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ABSTRACT

Novel routes toward both enantiomers of the bicyclic proline surrogate 2-carboxy-6-hydroxyoctahydroindole, i.e., Choi, were developed on the
basis of the oxidative cyclization of L-tyrosine. Synthesis of the proposed sequence of (+)-aeruginosin 298-A did not provide the natural
product. Incorporation of a D-leucine residue, in contrast, led to the total synthesis of this thrombin inhibitor.

The discovery of novel anticoagulant agents for the treatment
of thrombosis continues to receive significant attention.1

Thrombin, a key enzyme in the blood coagulation cascade,
catalyzes the conversion of fibrinogen to fibrin which then
polymerizes to form a haemostatic plug.2 Current therapeutic
agents, such as heparins and coumarins, require careful
monitoring of the patient to avoid excessive haemorrhage
and are not orally active.3

In 1994, Murakami and co-workers isolated the thrombin
inhibitor (IC50 of 0.5 µM) aeruginosin 298-A (1) from the
blue-green freshwater algaeMicrocystis aeruginosa.4 At the
time, only the leucine stereochemistry was assigned by chiral
GC analysis of the acid hydrolysate. The configurations of
the hydroxyphenyllactic acid and argininol fragments were
later established by Marfey analysis.5

In 1998, Tulinsky and co-workers reported an X-ray
crystallographic structure of the ternary complex of1 bound
to hirugen-thrombin.6 Surprisingly, the binding mode closely
resembled that ofD-Phe-Pro-Arg chloromethyl ketone with
the L-Leu residue occupying theD-S3 subsite. Their work
also confirmed the absolute stereochemistry of the novel
hydroindole core2 (L-Choi). Conformationally restricted

proline derivatives such as2 project peptide chains into
defined regions of space, promoting specific turns in peptide
folding and conferring a bioactive conformation.7 Further-
more, the hydroxyl group in2 can participate in hydrogen
bonding and increase water solubility or can be functionalized
(e.g., as a sulfate) as found for certain aeruginosins.

Our approach toward2 highlights the utility of our tyrosine
oxidation-rearrangement methodology to prepare function-
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alized hydroindole amino acids (Figure 1).8 Oxidation of
L-Cbz-tyrosine with PhI(OAc)2 followed by exposure to basic
methanol furnishes4 in >98:2 diastereoselectivity. Recent
efforts have demonstrated the versatility of4 for the synthesis
of various natural products.9

We had hoped to access thecis-fused ring system in2 by
dehydration of the tertiary alcohol of4, followed by
hydrogenation (Scheme 1). Treatment of4 with POCl3 in
pyridine gave the kinetic elimination product5. Unfortu-
nately, catalytic hydrogenation of this diene with various
catalysts (Pt/C, Pd/C, PtO2, Rh(PPh3)3Cl) and solvents
(MeOH, EtOH, THF, AcOH/EtOH) proceeded with little

facial selectivity. Dienone5 can be selectively reduced to
6; however, further reduction again proceeded with little
selectivity. Substituent effects may control which face of an
olefin is adsorbed on the metal catalyst.10 Accordingly, we
speculated that varying the distance between the olefin and
the ester could alter the selectivity forcis-hydrogenation.
Elimination of the mesylate derived from4 with activated
zinc11 gave 7 in 94% yield. In contrast to6, catalytic
hydrogenation of theâ,γ-enone7 proceeded with excellent
(25:1) facial selectivity leading to thecis-fused hydroindole
8 in 92% yield.12

The ketone was reduced to either the equatorial alcohol
(9; 87%) with NaBH4 or the axial alcohol with L-Selectride
(10; 69%, 9:1).13 Stereochemical assignments were made on
the basis of comparison with the natural product and related
work.9 TBS-protection of10 followed by epimerization of
the hindered methyl ester with LiNEt2

14 in 10% HMPA/
THF afforded the fully protected unnatural amino acidD-3
with up to 12:1 selectivity at C(2).

The synthesis of natural aeruginosin 298-A by this route
would require starting with costlyD-tyrosine. Consequently
we considered an alternative pathway (Scheme 2) to the
naturalL-Choi configurationL-3.

The syn-diastereomer of4 was accessed through a
thermodynamic equilibration of the benzoyl-protected15
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Figure 1. Diastereoselective cyclooxidation of Cbz-L-tyrosine: an
entry to the aeruginosin core segment.

Scheme 1. Initial Approach to the Choi Corea

a Reagents and conditions: (a) POCl3, pyr., 89%; (b) H2, 5%
Rh/Al2O3, MeOH, quant.; (c) Ms2O, DMAP, pyr., CH2Cl2, -30
°C to 0°C; activated Zn dust, AcOH/THF, 94%; (d) H2, 1% PtO2,
10% AcOH/EtOH, 0°C, 92%; (e) NaBH4, MeOH, 0 °C; (f)
L-Selectride, THF,-78 °C; (g) TBSOTf, pyr., CH2Cl2, 94%; (h)
LiNEt2, 10% HMPA/THF,-78 °C; t-BuOH; 69%.

Scheme 2. Synthesis of theL-Choi Corea

a Reagents and conditions: (a) Bz2O, DMAP, pyr., CH2Cl2, 50
°C, 90%; (b) NaHCO3, DMSO, 90°C; 12 (78%); (c) activated Zn
dust, AcOH/THF, 65°C, 75%; (d) SmI2, AcOH/THF, 65 °C, 5
min, 63%; (e) H2, 5% PtO2, 10% AcOH/EtOH, 0°C, 95%; (f)
NaBH4, MeOH, 0°C; (g) L-Selectride, THF,-78 °C; (h) TBSOTf,
imidazole, CH2Cl2, 87%.
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alcohol 11 to 12 via a retro-Michael-Michael addition
sequence at 90°C in basic DMSO.16 While a modest 1.6:1
ratio of 12:11 was obtained after 1 h, chromatographic
separation and recycling of recovered11provided an overall
yield of 78% for 12. MM2-level calculations suggest that
diastereomer12 is preferred by 0.3 kcal/mol.

Benzoate12 required elevated temperatures (65°C) to
provide 13 in good yield using either zinc or SmI2.17

Interestingly, SmI2 reduction of 12 at room temperature
rendered only the saturated ketobenzoate. Hydrogenation
followed by L-Selectride reduction (86%, 3.8:1) and TBS-
protection afforded theL-enantiomer of 3. The minor
reduction product15 could be recycled back to14 by Ley
oxidation (83%).18 Finally the alcohol was protected as a
TBS silyl ether (87%).19

With an efficient synthesis of the core accomplished, we
turned to the preparation of the argininol (Argol) and
hydroxyphenyl lactic acid (Hpla) fragments. The former was
synthesized in six steps fromL-arginine (Scheme 3). Selective

Alloc and Cbz protection followed by in situ NaBH4

reduction of the mixed anhydride20 formed with IBCF gave
primary alcohol17 (72%). Standard protective group ma-
nipulations provided segment18.

The key step in the synthesis of the Hpla fragment was a
BF3‚OEt2-catalyzed organocuprate addition to (R)-benzyl-
glycidol (I ), providing adduct19 in 83% yield (Scheme 4).

Standard protective group manipulations followed by Dess-
Martin21 and NaClO2 oxidations led to Hpla21. Finally,
DEPC-mediated coupling toL-Leu-OBn and hydrogenolysis
provided the desired segmentLLeu-22.

For the assembly of the tetrapeptide and subsequent
deprotection, the Cbz group ofL-3 was exchanged for an
Alloc group (Scheme 5). Subsequent saponification and
pentafluorophenyl ester-mediated coupling to argol18
provided dipeptide23 in 69% yield. Alloc deprotection
followed by DEPBT22-mediated segment coupling toLLeu-
22 proceeded in 63% yield to giveLLeu-24. The tetrapeptide
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NMR coupling constants;J11 ) 9.1, 2.4 Hz (dd);J12 ) 8.5 Hz (t).
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Scheme 3. Synthesis of the Argol Fragmenta

a Reagents and conditions: (a) AllocCl, aq. NaOH, 79%; (b)
CbzCl, aq. NaOH, THF, 63%; (c) IBCF, NMM, DMF,-20 °C;
NaBH4, H2O, 72%; (d) TBSOTf, imidazole, CH2Cl2, 81%; (e)
CbzCl, DMAP, K2CO3, DMF, 86%; (f) Bu3SnH, Pd(PPh3)4, AcOH,
THF, 88%. Scheme 5. Synthesis of the Proposed Structure of Aeruginosin

298-Aa

a Reagents and conditions: (a) H2, Pd/C, EtOH; AllocCl, pyr.,
91%; (b) LiOH, THF/H2O, 40°C; 18, iPr2NEt, FDPP, CH2Cl2, 69%;
(c) Bu3SnH, Pd(PPh3)4, AcOH, CH2Cl2; (d) LLeu-22, DEPBT,
iPr2NEt, CH2Cl2, 63%; (e) HF (aq); H2, Pd/C, EtOH, 42%.

Scheme 4. Synthesis of theD-Hpla-L-Leu Segmenta

a Reagents and conditions: (a)t-BuLi, CuBr‚SMe2, THF, -78
°C to -45 °C; I , BF3‚OEt2, -45 °C to -20 °C, 83%; (b) TBSOTf,
imidazole, CH2Cl2; (c) H2, 10% Pd/C, EtOAc, 92%; (d) DMP,
CH2Cl2, 84%; (e) NaClO2, NaH2PO4, 2-methyl-2-butene,t-BuOH/
H2O, 93%; (f)L-Leu-OBn, DEPC,iPr2NEt, CH2Cl2, 73%; (g) H2,
Pd/C, EtOH, 93%.
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was treated with HF(aq) for 2 h, neutralized with NaOH(aq),
and extracted into CH2Cl2/EtOAc. Finally, hydrogenolysis
cleaved the Cbz protective groups (42%; two steps). How-
ever, this product was spectroscopically distinctively different
from natural aeruginosin 298-A; apparently it represented a
diastereomer.23

Upon reinspection of the configuration of other members
of the aeruginosin family, we began to suspect that the
stereochemical assignment of the leucine residue might be
incorrect.24 Thus, we also prepared theD-leucine analogue
of aeruginosin 298-A using the same strategy (Scheme 6).

Indeed, the1H and13C NMR data ofDLeu-1 matched exactly
those reported for aeruginosin 298-A.25,26

While at this stage we cannot yet explain the discrepancy
between our assignment and the X-ray structure of (+)-
aeruginosin 298-A, we are confident that the revised structure
DLeu-1, which matches all available spectroscopic data of the
natural product, is indeed representative of the actual

stereochemistry of (+)-aeruginosin 298-A. A direct com-
parison between synthetic and natural samples is unfortu-
nately not possible, since the natural product is no longer
available.

In conclusion, a concise synthesis of the novel bicyclic
amino acid2 from L-tyrosine has been developed that can
readily be adapted to the preparation of analogues and
peptidomimetic scaffolds. The total synthesis of (+)-aerugi-
nosin 298-A demonstrates the potentially biomimetic incor-
poration of an oxidative cyclization product ofL-tyrosine
into the highly functionalized backbone of this potent
thrombin inhibitor. Key steps of the total synthesis include
the efficient construction of other nonproteinogenic building
blocks in aeruginosin 298-A as well as an extensive
optimization of coupling strategies.

The preparation ofLLeu- as well asDLeu-aeruginosin 298-A
compels one to a reassignment of the configuration of the
natural product. As a consequence, the binding mode of
aeruginosin 298-A to thrombin is as expected,27 with a
D-leucine occupying theD-S3 binding site of the enzyme.
This structural reassignment also explains the similarity28

between the binding modes of 298-A and 98-B29 (98-B has
a D-alloisoleucine residue at P3) to serine proteases.30
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Scheme 6. Synthesis ofD-Leu-aeruginosin 298-Aa

a Reagents and conditions: (a) NH3Cl-D-Leu-OBn, DEPC,
iPr2NEt, CH2Cl2, 68%; (b) H2, Pd/C, EtOH, 95%; (c) Bu3SnH,
Pd(PPh3)4, AcOH, CH2Cl2; (d) DLeu-22, DEPBT,iPr2NEt, CH2Cl2,
59%; (e) HF (aq); H2, Pd/C, EtOH, 34%.

4216 Org. Lett., Vol. 2, No. 26, 2000


