–9009. Abrams, D. J.; Provencher, P. A.; Sorensen, E. J. Recent Applications of C-H Functionalization in Complex Natural Product Synthesis. *Chem. Soc. Rev.* 2018, 47, 8925–8967.

(13) For an application of Pd(II)-catalyzed enantioselective C–H activation via a kinetic resolution in total synthesis, see: Zhang, Z.; Wang, J.; Li, J.; Yang, F.; Liu, G.; Tang, W.; He, W.; Fu, J.-J.; Shen, Y.-H.; Li, A.; Zhang, W.-D. Total Synthesis and Stereochemical Assignment of Delavatine A: Rh-Catalyzed Asymmetric Hydrogenation of Indene-Type Tetrasubstituted Olefins and Kinetic Resolution through Pd-Catalyzed Triflamide-Directed C-H Olefination. J. Am. Chem. Soc. 2017, 139, 5558–5567.

(14) For representative examples of Rh-catalyzed asymmetric carbene C-H insertion in total synthesis, see: Bedell, T. A.; Hone, G. A. B.; Valette, D.; Yu, J.-Q.; Davies, H. M. L.; Sorensen, E. J. Rapid Construction of a Benzo-Fused Indoxamycin Core Enabled by Site-Selective C-H Functionalizations. *Angew. Chem., Int. Ed.* **2016**, *55*, 8270–8274. Hong, B.; Li, C.; Wang, Z.; Chen, J.; Li, H.; Lei, X. Enantioselective Total Synthesis of  $(\pm)$ -Incarviatone A. J. Am. Chem. Soc. **2015**, *137*, 11946–11949. Wang, D.-H.; Yu, J.-Q. Highly Convergent Total Synthesis of (+)-Lithospermic Acid via a Late-Stage Intermolecular C-H Olefination. J. Am. Chem. Soc. **2011**, *133*, 5767–5769.

(15) Bott, G.; Field, L. D.; Sternhell, S. Steric Effects. A Study of a Rationally Designed System. J. Am. Chem. Soc. **1980**, 102, 5618–5626.

(16) Nicolaou, K. C.; Li, H.; Nold, A. L.; Pappo, D.; Lenzen, A. Total Synthesis of Kinamycins C, F J. J. Am. Chem. Soc. 2007, 129, 10356–10357.

(17) Grunwell, J. R.; Karipides, A.; Wigal, C. T.; Heinzman, S. W.; Parlow, J.; Surso, J. A.; Clayton, L.; Fleitz, F. J.; Daffner, M.; Stevens, J. E. The Formal Oxidative Addition of Electron-Rich Transoid Dienes to Bromonaphthoquinones. *J. Org. Chem.* **1991**, *56*, 91–95.

(18) Ishiyama, T.; Murata, M.; Miyaura, N. Palladium(0)-Catalyzed Cross-Coupling Reaction of Alkoxydiboron with Haloarenes: A Direct Procedure for Arylboronic Esters. *J. Org. Chem.* **1995**, *60*, 7508–7510.

(19) Renneberg, B.; Li, Y.-M.; Laatsch, H.; Fiebig, H.-H. A Short and Efficient Transformation of Rhamnose into Activated Daunosamine, Acosamine, Ristosamine and *epi*-Daunosamine Derivatives, and Synthesis of an Anthracycline Antibiotic Acosaminyl-m-*iso*rhodomycinone. *Carbohydr. Res.* **2000**, 329, 861–872. Yang, X.; Wang, P.; Yu, B. Tackling the Challenges in the Total Synthesis of Landomycin A. *Chem. Rec.* **2013**, *13*, 70–84.

(20) The absolute configuration of compound 2 was deduced from previous studies (ref 11a) and confirmed by the optical rotation and NMR spectra of the final product TAN-1085 (ref 4b).

(21) Consistent with our previous results (ref 11a) and Sternhell's investigations (ref 15), alkoxy groups are generally less sterically bulky; therefore, *rac*-3 could undergo the atroposelective C–H olefination through dynamic kinetic resolution.