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ABSTRACT 

The precise cellular function of peroxynitrite (ONOO−) in biosystems remains 1 

elusive, primarily owing to be short of ultrasensitive techniques for monitoring its 2 

intracellular distribution. In this work, a novel rhodamine B cyclic 3 

1,2-dimethylhydrazine fluorescent chemodosimeter RDMH-PN for highly specific 4 

and ultrasensitive monitoring of basal ONOO− in biosystems was rationally designed. 5 

The fluorescence titration experiments demonstrated that RDMH-PN was capable of 6 

quantitatively detecting 0-100 nM ONOO− (LOD = 0.68 nM). In addition, 7 

RDMH-PN has the outstanding performances of ultrafast measurement, naked-eye 8 

detection, and preeminent selectivity toward ONOO− to accurately detect intracellular 9 

basal ONOO−. Finally, it has been confirmed that RDMH-PN not only could map the 10 

intracellular basal ONOO− level by inhibit tests, but also could trace the fluctuations 11 

of endogenous and exogenous ONOO− levels with diverse stimulations in live cells 12 

and zebrafish. 13 

KEYWORDS: fluorescent chemodosimeter; peroxynitrite (ONOO−); 14 

1,2-dimethylhydrazine; rhodamine; fluorescence bioimaging 15 
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INTRODUCTION 24 

Peroxynitrite (ONOO−), an important reactive oxygen species (ROS), is formed 25 

by a diffusion-limited coupling of NO and O2
• − at the rate of 50-100 μM per min in 26 

biological systems, and can be stable and last for hours in the nanomolar 27 

concentration range.1-3 Peroxynitrite plays crucial roles in signal transduction and 28 

antibacterial activities.4,5 However, growing evidence has suggested that excessively 29 

produced ONOO− can damage various biomacromolecules because of its powerful 30 

oxidative and nitrative capbility.6,7 An increasing number of diseases have been 31 

proved to be closely associated with ONOO−, such as neurodegenerative disease, 32 

chronic inflammation, and cardiovascular disorders.8-11 Unfortunately, the exact 33 

cellular mechanisms of ONOO− are still not completely disclosed because of being 34 

short of ultrasensitive techniques for monitoring its intracellular distribution. 35 

Therefore, developing accurate and ultrasensitive methods for visualizing the ultralow 36 

concentration ONOO− in the complex biosystems is urgently needed. 37 

The expanding emergence of ONOO− fluorescent chemodosimeters shows their 38 

extraordinary superiority in measuring exogenous and endogenous ONOO− in 39 

biosystems.12-36 It is because that fluorescent chemodosimeters not only hold unique 40 

imaging features of high spatiotemporal resolution, in situ detection, and 41 

non-invasiveness, but also possess excellent selectivity because they are mainly 42 

designed based on their specific reaction with target analytes.37-42 Up to now, available 43 

ONOO− fluorescent chemodosimeters are mainly constructed based on different 44 

reactive recognition moieties, including N-phenylrhodol,26-27 boronic acid pinacol 45 

ester,30-34 electron-poor C=C double bond,43-49 ketoamide,50-52 hydrazine,53-58 46 

organoselenium,59 and organotellurium.60 However, almost all fluorescent 47 

chemodosimeters for tracing intracellular ONOO− suffer from the interferences of 48 
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other ROS (e.g. H2O2 and OCl−) due to their similar properties.61-66 On the other hand, 49 

most of available fluorescent chemodosimeters only detect enhanced concentration 50 

intracellular ONOO− because of their low sensitivity and high reactivity, short 51 

half-life, ultralow basal concentration of ONOO−. Therefore, developing specific 52 

fluorescent chemodosimeters for accurately tracing intracellular basal ONOO− 53 

without the interferences of other ROS remains a great challenge. 54 

In this work, a simple fluorescent chemodosimeter employing 55 

1,2-dimethylhydrazine as novel reactive recognition receptor was prepared for highly 56 

specific and sensitive detection of ONOO−. Experimental results demonstrated that 57 

the as-synthesized chemodosimeter not only hold prominent specificity for ONOO− 58 

than other relevant species including ROS, but also can accurately detect nanomolar 59 

concentration ONOO− with ultrafast response speed (< 3 s). The satisfactory 60 

biocompatibility enables it to trace intracellular basal ONOO− and the fluctuations of 61 

exogenous/endogenous ONOO− levels with various stimulations in live cells and 62 

zebrafish. More importantly, the dimethylhydrazine-derived spirolactam has been 63 

proven to be a unique model for constructing highly specific and ultrasensitive 64 

chemodosimeters for ONOO−. 65 

EXPERIMENTAL SECTION 66 

General information. The chemicals and instrumentations are displayed in 67 

Supporting Information. The fluorescence and absorption spectra were determined 1 68 

minute after various species addition at 25 °C except for kinetics experiments. The 69 

stock solution of chemodosimeter RDMH-PN was prepared in DMSO and the 70 

adopted analytical condition is the PBS solution containing 5% DMSO (20 mM, pH = 71 

7.4). 72 

Preparation of chemodosimeter RDMH-PN. Phosphorus oxychloride (459 mg, 73 
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3 mmol) were dissolved in absolute 1,2-dichloroethane (10 mL). Then, rhodamine B 74 

(479 mg, 1 mmol) was introduced into the above mixture and refluxed for 4 hours. 75 

After removing the solvent, the solution of 1,2-dimethylhydrazine dihydrochloride 76 

(133 mg, 1 mmol) and DIPEA (1.349g, 10 mmol) in absolute CH2Cl2 (15 mL) was 77 

added slowly to the above residue. The resulted mixture was further reacted at 25 ˚C 78 

for another 12 hours. After removing CH2Cl2, the crude products were refined through 79 

silica gel chromatography to afford chemodosimter RDMH-PN (296 mg, 61%). 80 

1H-NMR (400 MHz, CDCl3) δ (ppm): 1.16(t, J = 7.2 Hz, 12H), 2.31(s, 3H), 2.79(s, 81 

3H), 3.28-3.42(m, 8H), 6.29(dd, J = 2.8, 8.8 Hz, 2H), 6.51(d, J = 2.4 Hz, 2H), 6.71(d, 82 

J = 8.4 Hz, 2H), 7.30(d, J = 6.4 Hz, 1H), 7.48-7.56(m, 2H), 8.25(dd, J = 1.6, 7.2 Hz, 83 

1H); 13C-NMR (100 MHz, CDCl3) δ (ppm): 12.58, 34.60, 38.86, 44.42, 63.33, 99.10, 84 

106.27, 110.03, 127.37, 127.69, 129.03, 130.09, 130.29, 132.20, 137.95, 148.55, 85 

154.21, 164.10. HRMS (ESI): Calcd for C30H37N4O2 [M+H]+ 485.2911; Found, 86 

485.2913. 87 

RESULTS AND DISCUSSION 88 

Design of chemodosimeter RDMH-PN. An excellent fluorescent 89 

chemodosimeter is the perfect combination of eminent fluorophore and unique 90 

reactive recognition receptor. Xanthenes have been extensively applied in exploring 91 

fluorescent chemodosimeters for various target analytes owing to the outstanding 92 

photophysical properties including high fluorescence quantum yield, negligible 93 

cytotoxicity, and the unique easy-regulation of ring-opening of the corresponding 94 

non-fluorescent spirolactam.67-69 Based on the above-mentioned description, screening 95 

appropriate reactive recognition unit is essential for constructing a specific and 96 

ultrasensitive ONOO− fluorescent chemodosimeters. Recently, a large number of 97 

hydrazide-based fluorescent chemodosimeters have been successfully constructed for 98 
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identifying ONOO−.53-58 But the selectivity and reaction activity of those 99 

chemodosimeters toward ONOO− are closely associated with the adopted 100 

fluorophores,56,66 and especially the hydrazide-containing spirolactams are prone to be 101 

hydrolyzed with the catalysis of Cu2+.67-69 Therefore, to further optimize the response 102 

properties of such chemodosimeters, a novel fluorescent chemodosimeter for ONOO− 103 

detection was proposed by replacing hydrazide moiety with 1,2-dimethylhydrazine 104 

recognition group. Namely, the newly designed chemodosimeter was composed of 105 

rhodamine B dye as fluorophore and 1,2-dimethylhydrazine as the reactive unit 106 

(RDMH-PN, Scheme 1 and 2). The 1,2-dimethylhydrazine group was integrated into 107 

fluorophore, which formed spirocyclic ring system to reduce the fluorescence. Upon 108 

the addition of ONOO−, chemodosimeter RDMH-PN causes the ring-opening 109 

reaction, and leads to the recovery of fluorescence.61-65 The design and reaction 110 

mechanism has been also verified by HPLC and HRMS (Fig. S1-S2). 111 

 112 

Scheme 1. Recognition mechanism of chemodosimter RDMH-PN for ONOO− 113 

detection. 114 

 115 

Scheme 2. Preparation of chemodosimter RDMH-PN. 116 

Determination of ONOO−. Firstly, fluorescence spectra of RDMH-PN with 117 

ONOO− were obtained in the PBS solution (20 mM, pH 7.4, 5% DMSO). As depicted 118 

in Figure 1a, chemodosimeter RDMH-PN solution emitted negligible fluorescence. 119 
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As designed, the emission peak was enhanced gradually with ONOO− (0-10 μM). 120 

Satisfactorily, increasing ONOO− concentrations (1-10 μM) manifest a linear 121 

enhancement of the RDMH-PN fluorescence intensity (linear equation: y = 286942 × 122 

[ONOO−] (μM) + 235185, R2 = 0.9907) (Figure 1b). Furthermore, to estimate the 123 

capability of RDMH-PN to detect extremely low concentration ONOO−, the 124 

additional titration of ONOO− in the range of ultralow concentration was implemented. 125 

Excitedly, the favorable linear dependence between fluorescence intensities and 126 

ONOO− concentrations ranging from 0-100 nM was also obtained, demonstrating 127 

chemodosimeter RDMH-PN could accurately determine ONOO− at the nanomolar 128 

level (Figure 1c). Subsequently, the limit of detection was determined to be 0.68 nM 129 

(3σ/k). Furthermore, the ultrafast reaction (< 3 s) between RDMH-PN and 1 equiv. 130 

ONOO− has been confirmed in Figure 2. These spectral studies revealed that 131 

chemodosimeter RDMH-PN has powerful capability to implement the real-time 132 

determination of highly reactive ONOO− with excellent sensitivity (Table S1). 133 

134 

Page 7 of 25

ACS Paragon Plus Environment

Journal of Agricultural and Food Chemistry



 135 

Figure 1. (a) Concentration-dependent fluorescent spectra of RDMH-PN (5 μM) with 136 

different concentration ONOO− (0-10 μM) under the PBS solution (20 mM, pH = 7.4, 137 

5% DMSO). (b) The linear dependence between fluorescence intensities and ONOO− 138 

concentrations (1-10 μM). (c) The linear dependence between fluorescence intensities 139 

and ONOO− concentrations (0-100 nM). λex = 520 nm. Slit widths: Wex = Wem = 3 nm. 140 

The spectra were recorded in 1 min after ONOO− injection at 25 °C. 141 

 142 

Figure 2. Time-course of RDMH-PN (5 μM) with ONOO− (5 μM) under the PBS 143 

solution (20 mM, pH = 7.4, 5% DMSO). λex = 520 nm, λem = 585 nm. Slit widths: Wex 144 

= Wem = 3 nm. This experiment was performed at 25 °C. 145 

The absorption spectrum of chemodosimter RDMH-PN for determining ONOO− 146 

was also estimated in the PBS solution (20 mM, pH 7.4, 5% DMSO). Chemodosimter 147 

RDMH-PN (5 μM) displayed negligible absorption intensity before reacting with 148 

ONOO−. As predicted, the reaction between chemodosimter RDMH-PN and ONOO− 149 

Page 8 of 25

ACS Paragon Plus Environment

Journal of Agricultural and Food Chemistry



led to clear enhancement of absorption intensity at 570 nm. Color change of 150 

RDMH-PN could be distinctly observed with and without ONOO−, which was 151 

beneficial to naked-eye observation. 152 

 153 

Figure 3. Absorption spectra of RDMH-PN (5 μM) with/without ONOO− (5 μM) 154 

under the PBS solution (20 mM, pH = 7.4, 5% DMSO). Inset: photos of the 155 

RDMH-PN (20 μM) solution with/without ONOO− (20 μM). The spectra were 156 

recorded in 1 min after ONOO− injection at 25 °C. 157 

These results manifested the usability of chemodosimter RDMH-PN as an 158 

ultrafast quantitative tool for monitoring ONOO− at ultralow concentration level 159 

under physiological conditions. The above-mentioned recognition properties of 160 

RDMH-PN make it convenient to trace intracellular basal ONOO−. 161 

Specificity of chemodosimeter RDMH-PN toward ONOO−. The specificity of 162 

RDMH-PN has been verified in the presence of ONOO− and other relevant analytes 163 

including K+, Na+, Ca2+, Mg2+, Cu2+, Cu+, Fe2+, Fe3+, Zn2+, Br−, SO3
2−, CO3

2−, NO3
−, 164 

NO2
−, NO, TBHP, H2O2, 

•OtBu, •OH, O2
−, 1O2, Cys, Hcy, GSH, OCl−, and ONOO−. 165 
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As shown in Figure 4, only ONOO− induced a significant increment of fluorescence 166 

intensity at 585 nm, and other analytes could not cause the obvious changes of 167 

fluorescence intensity. Subsequently, the possible interferences of pH on 168 

chemodosimeter RDMH-PN for monitoring ONOO− were also studied. These results 169 

manifested that chemodosimeter RDMH-PN possessed a satisfactory stability and 170 

response capability for ONOO− in the physiological pH ranges (Fig. S3). Moreover, 171 

the eminent photo-stability of chemodosimeter RDMH-PN was further proven (Fig. 172 

S4). The above consequences implied chemodosimeter RDMH-PN could accurately 173 

trace intracellular ONOO− in the bioimaging applications. 174 

 175 

Figure 4. Fluorescence changes of RDMH-PN (5 μM) with various species (100 μM 176 

except for annotations) under the PBS solution (20 mM, pH = 7.4, 5% DMSO). 1. 177 

Blank, 2. K+ (1 mM), 3. Na+ (1 mM), 4. Ca2+ (1 mM), 5. Mg2+ (1 mM), 6. Cu2+, 7. 178 

Cu+, 8. Fe2+, 9. Fe3+, 10. Zn2+, 11. Br−, 12. SO3
2−, 13. CO3

2−, 14. NO3
−, 15. NO2

−, 16. 179 

NO, 17. TBHP, 18. H2O2 (500 μM), 19. •OtBu, 20. •OH, 21. O2
−, 22. 1O2, 23. Cys (500 180 

μM), 24. Hcy (500 μM), 25. GSH (1 mM), 26. OCl−, and 27. ONOO− (5 μM). λex = 181 
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520 nm, λem = 585 nm. Slit widths: Wex = Wem = 3 nm. The spectra were recorded in 1 182 

min after analytes injection at 25 °C. 183 

Bioimaging of ONOO− in live cells. To study the recognition properties of 184 

chemodosimeter RDMH-PN for ONOO− in complex living systems, we conducted 185 

biological imaging experiments with RAW 264.7 macrophages. Initially, we checked 186 

the cytotoxicity of chemodosimeter RDMH-PN by a cell counting kit-8 (CCK-8) 187 

method. These results displayed chemodosimeter RDMH-PN had negligible effect on 188 

cell survival (Figure 5). Then, we followed to test whether chemodosimeter 189 

RDMH-PN has capability to trace intracellular basal ONOO−. Firstly, the bioimaging 190 

of control cells was carried out, and almost no intracellular fluorescence was observed 191 

(Figure 6a-c). As predicted, the macrophages preincubated with chemodosimeter 192 

RDMH-PN for 30 minutes exhibited the obvious red intracellular fluorescence under 193 

the same bioimaging conditions (Figure 6d-f). Additionally, the macrophages 194 

pretreated with 4-amino-tempo (a superoxide scavenger, it causes the reduction of 195 

intracellular ONOO− levels) was further treated with chemodosimeter RDMH-PN for 196 

30 minutes, and the weaker red intracellular fluorescence than the control 197 

macrophages incubated with only RDMH-PN was observed (Fig. S5). These data 198 

demonstrated chemodosimeter RDMH-PN was quite sensitive to basal ONOO− in 199 

normal macrophages without extrinsic stimuli. Subsequently, the macrophages 200 

preincubated with chemodosimeter RDMH-PN for 30 minutes were further treated 201 

with ONOO− (20 µM) for another 20 minutes, and the stronger intracellular 202 

fluorescence was successfully obtained (Figure 6g-i), demonstrating chemodosimeter 203 
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RDMH-PN could determine the changes of exogenous ONOO− concentrations. To 204 

estimate the capability of RDMH-PN in detecting endogenous ONOO−, the 205 

macrophages were stimulated by PMA (1.0 µg/mL) and LPS (1.0 µg/mL) for 30 206 

minutes. With extending incubation with RDMH-PN for another 20 minutes, a 207 

significant increase of intracellular fluorescence has been observed (Figure 6j-l). 208 

Above results demonstrated that chemodosimeter RDMH-PN could map the basal 209 

ONOO− and the changes of endogenous/exogenous ONOO− concentrations in live 210 

macrophages effectively (Figure 6m). 211 

 212 

Figure 5. Macrophage viability with different concentration chemodosimeter 213 

RDMH-PN. 214 

 215 

Figure 6. Fluorescence images of live macrophages: (a-c) control cells; (d-f) cells 216 

treated with RDMH-PN; (g-i) cells preincubated with RDMH-PN, and then treated 217 
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with ONOO−; (j-l) cells preincubated with LPS and PMA, and then incubated 218 

RDMH-PN; (m) the fluorescence intensities of the corresponding cells. 219 

Bioimaging of ONOO− in zebrafish. With the favorable bioimaging 220 

performance of RDMH-PN in live cells, we then examined whether it has the 221 

possibility to bioimage ONOO− in vivo. Based on this consideration, the 4-day-old 222 

zebrafish was chosen as a suitable organism model to visualize basal ONOO− and the 223 

changes of endogenous/exogenous ONOO− concentrations in our experiments (Figure 224 

7). Firstly, the bioimaging of control zebrafish was carried out, and almost no 225 

fluorescence was observed (Figure 7a-c). As designed, the zebrafish preincubated 226 

with chemodosimeter RDMH-PN for 30 minutes exhibited the obvious red 227 

fluorescence under the same bioimaging conditions (Figure 7d-f). These results 228 

indicated chemodosimeter RDMH-PN was very sensitive to basal ONOO− in normal 229 

zebrafish without extrinsic stimuli. Subsequently, the zebrafish preincubated with 230 

chemodosimeter RDMH-PN for 30 minutes was further treated with ONOO− (50 µM) 231 

for another 20 minutes, and the stronger red fluorescence was also successfully 232 

obtained (Figure 7g-i), demonstrating chemodosimeter RDMH-PN could monitor the 233 

changes of exogenous ONOO− levels in vivo. Moreover, to estimate the capability of 234 

RDMH-PN in detecting endogenous ONOO− in vivo, the zebrafish were stimulated 235 

by PMA (1.0 µg/mL) and LPS (1.0 µg/mL) for 30 minutes. With extending incubation 236 

with RDMH-PN for another 20 minutes, the significant increase of fluorescence also 237 

confirmed the bioimaging applicability in vivo (Figure 7j-l). Taking all these results in 238 

consideration, it can be concluded that chemodosimeter RDMH-PN was able to 239 
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accurately monitor intracellular basal ONOO− and the changes of 240 

endogenous/exogenous ONOO− concentrations in zebrafish. 241 

 242 

Figure 7. Fluorescence images of zebrafish: (a-c) control zebrafish; (d-f) zebrafish 243 

treated with RDMH-PN; (g-i) zebrafish preincubated with RDMH-PN, and then 244 

treated with ONOO−; (j-l) zebrafish preincubated with LPS and PMA, and then 245 

incubated RDMH-PN. 246 

In conclusion, we have constructed a novel fluorescent chemodosimeter for 247 

tracing intracellular basal ONOO− in biosystems. The high specificity and 248 

ultrasensitivity of chemodosimeter RDMH-PN was ascribed to the adoption of 249 

reactive recognition group of 1,2-dimethylhydrazine. Bioimaging applications of 250 

chemodosimeter RDMH-PN in tracing intracellular basal ONOO− and the changes of 251 

ONOO− concentrations with different stimulations in live cells and zebrafish were 252 

confirmed. Therefore, we anticipate that chemodosimeter RDMH-PN may be used as 253 

a powerful tool to explore the generation and transport of ONOO− in biosystems. 254 

Moreover, the 1,2-dimethylhydrazine modified spirocyclic structure has been proven 255 

to be a unique model for constructing highly specific and ultrasensitive 256 

chemodosimeters for ONOO− detection. 257 
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