

Communication

#, #, #-C(sp3)-H Functionalization through A Directed Radical H-Abstraction

Tao Liu, Tian-Sheng Mei, and Jin-Quan Yu

J. Am. Chem. Soc., Just Accepted Manuscript • DOI: 10.1021/jacs.5b02065 • Publication Date (Web): 27 Apr 2015 Downloaded from http://pubs.acs.org on April 30, 2015

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

Journal of the American Chemical Society is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties. 12345678

9 10 11

12

13 14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45 46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

γ, δ, ε-C(sp³)–H Functionalization through A Directed Radical H-Abstraction

Tao Liu, Tian-Sheng Mei and Jin-Quan Yu*

[†]Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037

RECEIVED DATE (automatically inserted by publisher); yu200@scripps.edu

Abstract: Aliphatic amides are selectively functionalized at the γ and δ -positions through a directed radical 1,5 and 1,6-H-abstraction. The initially formed γ - or δ -lactams are intercepted by NIS and TMSN₃ leading to di- and tri- C–H functionalizations at the γ , δ , and ϵ -positions. This new reactivity is exploited to convert alkyls into amino alcohols and allylic amines.

Pd-catalyzed β-C-H functionalizations of aliphatic acids using directing groups have been extensively studied in the past decade. A diverse range of transformations have been developed using both $Pd(II)^1$, $Pd(0)^2$ and other transition metal catalysts.³ In contrast, y-C-H functionalizations are still rare.⁴ Inspired by pioneering studies on 1,5 and 1,6-H-abstraction,^{5,6} we questioned whether the reactivity and selectivity of these radical abstraction could be harnessed to develop wide range of catalytic C-H functionalization reactions of aliphatic acids or amides. An extensive literature survey revealed two potential challenges. First, radical abstractions of γ - or δ -C–H bonds of aliphatic amides have only been demonstrated for C-H bond adjacent to an oxygen atom.^{6d} Second, the vast majority of the reactions initiated by nitrogen radicals leads to cyclization (eq 1)^{6e} instead of intermolecular functionalizations with the exception of a few examples involving amine substrates.6c This suggests that the facile cyclization pathway might be difficult to prevent. Herein we report an empirically discovered a sequential radical γ -, or δ -C-H lactamization and subsequent reaction with NIS and TMSN₃ to give δ -iodo- γ -lactams or δ , ϵ -dehydrogenated γ -lactams. Structural elaborations of these highly functionalized lactams allows for an overall conversion of simple alkyls into difunctionalized olefins, amino alcohols or tri-functionalized allylic amines.

$$\underbrace{\mathsf{NHTs}}_{\mathsf{H}} \xrightarrow{\mathsf{Phl}(\mathsf{OAc})_2 + \mathsf{I}_2}_{\mathsf{DCE}} \underbrace{\mathsf{N}}_{\mathsf{Ts}}$$
(1)

Our initial efforts to trigger the radical H-abstraction by the amide were guided by the conditions used for radical cyclization of toluenesulfonyl protected amines.^{6e} We choose to use our *N*-heptafluorotolyl amide (**PG**¹) directing group^{1b} anticipating this would accommodate subsequent functionalizations with a metal catalyst if the γ -carbon centered radical is formed and intercepted by the metal. Through an extensive survey of radical initiators, iodine sources, solvents and other parameters (see Supporting Information for details), it was found that a combination of PhI(OAc)₂ and I₂ facilitated the desired lactamization reaction of **1a** to give the γ -lactamization product **2a** in excellent yield (Scheme 1A). Next, we sought to identify an appropriate metal catalyst or reagent that can intercept the γ -carbon centered radical prior to the cyclization thereby achieving a general intermolecular

Scheme 1. Initial Design and Unexpected Results

^a Condition A: **1a** (0.1 mmol), NIS (3 equiv.), DCE (1 mL), 100 °C, air, 14 h. Condition B: **1a** (0.1 mmol), PhI(OAc)₂ (1.5 equiv.), I₂ (1.5 equiv.), DCE, r.t., air, 48 h. ^b Isolated yield. ^c For substrate **1a**, isolated yield of **2a** is 92% (condition A) and 89% (condition B); for substrate **1b**, isolated yield of **2b** is 62% (condition A). ^d Product structure is confirmed by X-ray crystallographic analysis.

Table 1. Screening of Protecting Groups ^{a,b}

^a Conditions: 1 (0.1 mmol), NIS (4 equiv.), TMSN₃ (4 equiv.), DCE (1 mL), 100 °C, air, 14 h. ^b Yields were determined by ¹H NMR analysis of the crude reaction mixture using CH₂Br₂ as an internal standard.

γ-C–H functionalization method.

While all efforts to trap the γ -carbon centered radical with various

Cu, Pd and Ni catalysts were not fruitful, the attempt to perform a radical γ -azidation led to a surprising finding. In the presence of TMSN₃, the reaction of **1a** with NIS in DCE afforded δ -iodo γ lactam **3a** in which both γ - and δ -C–H bonds are functionalized (Scheme 1, B). This reactivity was further investigated with a groups. range of amide directing While N-methoxy and N-alkyl amides did not give rise to any product, N-phenyl and N-sulfonyl amides are generally reactive (Table 1). The highly acidic N-heptafluorotolyl (PG^{1}) and the N-paratrifluoromethyl phenylsulfonyl (PG²) amides are more effective affording the δ -iodo γ -lactams in 86% and 72% yields respectively (Table 1).

Scheme 2. Preliminary Mechanistic Investigations

A. Control experiments.

B. Proposed mechanism.

Monitoring the reaction by ¹H NMR and isolation of γ -lactam 2c by shortening the reaction to 2 h suggests that 2c is initially formed as the intermediate which then reacts with TMSN₃ and NIS to give iodo lactam 3c (Scheme 2, A). Apparently, the in situ generated azide radical⁷ triggers a β -C–N bond scission to give the terminal double bond and subsequent radical cyclization affords 3c (Scheme 2, B). Alternatively, the radical intermediate I could abstract a hydrogen from 2c to initiate a radical chain reaction to produce 4b which undergoes standard iodolactamization⁸ to give 3c. The iodolactamization step is verified by subjecting a synthetic standard 4b to the reaction conditions to give 3c (Scheme 2, C). Importantly, the iodo lactam **3a** and **3b** can be converted to γ , δ -desaturated amide **4a** and **4b** respectively, thus leading to a method for dehydrogenation (Scheme 3).^{9, 10} In addition, the iodo lactam **3c** protected with para-trifluoromethyl phenylsulfonyl group (PG²) is subjected to methanolysis conditions to give 5 containing a synthetically useful 1,2-amino alcohol motif.

The smooth conversion of the iodo lactam products to more useful olefin and 1,2-amino alcohol motifs prompted us to examine the scope of this transformation. Substrate **1d** containing both a methyl and ethyl group at the γ -position was subjected to the reaction conditions. While the first lactamization event is Scheme 3. Synthetic application of δ -iodo γ -lactam 3

^{*a*} Conditions: **1** (0.1 mmol), NIS (4 equiv.), TMSN₃ (4 equiv.), DCE (1 mL), 100 °C, air, 14 h. ^{*b*} Isolated yields. ^{*c*} Run on gram-scale. ^{*d*} Obtained as a mixture of diastereomers (3:2). ^{*e*} Obtained as a mixture of diastereomers (7:6). ^{*f*} Obtained as a mixture of diastereomers (2:1). ^{*g*} Tcp = tetrachlorophthalimide. One pot procedure for substrate **1**I: NIS (2 equiv.), 100 °C, air, 8h; I₂ (3 equiv.) and TMSN₃ (4 equiv.), 100 °C, 14h.

expected to occur selectively at the tertiary carbon center, the subsequent H-abstraction by the azide radical at the δ -carbon center could occur at either methyl or the ethyl group leading to

different products. The exclusive formation of **3d** (Table 2) containing the newly installed iodide on the methylene carbon suggests that the radical abstraction by the azide radical occurs selectively at the methylene carbon (Scheme 2, B). Similarly, product **3e** was obtained with substrate **1e**. This method also allows access to synthetically useful iodinated spiro lactams **3g** and **3h** from **1g** and **1h** respectively.

For substrates containing substituents at the α and β positions, low yields (~40%) were obtained when the *para*-trifluoromethyl phenylsulfonyl (**PG**²) protecting group was used. Thus, **1i-11** containing *N*-heptafluorotolyl (**PG**¹) protecting groups were prepared for testing. We found that the desired bicyclic δ iodo lactam (**3i**) was formed in 72% yield. Other amides containing methyl, acetoxy and tetrachlorophthalimide at α or β carbons are

60

1 2 3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

all compatible, giving the desired products in good yields (**3j-3l**). Notably, **3l** can be converted to γ , δ -unsaturated chiral amino acid, providing a new method to functionalize leucine. Since previous protocols for functionalizing leucine via radical H-abstraction are directed by the amino group, ^{6c, 9} the use of this amide as a directing group in reaction provides a complimentary method to dehydrogenate leucine.

To investigate whether this protocol can be extended to the functionalizations of δ , ϵ -C–H bonds, we prepared amide substrates **6a-6d** containing tertiary C–H bonds at the δ position (Table 3). Interestingly, **6a** was converted to δ , ε -dehydrogenated γ -lactam 7a under the standard conditions. Apparently, the olefin intermediate bearing a radical on the nitrogen center derived from the initially formed δ -lactam underwent the facile intramolecular radical abstraction at the allylic carbon center, leading to the cyclization product 7a (Scheme 4). The initial formation of the δ lactam instead of the γ -lactam can be attributed to the higher reactivity of the tertiary C-H bonds at the δ-position. The εmethylene C-H bond in 6b is selectively functionalized in the presence of the ɛ-methyl C-H bond. Cyclopentyl (6c) and cyclohexyl (6d) are also compatible, albeit affording lower yields. A minor product derived from the radical abstraction of the Emethyl C-H bond was also obtained with the cyclic substrate 7d. Importantly, these lactam products can be readily converted to synthetically useful δ , ε -desaturated γ -aminoesters as shown in Scheme 5. For example, 7a is converted to 8, a compound that is closely related to Vigabatrin.

Table 3. γ, δ, ε–C–H Functionalizations of Aliphatic Amides^{*a,b*}

 $\begin{array}{c|c} \begin{array}{c} \begin{array}{c} H \\ H \\ R^{3} \\ R^{3} \\ H \\ R^{3} \\ R^{$

^{*a*}Conditions: **6** (0.1 mmol), NIS (4 equiv.), TMSN₃ (4 equiv.), DCE (1 mL), 100 °C, air, 14 h. ^{*b*} Isolated yields. ^{*c*} The structure of **7a** is confirmed by X-ray crystallographic analysis. ^{*d*} Obtained as a mixture of isomers (5:1). ^{*e*} Obtained as a mixture of isomers (3:1).

Scheme 4. Proposed Mechanism for the Formation of $\delta,\,\epsilon$ Vinyl Lactams

Scheme 5. Synthetic Application of δ, ϵ Vinyl Lactams

In conclusion, we have developed a protocol to functionalize γ , δ , ϵ -C–H bonds of aliphatic acids via a radical 1,5 and 1,6-H-abstraction. The terminal alkyl groups of aliphatic amides are converted to olefins, amino alcohols and allylic amines.

Acknowledgements. We gratefully acknowledge The Scripps Research Institute and the NIH (NIGMS, 2R01GM084019) for financial support.

Supporting Information Available: Experimental procedures and spectral data for all new compounds (PDF). This material is available free of charge via the Internet at <u>http://pubs.acs.org</u>.

References

- For selected examples: (a) Wang, D.-H.; Wasa, M.; Giri, R.; Yu, J.-Q. J. Am. Chem. Soc. 2008, 130, 7190. (b) Wasa, M.; Engle, K. M.; Yu, J.-Q. J. Am. Chem. Soc. 2010, 132, 3680. (c) Shabashov, D.; Daugulis, O. J. Am. Chem. Soc. 2010, 132, 3965. (d) Zhang, S.-Y.; Li, Q.; He, G.; Nack, W. A.; Chen, G. J. Am. Chem. Soc. 2013, 135, 12135. (e) He, G., Zhang, S.-Y., Nack, W. A., Li, Q. and Chen, G. Angew. Chem. Int. Ed., 2013, 52: 11124. (f) Nadres, E. T.; Santos, G. I. F.; Shabashov, D.; Daugulis, O. J. Org. Chem. 2013, 78, 9689. (g) Chen, K.; Hu, F.; Zhang, S.-Q.; Shi, B.-F. Chem. Sci., 2013, 4, 3906. (h) He, J.; Li, S.-H.; Deng, Y.-Q.; Fu, H.-Y.; Laforteza, B. N.; Spangler, J. E.; Homs, A.; Yu, J.-Q. Science 2014, 343, 1216. (i) Zhu, R.-Y.; He, J.; Yu, J.-Q. J. Am. Chem. Soc. 2014, 136, 13194. (j) Xiao, K.-J.; Lin, D. W.; Miura, M.; Zhu, R.-Y.; Gong, W.; Wasa, M.; Yu, J.-Q. J. Am. Chem. Soc., 2014, 136, 8138.
- (2) (a) Wasa, M.; Engle, K. M.; Yu, J.-Q. J. Am. Chem. Soc. 2009, 131, 9886.
 (b) He, J.; Wasa, M.; Chan, K.; Yu, J.-Q. J. Am. Chem. Soc. 2013, 135, 3387.
- (3) For selected examples: (a) Shang, R.; Ilies, L.; Matsumoto, A.; Nakamura, E. J. Am. Chem. Soc. 2013, 135, 603. (b) Aihara, Y.; Chatani, N. J. Am. Chem. Soc. 2014, 136, 898. (c) Wang, Z.; Ni, J.; Kuninobu, Y.; Kanai, M. Angew. Chem. Int. Ed. 2014, 53, 3496. (d) Wu, X.; Zhao, Y.; Ge. H. Chem. Asian J. 2014, 9, 2736.
- (4) (a) He, G.; Zhang, S.-Y.; Nack, W. A.; Li, Q.; Chen, G. Angew. Chem. Int. Ed. 2013, 52, 11124. (b) Li, S.-H.; Chen, G.; Feng, C.-G.; Gong, W.; Yu, J.-Q. J. Am. Chem. Soc. 2014, 136, 5267.
- (5) Selected examples of 1,5 and 1,6-H-abstraction initiated by an oxygen radical: (a) Barton, D. H. R.; Beaton, J. M.; Geller, L. E.; Pechet, M. M. J. Am. Chem. Soc. 1960, 82, 2640. (b) Barton, D. H. R.; Beaton, J. M.; Geller, L. E.; Pechet, M. M. J. Am. Chem. Soc. 1961, 83, 4076. (c) Mihailovic, M. L.; Miloradovic, M. Tetrahedron 1966, 22, 723. (d) Concepcion, J. I.; Francisco, C. G.; Hernandez, R.; Salazar, J. A.; Suarez, E. Tetrahendron Lett. 1984, 25, 1953. (e) Francisco, C. G.; Herran, A. J.; Suarez, E. J. Org. Chem. 2002, 67, 7439. (f) Zhu, H.; Wickenden, J. G.; Campbell, N. E.; Leung, J. C. T.; Johnson, K. M.; Sammis, G. M. Org. Lett. 2009, 11, 2019. (g) Kundu, R.; Ball, Z. T. Org. Lett. 2010, 12, 2460.
- (6) Selected examples of 1,5 and 1,6-H-abstraction initiated by a nitrogen radical: (a) Corey, E. J.; Hertler, W. R. J. Am. Chem. Soc. 1960, 82, 1657.
 (b) Togo, H.; Hoshina, Y.; Muraki, T.; Nakayama, H.; Yokoyama, M. J. Org. Chem. 1998, 63, 5193. (c) Reddy, L. R.; Reddy, B. V. S.; Corey, E. J. Org. Lett., 2006, 8, 2819. (d) Francisco, C. G.; Herrera, A. J.; Martin, A.; Perez-Martin, I.; Suarez, E. Tetrahedron Lett. 2007, 48, 6384. (e) Fan, R.; Pu, D.; Wen, F.; Wu, J. J. Org. Chem. 2007, 72, 8994. (f) Chen, K.; Richter, J. M.; Baran, P. S. J. Am. Chem. Soc. 2008, 130, 7247.
- (7) (a) Marinescu, L. G.; Pedersen, C. M.; Bols, M. *Tetrahedron* 2005, 61, 123. (b) Pedersen, C. M.; Marinescu, L. G.; Bols, M. Org. Biomol.Chem. 2005, 3, 816. (c) Chouthaiwale, P. V.; Suryavanshi, G.; Sudalai, A. *Tetrahedron Lett.* 2008, 49, 6401.
- (8) Selected examples of iodolactamization and related transformations: (a) Knapp, S.; Levorse, A.T. J. Org. Chem. **1988**, 53, 4006. (b) Curran, D.P.; Tang, C.-T. J. Org. Chem. **1989**, 54, 3140. (c) Zhou, L.; Tan, C. K.; Jiang, X.; Chen, F.; Yeung, Y.-Y. J. Am. Chem. Soc. **2010**, 132, 15474. (d)_Li, Z.; Song, L.; Li, C. J. Am. Chem. Soc. **2013**, 135, 4640. (e) Liu, G.-Q.; Li, Y.-M. J. Org. Chem. **2014**, 79, 10094.

- (9) Voica, A. F.;Mendoza, A.; Gutekunst, W. R.; Fraga, J. O.; Baran, P. S. *Nat. Chem.* 2012, *4*, 629.
 (10) Giri, R.; Maugel, N. L.; Foxman, B. M.; Yu, J.-Q.
 - (10) Gin, K.; Maugel, N. L.; Foxman, B. M.; Yu, J.-Q. Organometallics **2008**, *27*, *1667*.

