Tetrahedron Letters 56 (2015) 5941-5944

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Novel PDC catalyzed oxidative rearrangement of tertiary allylic alcohols to β-substituted enones

Meiji Pharmaceutical University, Noshio, Kiyose, Tokyo 204-8588, Japan

ARTICLE INFO

Article history: Received 3 August 2015 Revised 3 September 2015 Accepted 15 September 2015 Available online 21 September 2015

Keywords: PDC Iodosylbenzene diacetate Oxidation Rearrangement Tertiary allylic alcohol

ABSTRACT

Novel pyridinium dichromate (PDC) catalyzed oxidative rearrangement for the conversion of tertiary allylic alcohols to β -substituted enones is described. Using a catalytic amount of PDC with PhI(OAc)₂ as a co-oxidant in the presence of magnesium sulfate and water under oxygen was found effective for this rearrangement.

© 2015 Elsevier Ltd. All rights reserved.

The oxidative rearrangement of tertiary allylic alcohols is a fundamental means for the preparation of β -substituted α , β -unsaturated ketones in natural product synthesis.¹ An oxochromium(VI) based reagent such as pyridinium chlorochromate (PCC) and pyridinium dichromate (PDC) is the first choice for the rearrangement.² The pathway of the reaction is considered to quite likely be that shown in Scheme 1. First, tertiary allylic alcohol I reacts with oxochromium(VI) based reagent to form chromate II. The allylic rearrangement of II produces the chromate of secondary alcohol III, which is then transformed to enone IV and oxochromium(IV). Oxochromium(VI) appears to be the most suitable reagent since it acts at both the stage of rearrangement and oxidation. But these reactions require stoichiometric amounts of oxochromium(VI) based oxidants all of which possess considerable toxicity.

Recently, alternative methods have been reported for the reactions shown above. These reactions may be classed as either those caused through use of stoichiometric amounts of oxidant or catalytic amounts of a reagent with co-oxidant. Oxoammonium salts of 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO⁺X⁻) oxidation³ and 1-hydroxy-1,2-benziodoxol-3(1*H*)-one 1-oxide (IBX) oxidation⁴ are of the first type reaction while the second type involves combinations of TEMPO and NaIO₄–SiO₂,⁵ TEMPO, iodosylbenzene (PhIO) and Bi(OTf)₃,⁶ TEMPO and copper(II) chloride (CuCl₂),⁶ 2-iodoxybenzenesulfonic acid (IBS) and Oxone[®] (2KHSO₅·KHSO₄·K₂SO₄),⁷ and Pt black and H₂O₂.⁸ These reagents were used for the

oxidation of various tertiary allylic alcohols. However, no suitable reagent for the conversion of cyclohex-2-enols $14a^9$ bearing a bulky substituent at the 6-position to β -substituted enone 14b has been found in our studies on natural product synthesis.

To develop a more effective reagent than PCC or PDC but with less toxicity, an investigation was made of PDC catalyzed oxidative rearrangement of tertiary allylic alcohols. Studies on several oxochromium(VI) catalyzed oxidations have indicated chromium(VI) oxide (CrO₃) to catalyze the oxidation of primary and secondary allylic alcohols with alkyl hydroperoxide,¹⁰ CrO₃ to catalyze the oxidation of primary and secondary allylic alcohols, benzylic C–H bonds, and arenes with periodic acid (H₅IO₆),¹¹ and the (salen)chromium complex catalyzed oxidation of primary and secondary allylic (or benzyl) alcohols with PhIO¹² or iodosylbenzene diacetate (PhI(OAc)₂).¹² But to date, no application of these reagents to the oxidative rearrangement of tertiary allylic alcohols has been made to our knowledge.

In the present study, the effective transformation of tertiary allylic alcohols to α , β -unsaturated ketones using catalytic amounts of PDC and PhI(OAc)₂ as a terminal oxidant was successfully carried out.

The reaction conditions for the PDC catalyzed oxidation of 1-butylcyclohex-2-enol (**1a**) with PhI(OAc)₂ to give 3-butylcyclohex-2-enone (**1b**) is shown in Table 1. Reaction of **1a** with 0.01 equiv of PDC and 3.0 equiv of PhI(OAc)₂ in CH₂Cl₂ (0.2 M) for 24 h at room temperature under argon atmosphere gave **1b** in 84% yield (entry 1). In this reaction, air or oxygen was found to promote the reactivity of the reagent remarkably, but in all

CrossMark

Tetrahedroi

^{*} Corresponding author. Tel./fax: +81 42 495 8819. E-mail address: nagaoka@my-pharm.ac.jp (H. Nagaoka).

cases, a small amount of **1a** was recovered (entries 2 and 3). Using 0.05 equiv of PDC and 1.5 equiv of PhI(OAc)₂ under oxygen increased the reaction rate and an optimum yield of **1b** was 94% (entry 4). Reproducibility of the reaction, however, was not satisfactory. The addition of 1 equiv of H₂O in this reaction condition was found to improve reproducibility, but the yield of **1b** was slightly less than without H₂O (entry 5). This problem was solved by the addition of 1 equiv of MgSO₄, which increases the yield of **1b** to 96% (entry 6). It seems that gradual supply of H₂O is effective for this reaction. However, the exact reason for the effectiveness of a combination of H₂O, MgSO₄, and O₂ is not clear. This condition is superior to that commonly used for PDC oxidation in nearly all respects (entry 7). It should be pointed out that the oxidation of **1a** with 1.5 equiv of PhI(OAc)₂ without PDC did not occur (entry 8).

The chromium(IV) generated in the above reactions should be reoxidized to chromium(VI) by PhI(OAc)₂. A study was thus made using a combination of chromium(IV) oxide (CrO_2) , base, and PhI $(OAc)_2$ instead of PDC in combination with PhI(OAc)₂ and the results are shown in Table 2. Using 0.1 equiv of CrO_2 , 0.1 equiv of pyridine and 1.5 equiv of PhI(OAc)₂ in CH₂Cl₂ (0.5 M) under oxygen atmosphere for the reaction of **1a** provided results essentially the same as for the oxidation described above. Enone **1b** was obtained in 94% yield (entry 1). The oxidation did not proceed without pyr-

Table 1

Optimization of the reaction conditions for the oxidative rearrangement of allylic alcohol 1a with pyridinium dichromate in the presence of Phl(OAc)₂

			PDC (cat.), PhI(OAc) ₂				
	Bu	ЭН	auunive, or	Bu' 🛇	`0		
		1a		1b			
Entry	PDC (equiv)	Phl (OAc) ₂ (equiv)	Additive (equiv)	Condition	Concn (M)	Time (h)	Yield ^a (%)
1	0.01	3.0	_	Ar	0.2	24	84
2	0.01	3.0	_	Air	0.2	1.5	88 ^b
3	0.01	3.0	_	02	0.2	1	88 ^b
4	0.05	1.5	_	02	0.5	0.25	94 ^c
5	0.05	1.5	$H_20(1.0)$	02	0.5	0.25	86
6	0.05	1.5	H ₂ 0 (1.0) MgSO ₄ (1.0)	02	0.5	0.25	96
7	2.0	-	_	Air	0.2	3	91
8	-	1.5	-	Air	0.2	5	0 ^d

^a Isolated yield.

^b A small amount of **1a** was recovered.

^c The best yield, but low reproducibility.

^d No reaction.

Table 2

Combinations of oxidant and base for chromium(IV) oxide catalyzed oxidative rearrangement of allylic alcohol **1a**

^a Isolated yield.

^b No reaction occurred.

idine and/or PhI(OAc)₂ (entries 2–4). Pyridine was essential and could not be replaced with 2,6-lutidine, *N*,*N*-dimethylaminopyridine (DMAP), NaHCO₃, or MS4A (entries 5–8). Neither PhIO nor NaIO₄ was found to function as a co-oxidant (entries 9 and 10). IBX, however, was found to serve as a co-oxidant, but with a lower reaction rate (entry 11). IBX treatment of **1a** in CH₂Cl₂ without the presence of CrO₂ did not cause the oxidative rearrangement.

 CrO_2 is thus shown to function as a catalyst for the oxidation in the presence of pyridine and $PhI(OAc)_2$ (or IBX) under oxygen.

The PDC catalyzed oxidative rearrangement to various substrates was consequently investigated. Allylic alcohols 2a-5a each bearing a *tert*-butyldimethylsilyloxy, acetyloxy, methoxymethoxy, or benzyloxy group could be converted to the corresponding enones **2b–5b** in good yields (Table 3, entries 2–5). In the cases of benzyl alcohol **6a** and ester **7a**. the standard reaction conditions were ineffective for completing the oxidation and the yields of enones 6b and 7b were only moderate (entries 6 and 7). 3 equiv of PhI(OAc)₂ and the addition of 11 equiv of pyridine in the case of **6a** or 3 equiv of PhI(OAc)₂ in the case of **7a**, were found to improve the yields of **6b** and **7b**. Allylic alcohol **8a** bearing a quaternary carbon center at the 4-position smoothly underwent conversion to enone **8b** in high yields (entry 8). The substituent at the 2-position in cyclohex-2-enol 9a was found to hinder the oxidation and the yield of **9b** was somewhat low (entry 9). Neither transformation of **11a** bearing a cycloheptene ring, **12a** bearing a cyclooctene ring nor acyclic allylic alcohol 13a to corresponding enones 11b-13b gave satisfactory results, but cyclopent-2-enol 10a was easily oxidized to 10b (entries 10-13). PDC and PhI (OAc)₂ in combination were effective for bringing about the oxidation of allylic alcohols each possessing a bulky group at the 6-position. The oxidation of **14a**⁹ having a number of acid sensitive groups produced enone 14b in 70% yield (entry 14). The usual PDC oxidation of 14a gave low yield of 14b and a small amount of 14a was recovered. Alcohols 15a with 2-(trimethylsilyloxy)propan-2-yl group and **16a** with 2-(methoxymethoxy)propan-2-yl group gave 76% yield of **15b** and 92% yield of **16b**, respectively (entries 15 and 16). TEMPO catalyzed oxidation⁵ of **15a** with NaIO₄-SiO₂ was seen to cause desilylation to give **15c** and the oxidation of 16a provided 16b in moderate yields.

The typical experimental procedure for the PDC catalyzed oxidative rearrangement of tertiary allylic alcohol with $PhI(OAc)_2$ is shown in the following. To a solution of alcohol **1a** (77.1 mg, 0.500 mmol) in CH_2Cl_2 (1.0 mL, 0.5 M) was added MgSO₄ (60.2 mg,

Table 3

Pyridinium dichromate catalyzed oxidative rearrangement of allylic alcohols with iodosobenzene diacetate

а Isolated vield.

b PDC (0.05 equiv), Phl(OAc)₂ (3.0 equiv), pyridine (11 equiv), MgSo₄ (1.0 equiv), O₂ (balloon), CH₂Cl₂ (0.2 M).

PDC (0.05 equiv), Phl(OAc)₂ (3.0 equiv), H₂0 (1.0 equiv), O₂ (balloon), CH₂Cl₂ (0.1 M).

d A 7:1 diastereomeric mixture.

PDC (3 equiv), MS4A, CH₂Cl₂ (0.2 M).

f 14% of **15a** was recovered

- $^{\rm g}$ TEMPO (0.01 equiv), NaIO₄-SiO₂ (2 equiv), CH₂Cl₂ (0.1 M). ^h Diol **15c** was obtained quantitatively.

i 35% of 16a was recovered.

0.500 mmol), H₂O (9.0 μL, 9.0 mg, 0.50 mmol), PhI(OAc)₂ (242 mg, 0.750 mmol) and PDC (9.4 mg, 25 µmol) with stirring. The resulting dark brown mixture was stirred for 15 min at room temperature under oxygen (balloon). This was followed by the addition of saturated aqueous NaHCO3 and 20% aqueous Na2S2O3. After been stirred for 15 min, the suspension was diluted with Et₂O. The organic layer was washed with brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash

chromatography on silica gel (hexane/ether = 3.5:1) to give **1b** (73.0 mg, 0.480 mmol, 96%).

In summary, PDC was found an effective catalyst for the oxidative rearrangement of cyclic tertiary allylic alcohols with PhI(OAc)₂, MgSO₄, and H₂O in CH₂Cl₂. By this method, various 1-alkylcyclohex-2-enols, cyclohex-2-enol bearing a quaternary carbon center at the 4-position and 1-alkylcyclopent-2-enol could be smoothly converted to the corresponding enones and even cyclohex-2-enol **14a** bearing a bulky group at the 4-position, the usual PDC oxidation of which gave only low yield of **14b**, could be oxidized to enone **14b** in good yields. CrO₂ could also be used as a catalyst for the oxidative rearrangement in the presence of pyridine and PhI(OAc)₂.

Acknowledgment

This work was supported in part by a Grant-in-Aid for Scientific Research (C) from Japan Society for the Promotion of Science (No. 23590022).

References and notes

 Recent application of oxidative rearrangement to natural product synthesis. (a) Ross, A. G.; Li, X.; Danishefsky, S. J. J. Am. Chem. Soc. 2012, 134, 16080–16084; (b) Xuan, M.; Paterson, I.; Dalby, S. M. Org. Lett. 2012, 14, 5492–5495; (c) Okamoto, R.; Takeda, K.; Tokuyama, H.; Ihara, M.; Toyota, M. J. Org. Chem. 2013, 78, 93–103; (d) Selaïmia-Ferdjani, O.; Kar, A.; Chavan, S. P.; Horeau, M.; Viault, G.; Pouessel, J.; Guillory, X.; Blot, V.; Tessier, A.; Planchat, A.; Jacquemin, D.; Dubreuil, D.; Pipelier, M. Eur. J. Org. Chem. 2013, 7083–7094; (e) Han, J.-C.; Liu, L.-Z.; Chang, Y.-Y.; Yue, G.-Z.; Guo, J.; Zhou, L.-Y.; Li, C.-C.; Yang, Z. J. Org. Chem. 2013, 78, 5492–5504.

- For recent reviews on oxochromium(VI)-based oxidants, see: (a) Luzzio, F. A. In Organic Reactions; Paquette, L. A., Ed.; Wiley: New York, 1998; Vol. 53, pp 1– 221; (b) Wietzerbin, K.; Bernadou, J.; Meunier, B. Eur. J. Inorg. Chem. 2000, 1391–1406.
- 3. Shibuya, M.; Tomizawa, M.; Iwabuchi, Y. J. Org. Chem. 2008, 73, 4750-4752.
- 4. Shibuya, M.; Ito, S.; Takahashi, M.; Iwabuchi, Y. Org. Lett. 2004, 6, 4303–4306.
- 5. Shibuya, M.; Tomizawa, M.; Iwabuchi, Y. Org. Lett. 2008, 10, 4715–4718.
- (a) Vatèle, J.-M. Synlett 2008, 1785–1788; (b) Vatèle, J.-M. Synlett 2009, 2143–2145; (c) Vatèle, J.-M. Tetrahedron 2010, 66, 904–912.
- 7. Uyanik, M.; Fukatsu, R.; Ishihara, K. Org. Lett. 2009, 11, 3470-3473.
- 8. Nagamine, T.; Kon, Y.; Sato, K. Chem. Lett. 2012, 41, 744-746.
- Allylic alcohol 14a was prepared from (*R*)-2,2-dimethyl-1,3-dioxolane-4-carbaldehyde in 5 steps: (1) cyclohexanone, L-proline, THF, H₂O, rt, 17 h, 97%; (2) TMSCI, Et₃N, DMAP, THF, 0 °C to rt, 1 h; (3) LDA then TMSCI, THF, −78 °C, 30 min; (4) Pd(OAc)₂, O₂, DMSO, rt, 15 h, 82% (3 steps); (5) AcOEt, LDA, THF, −78°C, 30 min, 90%.
- 10. Riahi, A.; Hénin, F.; Muzart, J. Tetrahedron Lett. 1999, 40, 2303–2306.
- (a) Zhao, M.; Li, J.; Song, Z.; Desmond, R.; Tschaen, D. M.; Grabowski, E. J. J.; Reider, P. J. *Tetrahedron Lett.* **1998**, *39*, 5323–5326; (b) Yamazaki, S. Org. Lett. **1999**, *1*, 2129–2132; (c) Yamazaki, S. *Tetrahedron Lett.* **2001**, *42*, 3355–3357.
- (a) Adam, W.; Gelalcha, F. G.; Saha-Möller, C. R.; Stegmann, V. R. J. Org. Chem.
 2000, 65, 1915–1918; (b) Kim, S. S.; Kim, D. W. Synlett 2003, 1391–1394; (c) Adam, W.; Hajra, S.; Herderich, M.; Saha-Möller, C. R. Org. Lett. 2000, 2, 2773– 2776.