Tetrahedron 70 (2014) 3657-3664

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Copper-mediated trimethylsilyl azide in amination of bromoflavonoids to synthesize unique aminoflavonoids

Tetrahedror

Tzenge-Lien Shih*, Chi-En Chou, Wen-Yu Liao, Chih-Ang Hsiao

Department of Chemistry, Tamkang University, Tamsui Dist., 25137 New Taipei City, Taiwan, ROC

ARTICLE INFO

Article history: Received 24 January 2014 Received in revised form 25 March 2014 Accepted 8 April 2014 Available online 13 April 2014

Keywords: Aminoflavonoids Baker–Venkataraman rearrangement Claisen–Schmidt reaction Copper-mediated amination Trimethylsilyl azide

ABSTRACT

Aminoflavonoids are unique antioxidants comparing to other abundant flavonoids in nature. Their syntheses and biological activities were scarcely reported. An effectively copper-mediated amination of the corresponding bromoflavonoids to synthesize a series of new aminoflavonoids is described. © 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Flavonoids are an important class of natural products that exhibited a variety of biological activities.¹ They are mainly obtained from the plants² and widely used, for example, as health care agents, ³ antioxidants,^{1b,4} antiinflamatory,⁵ and anticancer drugs,^{1,4,6} etc. The hydroxyl groups are the most common functional groups on flavonoids' scaffolds and play as chelating roles as well as radical inhibitors (Fig. 1).^{1a,4c} Even though the amino groups were considered showing the same behaviors⁷ as the hydroxyl groups in flavonoids, however, the aminoflavonoids were less reported in the syntheses and biological data to date.⁸ Early, the synthetic aminoflavones were used to evaluate their inhibitory activities against protein tyrosine kinase.^{8c} A recent report showed

Fig. 1. The frameworks of flavonoids.

aminoflavones as potent agents against HIV-2 virus.^{8g} Therefore, it prompted our interests in aminoflavones' properties and their syntheses.⁹ In this regard, one of aminoflavones synthesized by us^{9,10} exhibited the potent inhibition against cell proliferation in Her2 cancer cells based on the preliminary data.¹¹

Conventionally, the amino groups in synthetic aminoflavonoids are generally derived from the reduction of the existing nitro groups,^{8a,c} deprotection of amides^{8c,g} or amino derivatives^{8d} on flavones' skeletons. The reported methods in syntheses of aminoflavonoids sometimes required few steps for preparing the designated material.⁸ In our previous report, we have synthesized a reported aminoflavone in three steps rather than six steps by literature.⁹ The only drawback suffered was the lower yields owing to the various substituent groups on the A or B rings of flavones. In order to overcome this obstacle, we highlight a modified strategy in this article. Unlike our reported method,⁹ we utilized the corresponding bromoflavonoid's framework then replaced the bromo group(s) with the amino group(s) via efficiently copper-mediated amination to synthesize a series of unique aminoflavonoids. Our synthetic routes were shorter or equivalent steps to the established methods⁸ but more versatile, especially, the starting materials are cheap.

2. Results and discussion

Preparations of bromoflavones **4a–h** (Tables 1 and 2) are required for syntheses of aminoflavones **5** (Table 3). The strategy for our target molecules employed the Baker–Venkataraman

^{*} Corresponding author. Tel./fax: +886 2 86315024; e-mail address: tlshih@mail. tku.edu.tw (T.-L. Shih).

^{0040-4020/\$ —} see front matter \odot 2014 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tet.2014.04.022

T.-L. Shih et al. / Tetrahedron 70 (2014) 3657-3664

Table 2

Table 1

rearrangement,¹² acid-catalyzed cyclization, and copper-catalyzed amination on either the A or B rings of bromoflavones at the final stage. The cheap and commercially available starting materials 1 and 2 were used. Coupling between 1 and 2 mediated by 1-(3dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDCI) afforded high yields of ester adducts 3 (Table 1). The base mediated rearrangement by KOH in pyridine at 60 °C followed by the acidcatalyzed cyclization (H_2SO_4) in AcOH affords **4a**-**f** in two steps, respectively (Table 2). In order to receive the higher yields of cyclic adducts 4a-f, it is noteworthy that the complete removal of pyridine by washing with hexanes before acid treatment is necessary (see Experimental). The amination of 4a was first applied $Cu_2O/$ NH₄OH/H₂O/NMP at 80 °C.¹³ However, the desired **5a** was obtained in only 15%. It is probably owing to the high volatility of NH₄OH at 80 °C. Another method, Cul/L-proline/NH₄Cl/K₂CO₃/80 °C,¹⁴ was also tried but gave a complex mixture. The most efficient condition was using TMSN₃/Cu/2-aminoethanol/N,N-dimethylacetamide (DMA)/120 °C¹⁵ (Table 3). This method was originally applied in amination of simple haloaromatic compounds.^{15a} It is noticed that the fluoride group of 4a was also aminated during the reaction course to give diamino compound $5a^{8c}$ (41%). Applying the same condition on **4b** and **4f** gives the corresponding aminoflavones **5b** (80%) and 5f (51%), respectively. On the other hand, we intended the preparation of 6,8-diaminoflavone 5d from the corresponding dibromide 4d. The expected 5d was received in 37% yield along with the unexpected mono aminoflavone 5b (35%). Obviously, the bromide at C8 position of 4d is more readily to be cleaved than its C6 bromide before amino groups are incorporated. Unlike the amination of 4a, compound 4e was completely decomposed during the reaction condition and no desired product was received.

^{a.} acid cyclization and demethylation of **3b** by 48% HBr.

^{b.} acid cyclization and demethylation of **3c** by 48% HBr.

^{c.} acid cyclization and demethylation of **3e** by 48% HBr.

Flavonols are with an external hydroxy group at C3 position of flavones' scaffolds. We can apply the similar strategy of the abovementioned method for aminoflavanol's synthesis. We tried to introduced two amino groups on the A ring of dibromoflavols 8 to synthesize diaminoflavonols. The condensations of **1** and **6** were conducted by Claisen–Schmidt reaction¹⁶ to give high yields of **7** (Table 4). Different ether protections (OMe and OMOM) of 6 were used. It was found that the choice of protecting groups dramatically influenced the yields of final deprotecting step (vide infra). Oxidation of compounds 7 were carried out hydrogen peroxide and sodium hydroxide (Algar–Flynn–Oyamada reaction)¹⁷ to provide dibromoflavonols 8 (Table 5). We are also intended on the synthesis of diaminoflavonols from compounds **8a–c** applying condition of TMSN₃/Cu/2-aminoethanol/DMA/120 °C. However, not only the mono amino substitution 9a-c were isolated as the major components but also obtained in lower yields (Table 6). None of the expected 6,8-diaminoflavonols were detected or isolated from column chromatography. Therefore, compound 8b was selected for study in improvement of copper-mediated amination conditions and an array of catalysts was screened in order to optimize the yields. We applied the same condition as in Table 6 except with

Table 3

Synthesis of aminoflavones 5 via copper-mediated amination of bromoflavones 4

5g (30%)^e

- ^{a.} from amination of **4b**.
- ^{b.} from amination of **4d**.
- ^{c.} demethylation of **5b** by 48% HBr ^{d.} demethylation of **5d** by 48% HBr.
- ^{e.} demethylation of **5f** by 48% HBr.

Table 4

Table 5

Synthesis of bromoflavonols 8

^{a.}demethoxymethylether of **8b** by 3 N HCl. ^{b.}demethoxymethylether of **8c** by 3 N HCl.

various copper catalysts. The yields were low by Cu₂O and CuI with 11% and 7%, respectively. Other catalysts, such as CuCl, CuBr, CuO, CuCl₂, CuBr₂, and Cu(OAc)₂, were used but all failed to obtain the desired product **9b** and a complicated mixture was observed by TLC. On the other hand, conditions with different ligands were tried, such as, Cu₂O/NaN₃/L-proline/DMSO/100 °C,^{13,18} CuI/L-ascorbic acid/NH₄OH/100 °C,¹⁹ CuI/L-proline/K₂CO₃/NH₄OH/DMSO/ 90 °C,²⁰ CuI/4-hydroxy-L-proline/NH₄OH/DMSO/50 °C,²¹ again, to fail receiving the desired compound **9b**. Therefore, the best catalyst is copper for synthesis of aminoflavonols under this condition. We

suspect that the C3–OH is labile under this harsh condition and require further protection before amination.²² We found the final deprotecting step of **9a–c** by either 48% HBr or 3 N HCl was critical. Demethylation of **9a** by 48% HBr under reflux was not practical and low yield of **9e** (21%) was received. On the other hand, the MOM protection in **9b** and **9c** could be easily removed to afford higher yields of **9d** (85%) and **9e**^{8a} (66%), respectively, under 3 N HCl condition.

3. Conclusion

The condition of TMSN₃/Cu/2-aminoethanol/DMA/120 °C is effective in copper-mediated amination of the corresponding bromoflavonoids to synthesize unique aminoflavone **5a** and derivative**s 5b,d,f** in moderate to good yields. Deprotection of the compounds **5b,d,f** affords **5c,e,g**, respectively. It is worthwhile notice that aminoflavones **5c** and **5e** can not be synthesized from the corresponding nitro starting materials **1**, which are not commercially available. We provide an alternative and a more flexible method in construction of amino group(s) on flavonoids' motifs comparing with the conventional methods. The strategy in

Table 6

Copper-mediated amination of bromoflavonols ${\bf 8}$ in synthesis of aminoflavonols ${\bf 9}$

^{c.} ether cleavage of **9c** by 3 N HCl.

synthesis of 6-aminoflavonol's derivatives **9a**–**c** from amination of bromoflavonols **8** needs improvement owing to the fragile structures under reaction conditions. The new aminoflavonoids **5c** and **5e** may show potentials biological activities than other natural flavonoids and require further studies.

4. Experimental section

4.1. General

All chemicals and solvents were purchased from the commercial providers and used without further purification except otherwise stated. ¹H NMR (600 MHz) and ¹³C NMR (150 MHz) spectra were recorded on a Bruker 600 MHz instrument.

Purification by flash column chromatography was performed on silica gel 230–400 mesh except otherwise mentioned. All samples were dissolved in designated *d*-solvents with the internal reference as the following: $CDCl_3$ (¹H: 7.26 ppm; ¹³C: 77.0 ppm); DMSO-*d*₆ (¹H: 2.50 ppm; ¹³C: 39.51 ppm). Melting points were measured on a MP–2D apparatus and uncorrected. LRMS and HRMS were determined by Finnigan Mat 95s mass spectrometer.

4.1.1. General procedure of esterification. Compound **1** (1.200 g, 4.08 mmol) and **2** (1.490 g, 8.16 mmol), for example, were dissolved in CH₂Cl₂ (20 mL). To this mixture was added EDCI (1.960 g, 10.21 mmol) and DMA (0.250 g, 2.04 mmol) at 0 °C and stirred to ambient temperature for 12 h. The reaction was quenched with

saturated NaHCO₃ solution, diluted with CH_2Cl_2 and stirred for 10 min. The organic layer was separated, dried over MgSO₄, filtered, and purified with flash column chromatography (230–400 mesh SiO₂) to provide **3b**.

4.1.2. General procedure of Baker–Venkataraman rearrangement and cyclization. A mixture of **3** (2.050 g, 4.48 mmol), for example, and KOH (0.380 g, 6.72 mmol) in pyridine (15 mL) was heated at 60 °C for 2 h. The reaction was neutralized by 2 N HCl and diluted with EtOAc. The organic layer was dried over MgSO₄, filtered, and concentrated to give a yellow-brown solid. The solid was used for the next step without further purification. The solid was dissolved in acetic acid (15 mL) and catalytic amount of H_2SO_4 (0.3 mL) to heat under reflux for 1 h. The mixture was cooled to ambient temperature and diluted with H_2O and EtOAc. The organic layer was separated and washed with saturated NaHCO₃ solution. The organic layer was dried over MgSO₄, filtered, and purified by flash column chromatography (230–400 mesh SiO₂) to provide **4d**.

4.1.3. General procedure of Claisen–Schmidt reaction. Compound **7a** (1.060 g, 2.40 mmol) in 1,4-dioxane (10.6 mL) was sequentially added ethanol (30 mL), 5.4% NaOH (10.6 mL, 0.015 mmol), and 35% H_2O_2 (1.2 mL, 0.12 mmol) at 0 °C. The mixture was stirred at that temperature for 12 h before neutralized by 2 N HCl. The precipitate was filtered and washed with ice water. The solid was dissolved in CH₂Cl₂, dried with MgSO₄, and concentrated. Purification by flash column chromatography (230–400 mesh SiO₂) afforded a yellow solid.

4.1.4. General procedure of copper-catalyzed amination. All of reactions were conducted under a sure-sealed bottle. Compound **4d** (0.440 g, 1.00 mmol), for example, and copper powder (0.450 g, 6.00 mmol) was dissolved in DMA (5 mL). To this mixture was added 2-aminoethanol (0.42 mL, 7.00 mmol) and TMSN₃ (0.79 mL, 6.00 mmol) and heated at 120 °C for 4 h (note: the equivalents of TMSN₃ were three times of the number(s) of bromide atom(s) to the corresponding flavone). The solution was cooled to ambient temperature, diluted with EtOAc, and filtered. The solid was washed sequentially with EtOAc, dried with MgSO₄, and purified by flash column chromatography (230–400 mesh SiO₂) to provide **5d**.

4.1.5. General procedure of ether bond cleavage

4.1.5.1. Cleavage of methyl ether. Compound **5b** (21 mg, 0.067 mmol), for example, was dissolved in 48% HBr (3 mL) and heated under reflux for 12 h. The solution was cooled to ambient temperature, diluted with H₂O, saturated Na₂SO₃, and extracted with 1-butanol. The solvent was removed and the resulting syrup was purified by flash column chromatography (230–400 mesh SiO₂) to afford **5c**.

4.1.5.2. Cleavage of methoxymethyl ether. Compound **9c** (30 mg, 0.08 mmol) in MeOH (2.5 mL) was added 3 N HCl (1.5 mL) and heated under reflux for 7 h. The solution was cooled to ambient temperature and diluted with H₂O. The solvent was removed under reduced pressure and diluted with EtOAc and H₂O. The organic layer was separated and the aqueous layer was neutralized with saturated NaHCO₃ solution and extracted with EtOAc. The organic layers were combined and dried over MgSO₄. The residue was purified by flash column chromatography (230–400 mesh SiO₂) to afford **9e**.

4.2. 2-Acetyl-4-bromophenyl-4-fluorobenzoate (3a)

1 (1.6040 g, 7.46 mmol), **2** (1.5290 g, 10.91 mmol). Purification by flash column chromatography (Hex:EtOAc=40:1-10:1; R_f 0.5,

^{a.}ether cleavage of **9b** by 3 N HCl. ^{b.}ether cleavage of **9a** by 48% HBr.

Hex:EtOAc=20:1) afforded a white solid. Yield=2.2820 g (91%). Mp 112–114 °C. ¹H NMR (CDCl₃) δ 8.21 (dd, *J*=9.0, 5.4 Hz, 2H), 7.96 (d, *J*=2.4 Hz, 1H), 7.69 (dd, *J*=8.4, 2.4 Hz, 1H), 7.20 (t, *J*=8.4 Hz, 2H), 7.13 (d, *J*=8.4 Hz, 1H), 2.53 (s, 3H). ¹³C NMR (CDCl₃) δ 196.0, 166.5 (*J*_{C-F}=255.0 Hz), 163.9, 148.2, 136.2, 133.0, 132.9, 132.7, 125.7, 125.2, 119.4, 116.1, 116.0, 29.5. HRMS (EI) calcd for C₁₅H₁₀BrFO₃ ([M⁺]) 335.9797. Found: 335.9796.

4.3. 5'-Bromo-2'-(3,4-dimethoxybenzoyloxy)acetophenone (3b)

1 (1.4470 g, 6.728 mmol), **2** (1.5930 g, 8.746 mmol). Purification by flash column chromatography (Hex:EtOAc=5:1-2:1; R_f 0.3, Hex:EtOAc=4:1) afforded a white solid. Yield=2.1880 g (86%). Mp 144–146 °C. ¹H NMR (CDCl₃) δ 7.94 (d, *J*=2.5 Hz, 1H), 7.85 (dd, *J*=8.4, 2.0 Hz, 1H), 7.67 (dd, *J*=8.6, 2.5 Hz, 1H), 7.64 (d, *J*=2.0 Hz, 1H), 7.12 (d, *J*=8.6 Hz, 1H), 6.96 (d, *J*=8.5 Hz, 1H), 3.97 (s, 3H), 3.95 (s, 3H). ¹³C NMR (CDCl₃) δ 196.2, 164.5, 154.0, 149.0, 148.5, 136.0, 133.0, 132.8, 125.7, 124.7, 121.1, 119.2, 112.5, 110.6, 56.1 (×2), 29.8. HRMS (EI) calcd for C₁₇H₁₅BrNaO₅ ([M+Na]⁺) 401.0001. Found: 400.9995.

4.4. 2-Acetyl-4,6-dibromophenyl-3,4-dimethoxybenzoate (3c)

1 (1.200 g, 4.08 mmol), **2** (1.490 g, 8.16 mmol). Purification by flash column chromatography (Hex:EtOAc=10:1–4:1; R_f 0.5, Hex:EtOAc=5:1) afforded a white solid. Yield=1.6740 g (90%). Mp 141–142 °C. ¹H NMR (CDCl₃) δ 7.94 (d, *J*=2.3 Hz, 1H), 7.91 (dd, *J*=8.5, 2.0 Hz, 1H), 7.87 (d, *J*=2.3 Hz, 1H), 7.67 (d, *J*=2.0 Hz, 1H), 6.98 (d, *J*=8.5 Hz, 1H), 3.98 (s, 3H), 3.96 (s, 3H), 2.51 (s, 3H). ¹³C NMR (CDCl₃) δ 195.4, 163.4, 154.2, 149.0, 146.2, 138.9, 134.8, 131.9, 125.0, 120.6, 119.7, 119.6, 112.6, 110.6, 56.2, 56.1, 29.6. HRMS (EI) calcd for C_{17H14}Br₂NaO₅ ([M+Na]⁺) 478.9106. Found: 478.9100.

4.5. 2-Acetyl-4,6-dibromophenyl-4-fluorobenzoate (3d)

1 (1.000 g, 3.40 mmol), **2** (0.950 g, 6.80 mmol). Purification by flash column chromatography (Hex:EtOAc=20:1–10:1; R_f 0.7, Hex:EtOAc=10:1) afforded a pale white solid. Yield=1.3090 g (93%). Mp 113–114 °C. ¹H NMR (CDCl₃) δ 8.26–8.22 (m, 2H), 7.95 (d, *J*=2.3 Hz, 1H), 7.89 (d, *J*=2.3 Hz, 1H), 7.22 (t, *J*=11.4 Hz, 2H), 2.51 (s, 3H). ¹³C NMR (CDCl₃) δ 195.1, 166.6 (*J*_{C-F}=254 Hz), 162.8, 145.9, 139.0, 134.3, 133.2 (×2), 132.8, 132.5, 132.1, 130.9, 124.6, 119.8, 116.2, 116.0, 29.4. LRMS (ESI) *m/z* ([M+Na]⁺) 437 (100%), 413 (10%), 381 (60%).

4.6. 2-Acetyl-3,5-dimethoxyphenyl-4-bromobenzoate (3e)

1 (0.500 g, 2.55 mmol), **2** (1.020 g, 5.1 mmol). Purification by flash column chromatography (Hex:EtOAc=10:1–3:1; R_f 0.3, Hex:EtOAc=10:1) afforded a white solid. Yield=0.8680 g (90%). Mp 123–124 °C. ¹H NMR (DMSO- d_6) δ 7.99 (d, *J*=1.7 Hz, 1H), 7.98 (s, 1H), 7.63 (d, *J*=1.7 Hz, 1H), 7.62 (s, 1H), 6.41 (d, *J*=2.1 Hz, 1H), 6.35 (d, *J*=2.1 Hz, 1H), 3.87 (s, 3H), 3.83 (s, 3H), 2.47 (s, 3H). ¹³C NMR (DMSO- d_6) δ 199.1, 164.4, 162.3, 159.4, 149.8, 131.9 (×2), 131.7 (×2), 128.9, 128.2, 117.0, 100.1, 96.8, 55.9, 55.7, 31.9. HRMS (EI) calcd for C₁₇H₁₅BrO₅ ([M]⁺) 378.0103. Found: 378.0101.

4.7. 2-(4'-Fluorophenyl)-6-brmomo-4H-chromen-4-one (4a)

3a (2.1450 g, 6.363 mmol). Purification by flash column chromatography (Hex:EtOAc=40:1–0:1; R_f 0.53, Hex:EtOAc=4:1) afforded a pale white solid. Yield=1.5220 g (75%) (two steps). Mp 177–179 °C. ¹H NMR (DMSO- d_6) δ 8.13 (dd, J=8.8, 5.4 Hz, 2H), 8.04 (d, J=2.3 Hz, 1H), 7.94 (dd, J=8.8, 2.5 Hz, 2H), 7.73 (d, J=8.9 Hz, 1H), 7.39 (t, J=8.8 Hz, 2H), 7.03 (s, 1H). ¹³C NMR (DMSO- d_6) δ 175.8, 164.3 (J_{C-F} =249 Hz), 161.9, 154.5, 136.8, 129.2, 129.1, 127.3, 126.9, 124.7,

121.2, 117.9, 116.3, 116.1, 106.8. HRMS (EI) calcd for $C_{15}H_8BrFO_2$ ($[M]^+$) 317.9692. Found: 317.9698.

4.8. 2-(3',4'-Dimethoxyphenyl)-6-bromo-4H-chromen-4-one (4b)

3b (1.000 g, 2.637 mmol). Purification by flash column chromatography (CH₂Cl₂; R_f 0.25, CH₂Cl₂) afforded a pale purple solid. Yield=0.7820 g (82%) (two steps). Mp 207–209 °C. ¹H NMR (DMSO- d_6) δ 8.09 (d, *J*=2.5 Hz, 1H), 7.97 (dd, *J*=8.9, 2.5 Hz, 1H), 7.80 (d, *J*=8.9 Hz, 1H), 7.72 (dd, *J*=8.5, 2.1 Hz, 1H), 7.60 (d, *J*=1.8 Hz, 1H), 7.13 (d, *J*=8.6 Hz, 1H), 7.10 (s, 1H), 3.88 (s, 3H), 3.85 (s, 3H). ¹³C NMR (DMSO- d_6) δ 175.7, 163.0, 154.6, 152.1, 149.0, 136.6, 126.8, 124.8, 123.0, 121.3, 120.1, 117.7, 111.7, 109.5, 105.7, 55.9, 55.7. HRMS (EI) calcd for C₁₇H₁₃BrO₄ ([M]⁺) 359.9997. Found: 359.9995.

4.9. 6-Bromo-2-(3',4'-dihyoxyphenyl)-4H-chromen-4-one (4c)

3b (0.300 g, 0.791 mmol). Purification by flash column chromatography (Hex:EtOAc=1:1–0:1; R_f 0.18, Hex:EtOAc=1:1) afforded a yellow solid. Yield=0.0820 g (31%) (two steps). Mp 236–238 °C. ¹H NMR (DMSO- d_6) δ 8.07 (d, *J*=2.5 Hz, 1H), 7.94 (dd, *J*=8.9, 2.5 Hz, 1H), 7.71 (d, *J*=8.8 Hz, 1H), 7.44 (dd, *J*=8.3, 2.3 Hz, 1H), 7.41 (d, *J*=1.9 Hz, 1H), 6.86 (d, *J*=8.2 Hz, 1H), 6.78 (s, 1H). ¹³C NMR (DMSO- d_6) δ 175.5, 163.7, 154.5, 150.6, 146.0, 136.6, 126.9, 124.9, 121.0 (×2), 119.2, 117.6, 115.9, 113.1, 104.5. HRMS (EI) calcd for C₁₅H₈BrO₄ ([M–H]⁺) 330.9606. Found: 330.9600.

4.10. 6,8-Dibromo-2-(3',4'-dimethoxyphenyl)-4H-chromen-4-one (4d)

3c (2.050 g, 4.48 mmol). Purification by flash column chromatography (CH₂Cl₂; R_f 0.3, CH₂Cl₂) afforded a pale white solid. Yield=1.5350 g (73%) (two steps). Mp 249–251 °C. ¹H NMR (DMSO- d_6) δ 8.28 (d, *J*=2.3 Hz, 1H), 8.01 (d, *J*=2.3 Hz, 1H), 7.62 (dd, *J*=8.5, 2.1 Hz, 1H), 7.50 (d, *J*=2.1 Hz, 1H), 7.00 (d, *J*=8.5 Hz, 1H), 6.78 (s, 1H), 3.98 (s, 3H), 3.97 (s, 3H). ¹³C NMR (DMSO- d_6) δ 176.2, 163.5, 152.6, 151.6, 149.4, 139.1, 127.8, 126.0, 123.2, 120.3, 118.4, 112.8, 111.3, 108.9, 105.8, 56.1, 56.0. HRMS (EI) calcd for C₁₇H₁₂Br₂O₄ ([M]⁺) 437.9102. Found: 437.9103.

4.11. 6,8-Dibromo-2-(4'-fluorophenyl)-4H-chromen-4-one (4e)

3d (0.970 g, 2.35 mmol). Purification by flash column chromatography (Hex:CH₂Cl₂=2:1–0:1; R_f 0.7, CH₂Cl₂) afforded a pale yellow solid. Yield=0.6870 g (74%) (two steps). Mp 251–252 °C. ¹H NMR (CDCl₃) δ 8.29 (d, *J*=2.1 Hz, 1H), 8.04 (d, *J*=2.1 Hz, 1H), 8.00 (dd, *J*=8.5, 5.2 Hz, 2H), 7.25 (d, *J*=8.5 Hz, 2H), 6.81 (s, 1H). ¹³C NMR (CDCl₃) δ 176.5, 166.0, 164.3, 162.7, 151.8, 139.4, 128.8, 127.9, 126.9 (J^1_{C-F} =223.0 Hz), 118.7, 116.6 (J^2_{C-F} =23.0 Hz), 113.0, 107.0. HRMS (EI) calcd for C₁₅H₇Br⁷⁹Br⁸¹FO₂ ([M]⁺) 397.8776. Found: 397.8775.

4.12. 2-(4'-Bromophenyl)-5,7-dimethoxy-4H-chromen-4-one (4f)

3e (0.840 g, 2.21 mmol). Purification by flash column chromatography (Hex:EtOAc=2:1–1:2; R_f 0.45, Hex:EtOAc=1:2) afforded a pale yellow solid. Yield=0.5170 g (65%) (two steps). Mp 197–198 °C. ¹H NMR (DMSO- d_6) δ 7.97 (d, *J*=8.6 Hz, 2H), 7.74 (d, *J*=8.6 Hz, 2H), 6.84 (d, *J*=1.9 Hz, 1H), 6.80 (s, 1H), 6.50 (d, *J*=1.9 Hz, 1H), 3.89 (s, 3H), 3.83 (s, 3H). ¹³C NMR (DMSO- d_6) δ 175.8, 164.1, 160.6, 159.4, 158.8, 132.3 (×2), 130.4, 128.2 (×2), 125.3, 108.8, 108.6, 96.6, 93.6, 56.4, 56.3. HRMS (EI) calcd for C₁₇H₁₃BrO₄ ([M]⁺) 359.9997. Found: 359.9991.

4.13. 6,8-Dibromo-2-(3',4'-dihydroxyphenyl)-4H-chromen-4-one (4g)

4d (0.290 g, 0.64 mmol). Purification by flash column chromatography (Hex:EtOAc=1:1–0:1; R_f 0.15, Hex:EtOAc=1:1) afforded a yellow solid. Yield=0.1260 g (48%). Mp 297–298 °C. ¹H NMR (DMSO- d_6) δ 8.34 (d, *J*=2.3 Hz, 1H), 8.05 (d, *J*=2.3 Hz, 1H), 7.50 (d, *J*=1.9 Hz, 1H), 7.49 (dd, *J*=8.3, 2.3 Hz, 1H), 6.91 (d, *J*=8.2 Hz, 1H), 6.87 (s, 1H). ¹³C NMR (DMSO- d_6) δ 175.1, 163.5, 151.3, 150.2, 145.9, 138.7, 126.7, 125.7, 121.2, 119.2, 117.7, 116.1, 113.6, 113.0, 104.7. HRMS (EI) calcd for C₁₅H₈Br₂O₄ ([M]⁺) 409.8789. Found: 409.8795.

4.14. 2-(4'-Bromophenyl)-5,7-dihydroxy-4H-chromen-4-one (4h)

4f (0.100 g, 0.26 mmol). Purification by flash column chromatography (Hex:EtOAc=10:1–2:1; R_f 0.4, Hex:EtOAc=3:1) afforded a yellow solid. Yield=0.0460 g (52%). Mp 282–283 °C. ¹H NMR (DMSO- d_6) δ 7.99 (d, *J*=8.6 Hz, 2H), 7.76 (d, *J*=8.6 Hz, 2H), 6.97 (s, 1H), 6.50 (d, *J*=2.0 Hz, 1H), 6.21 (d, *J*=2.0 Hz, 1H). ¹³C NMR (DMSO- d_6) δ 181.8, 164.6, 162.1, 161.5, 157.4, 132.2 (×2), 130.0, 128.4 (×2), 125.8, 105.6, 104.0, 99.2, 94.2. HRMS (EI) calcd for C₁₅H₉BrO₄ ([M]⁺) 331.9684. Found: 331.9693.

4.15. 6-Amino-2-(4'-aminophenyl)-4H-chromen-4-one (5a)^{8a}

4a (0.1570 g, 0.4918 mmol). Purification by flash column chromatography (Hex:EtOAc=1:2–0:1; R_f 0.58, EtOAc) afforded an orangeyellow solid. Yield=0.0520 g (41%). Mp 265–275 °C. ¹H NMR (DMSO- d_6) δ 7.70 (d, *J*=8.8 Hz, 2H), 7.39 (d, *J*=8.9 Hz, 1H), 7.06 (d, *J*=2.8 Hz, 1H), 6.99 (dd, *J*=8.8, 2.9 Hz, 1H), 6.65 (d, *J*=8.7 Hz, 2H), 6.55 (s, 1H), 5.90 (s, 2H), 5.38 (s, 2H). ¹³C NMR (DMSO- d_6) δ 176.8, 163.0, 152.3, 147.7, 146.3, 127.7 (×2), 124.2, 121.1, 118.6, 117.6, 113.5 (×2), 105.3, 102.1. HRMS (EI) calcd for C₁₅H₁₂N₂O₂ ([M]⁺) 252.0899. Found: 252.0904.

4.16. 6-Amino-2-(3',4'-dimethoxyphenyl)-4H-chromen-4-one (5b)

4b (0.500 g, 1.38 mmol). Purification by flash column chromatography (Hex:EtOAc=3:2-0:1; R_f 0.83, EtOAc) afforded a yellowgreen solid. Yield=0.3280 g (80%). Mp 210–212 °C. ¹H NMR (DMSO- d_6) δ 7.63 (dd, J=8.5, 2.2 Hz, 1H), 7.53 (d, J=2.1 Hz, 1H), 7.48 (d, J=8.9 Hz, 1H), 7.11 (d, J=8.6 Hz, 1H), 7.08 (d, J=2.8 Hz, 1H), 7.04 (dd, J=8.8, 2.8 Hz, 1H), 6.84 (s, 1H), 5.46 (s, 2H), 3.87 (s, 3H), 3.83 (s, 3H). ¹³C NMR (DMSO- d_6) δ 177.1, 161.8, 151.6, 149.0, 147.9, 146.5, 124.2, 123.9, 121.5, 119.6, 118.9, 109.3, 105.0, 104.7, 55.8, 55.7. HRMS (EI) calcd for C₁₇H₁₅NO₄ ([M]⁺) 297.1001. Found: 297.1003.

4.17. 6-Amino-2-(3',4'-dihydroxyphenyl)-4*H*-chromen-4-one (5c)

5b (0.0210 g, 0.0672 mmol). Purification by flash column chromatography (Hex:EtOAc=1:0–2:1; R_f 0.55, EtOAc) afforded a yellow solid. Yield=0.0082 g (43%). Mp 250 °C (decomposed). ¹H NMR (DMSO- d_6) δ 7.40 (d, *J*=8.8 Hz, 1H), 7.36 (s, 1H), 7.35 (dd, *J*=8.0, 2.1 Hz, 1H), 7.07 (d, *J*=2.8 Hz, 1H), 7.02 (dd, *J*=8.9, 2.8 Hz, 1H), 6.86 (d, *J*=8.0 Hz, 1H), 6.56 (s, 1H), 3.70–3.10 (br s, 2H). ¹³C NMR (DMSO- d_6) δ 176.9, 162.4, 149.1, 147.7, 146.4, 145.7, 124.2, 122.4, 121.3, 118.6, 118.4, 115.9, 113.1, 105.1, 103.8. HRMS (EI) calcd for C₁₅H₁₁NO₄ ([M]⁺) 269.0688. Found: 269.0680.

4.18. 6,8-Diamino-2-(3',4'-dimethoxyphenyl)-4H-chromen-4-one (5d)

4d (0.440 g, 1.0 mmol). Purification by flash column chromatography (Hex:EtOAc=1:1–0:1; R_f 0.3, EtOAc) afforded a brown

solid. Yield=0.1160 g (37%). Mp 240–242 °C. ¹H NMR (DMSO-*d*₆) δ 7.78 (dd, *J*=8.6, 2.1 Hz, 1H), 7.56 (d, *J*=2.1 Hz, 1H), 7.07 (d, *J*=8.6 Hz, 1H), 6.77 (s, 1H), 6.36 (d, *J*=2.6 Hz, 1H), 6.34 (d, *J*=2.6 Hz, 1H), 5.44 (s, 2H), 5.11 (s, 2H), 3.89 (s, 3H), 3.84 (s, 3H). ¹³C NMR (DMSO-*d*₆) δ 177.4, 161.0, 151.4, 148.9, 146.4, 138.8, 137.6, 124.7, 124.1, 119.9, 111.6, 109.5, 104.7, 104.5, 93.6, 55.7 (×2). HRMS (EI) calcd for C₁₇H₁₆N₂O₄ ([M]⁺) 312.1110. Found: 312.1112.

4.19. 6,8-Diamino-2-(3',4'-dihydroxyphenyl)-4*H*-chromen-4-one (5e)

5d (0.160 g, 0.44 mmol). Purification by flash column chromatography (CH₂Cl₂:MeOH=12:1–2:1; *R*_f 0.5, EtOAc) afforded a brown solid. Yield=0.0510 g (41%). Mp 201–202 °C. ¹H NMR (DMSO-*d*₆) δ 7.47 (dd, *J*=8.4, 2.3 Hz, 1H), 7.40 (d, *J*=2.2 Hz, 1H), 6.85 (d, *J*=8.4 Hz, 1H), 6.49 (s, 1H), 6.34 (d, *J*=2.5 Hz, 1H), 6.32 (d, *J*=2.5 Hz, 1H), 5.32 (s, 2H), 5.06 (s, 2H). ¹³C NMR (DMSO-*d*₆) δ 171.5, 161.6, 149.0, 146.4, 145.7, 138.7, 137.6, 124.7, 122.7, 118.7, 115.9, 113.4, 104.9, 103.6, 93.9. HRMS (ESI) calcd for C₁₅H₁₃N₂O₄ ([M+H]⁺) 285.0875. Found: 285.0870.

4.20. 2-(4'-Aminophenyl)-5,7-dimethoxy-4H-chromen-4-one (5f)

4f (0.100 g, 0.276 mmol). Purification by flash column chromatography (Hex:EtOAc=2:1–0:1; R_f 0.5, EtOAc) afforded a yellow solid. Yield=0.0420 g (51%). Mp 201–202 °C. ¹H NMR (DMSO- d_6) δ 7.69 (d, *J*=8.8 Hz, 2H), 6.78 (d, *J*=2.3 Hz, 1H), 6.63 (d, *J*=8.8 Hz, 2H), 6.45 (d, *J*=2.3 Hz, 1H), 6.42 (s, 1H), 5.87 (s, -NH₂, 2H), 3.87 (s, 3H), 3.80 (s, 3H). ¹³C NMR (DMSO- d_6) δ 175.8, 163.5, 161.0, 160.2, 159.1, 152.2, 127.5, 116.9, 113.6, 108.3, 104.3, 96.0, 93.3, 56.1, 56.0. HRMS (EI) calcd for C₁₇H₁₅NO₄ ([M]⁺) 297.1001. Found: 297.1006.

4.21. 2-(4'-Aminophenyl)-5,7-dihydroxy-4H-chromen-4-one (5g)

5f (0.080 g, 0.2401 mmol). Purification by flash column chromatography (Hex:EtOAc=1:1–0:1; R_f 0.5, EtOAc) afforded a yellow solid. Yield=0.020 g (30%). Mp 316–318 °C. ¹H NMR (DMSO- d_6) δ 7.74 (d, J=8.7 Hz, 2H), 6.66 (d, J=8.7 Hz, 2H), 6.60 (s, 1H), 6.43 (d, J=2.0 Hz, 1H), 6.15 (d, J=2.0 Hz, 1H), 6.06 (s, 2H). ¹³C NMR (DMSO- d_6) δ 181.6, 164.7, 164.1, 161.5, 157.3, 153.0, 128.2 (×2), 116.6, 113.6 (×2), 103.6, 100.8, 98.8, 93.9. HRMS (ESI) calcd for C₁₅H₁₂NO₄ ([M+H]⁺) 270.0766. Found: 270.0755.

4.22. (*E*)-1-(3,5-Dibromo-2-hydroxyphenyl)-3-(3,4-dimethoxyphenyl)prop-2-en-1-one (7a)

1 (3.120 g, 10.62 mmol), **6** (1.470 g, 8.85 mmol). Purification by flash column chromatography (Hex:EtOAc=15:1–1:1; R_f 0.65, Hex:EtOAc=2:1) afforded an orange solid. Yield=3.760 g (96%). Mp 152–153 °C. ¹H NMR (CDCl₃) δ 8.00 (d, *J*=2.0 Hz, 1H), 7.96 (d, *J*=15.2 Hz, 1H), 7.87 (d, *J*=2.0 Hz, 1H), 7.39 (d, *J*=15.2 Hz, 1H), 7.30 (dd, *J*=8.3, 1.7 Hz, 1H), 7.18 (d, *J*=1.7 Hz, 1H), 6.93 (d, *J*=8.3 Hz, 1H), 3.99 (s, 3H), 3.96 (s, 3H). ¹³C NMR (CDCl₃) δ 192.2, 159.2, 152.5, 149.5, 148.0, 141.0, 131.0, 127.1, 124.3, 121.7, 116.4, 113.4, 111.2, 110.6, 110.2, 56.2, 56.2. HRMS (EI) calcd for C₁₇H₁₄Br₂O₄ ([M]⁺) 439.9259. Found: 439.9252.

4.23. (*E*)-1-(3,5-Dibromo-2-hydroxyphenyl)-3-(3-methoxy-4-(methoxymethoxy)phenyl)prop-2-en-1-one (7b)

1 (2.090 g, 7.12 mmol), **6** (1.270 g, 6.47 mmol). Purification by flash column chromatography (Hex:EtOAc=8:1–1:1; R_f 0.4, Hex:EtOAc=1:1) afforded an orange solid. Yield=2.8130 g (92%). Mp 150–151 °C. ¹H NMR (CDCl₃) δ 7.99 (d, *J*=2.2 Hz, 1H), 7.95 (d,

 $\begin{array}{l} J{=}15.2 \ \text{Hz}, 1\text{H}), 7.87 \ (\text{d}, J{=}2.2 \ \text{Hz}, 1\text{H}), 7.40 \ (\text{d}, J{=}15.2 \ \text{Hz}, 1\text{H}), 7.28 \\ (\text{dd}, J{=}8.4, 1.8 \ \text{Hz}, 1\text{H}), 7.21 \ (\text{d}, J{=}8.4 \ \text{Hz}, 1\text{H}), 7.18 \ (\text{d}, J{=}1.8 \ \text{Hz}, 1\text{H}), \\ 5.31 \ (\text{s}, 2\text{H}), 3.99 \ (\text{s}, 3\text{H}), 3.53 \ (\text{s}, 3\text{H}). {}^{13}\text{C} \ \text{NMR} \ (\text{CDCl}_3) \ \delta \ 192.2, 159.2, \\ 150.0, 149.9, 147.8, 141.1, 131.0, 128.4, 123.7, 121.7, 116.9, 115.8, 113.4, \\ 111.3, \ 110.2, \ 95.1, \ 56.5, \ 56.2. \ \text{HRMS} \ (\text{ESI}) \ \text{calcd} \ \text{for} \ C_{18}\text{H}_{17}\text{Br}_2\text{O}_5 \\ ([\text{M}{+}\text{H}]^+) \ 470.9443. \ \text{Found:} \ 470.9454. \end{array}$

4.24. (*E*)-3-(3,4-Bis(methoxymethoxy)phenyl)-1-(3,5-dibromo-2-hydroxyphenyl)prop-2-en-1-one (7c)

1 (0.1090 g, 0.37 mmol), **6** (0.070 g, 0.31 mmol). Purification by flash column chromatography (Hex:EtOAc=6:1–3:1; R_f 0.65, Hex:EtOAc=2:1) afforded an orange solid. Yield=0.135 g (87%). Mp 129–131 °C. ¹H NMR (CDCl₃) δ 7.99 (d, *J*=2.3 Hz, 1H), 7.93 (d, *J*=15.2 Hz, 1H), 7.87 (d, *J*=2.3 Hz, 1H), 7.48 (d, *J*=2.1 Hz, 1H), 7.40 (d, *J*=15.2 Hz, 1H), 7.33 (dd, *J*=8.5, 2.1 Hz, 1H), 7.22 (d, *J*=8.5 Hz, 1H), 5.32 (s, 2H), 5.31 (s, 2H), 3.57 (s, 3H), 3.53 (s, 3H). ¹³C NMR (CDCl₃) δ 192.3, 159.2, 150.5, 147.5, 147.4, 141.1, 131.1, 128.5, 124.8, 121.6, 117.2, 116.6, 116.2, 113.4, 110.2, 95.6, 95.1, 56.4 (×2). HRMS (ESI) calcd for C₁₉H₁₉Br₂O₆ ([M+H]⁺) 500.9548. Found: 500.9565.

4.25. 6,8-Dibromo-3-hydroxy-2-(3,4-dimethoxyphenyl)-4*H*-chromen-4-one (8a)

7 (1.060 g, 2.398 mmol). Purification by flash column chromatography (CH₂Cl₂; R_f 0.4, CH₂Cl₂) afforded a yellow solid. Yield=0.6130 g (56%). Mp 258–259 °C. ¹H NMR (DMSO- d_6) δ 8.31 (d, *J*=2.0 Hz, 1H), 8.04–8.02 (m, 2H), 7.95 (s, 1H), 7.09 (br s, 1H), 7.03 (d, *J*=8.6 Hz, 1H), 3.99 (s, 3H), 3.97 (s, 3H). ¹³C NMR (DMSO- d_6) δ 171.4, 151.2, 150.4, 148.9, 145.9, 138.8, 137.9, 127.3, 123.1, 122.7, 122.1, 117.4, 113.0, 111.1, 110.5, 56.0, 55.9. HRMS (EI) calcd for C₁₇H₁₂Br₂O₅ ([M]⁺) 453.9051. Found: 453.9036.

4.26. 6,8-Dibromo-3-hydroxy-2-(3'-methoxy-4'-(methoxymethoxy)phenyl)-4H-chromen-4-one (8b)

7 (0.1150 g, 0.244 mmol). Purification by flash column chromatography (CH₂Cl₂; R_f 0.5, CH₂Cl₂) afforded a yellow solid. Yield=0.0660 g (56%). Mp 251 °C (decomposed).¹H NMR (CDCl₃) δ 8.32 (d, *J*=1.5 Hz, 1H), 8.03 (d, *J*=1.5 Hz, 1H), 7.98 (d, *J*=8.3 Hz, 1H), 7.97 (s, 1H), 7.31 (d, *J*=8.3 Hz, 1H), 7.02 (s, 1H), 5.33 (s, 2H), 3.99 (s, 3H), 3.54 (s, 3H). ¹³C NMR (CDCl₃) δ 171.5, 150.5, 149.6, 148.7, 145.8, 138.9, 138.1, 127.4, 124.5, 122.7, 121.9, 117.5, 115.7, 113.1, 111.2, 95.2, 56.4, 56.0. HRMS (EI) calcd for C₁₈H₁₄Br₂O₆ ([M]⁺) 483.9157. Found: 483.9167.

4.27. 2-(3',4'-Bis(methoxymethoxy)phenyl)-6,8-dibromo-3hydroxy-4*H*-chromen-4-one (8c)

7 (0.160 g, 0.319 mmol). Purification by flash column chromatography (CH₂Cl₂; R_f 0.5, CH₂Cl₂) afforded a yellow solid. Yield=0.0850 g (51%). Mp 197–198 °C. ¹H NMR (DMSO- d_6) δ 8.30 (d, *J*=2.3 Hz, 1H), 8.21 (d, *J*=2.0 Hz, 1H), 8.02 (dd, *J*=8.1, 2.0 Hz, 2H), 7.32 (d, *J*=8.7 Hz, 1H), 6.98 (s, 1H), 5.33 (s, 4H), 3.57 (s, 3H), 3.55 (s, 3H). ¹³C NMR (DMSO- d_6) δ 171.5, 150.5, 149.5, 147.0, 145.5, 138.9, 138.1, 127.3, 124.5, 123.4, 122.6, 117.5, 116.5, 116.1, 113.2, 95.7, 95.1, 56.4, 56.3. HRMS (ESI) calcd for C₁₉H₁₇Br₂O₇ ([M+H]⁺) 514.9341. Found: 514.9357.

4.28. 6,8-Dibromo-3-hydroxy-2-(4'-hydroxy-3'-methoxyphenyl)-4H-chromen-4-one (8d)

8b (0.050 g, 0.103 mmol). Purification by flash column chromatography (Hex:EtOAc=1:1–0:1, R_f 0.25, Hex:EtOAc=1:1) afforded a yellow solid. Yield=0.0440 g (96%). Mp 275–276 °C. ¹H NMR (DMSO- d_6) δ 9.90 (s, 1H), 9.81 (s, 1H), 8.28 (s, 1H), 8.11 (d, *J*=1.9 Hz,

1H), 7.86–7.82 (m, 2H), 6.96 (d, *J*=8.4 Hz, 1H), 3.85 (s, 3H). ¹³C NMR (DMSO- d_6) δ 171.0, 149.8, 149.2, 147.6, 146.5, 138.4, 138.0, 126.6, 123.6, 122.2, 122.0, 116.7, 115.8, 113.0, 111.4, 55.7. HRMS (EI) calcd for C₁₆H₁₀Br₂O₅ ([M]⁺) 439.8895. Found: 439.8884.

4.29. 6,8-Dibromo-3-hydroxy-2-(3',4'-dihydroxyphenyl)-4*H*-chromen-4-one (8e)

8c (0.080 g, 0.154 mmol). Purification by flash column chromatography (Hex:EtOAc=1:1–0:1; R_f 0.4, Hex:EtOAc=1:1) afforded a yellow solid. Yield=0.0620 g (94%). Mp 287 °C (decomposed). ¹H NMR (DMSO- d_6) δ 9.73 (s, 1H), 9.40 (s, 1H), 8.29 (s, 1H), 8.13 (d, J=2.3 Hz, 1H), 7.82 (s, 1H), 7.67 (dd, J=8.5, 2.1 Hz, 1H), 6.92 (d, J=8.5 Hz, 1H). ¹³C NMR (DMSO- d_6) δ 170.9, 149.8, 148.2, 146.9, 145.3, 138.2, 137.9, 126.6, 123.7, 121.9, 120.3, 116.6, 115.8, 115.4, 112.9. HRMS (EI) calcd for C₁₅H₈Br₂O₅ ([M]⁺) 425.8738. Found: 425.8752.

4.30. 6-Amino-3-hydroxy-2-(3',4'-dimethoxyphenyl)-4*H*-chromen-4-one (9a)

8a (0.100 g, 0.22 mmol). Purification by flash column chromatography (Hex:EtOAc=3:1–0:1; R_f 0.7, EtOAc) afforded a dark yellow solid. Yield=0.0210 g (30%). Mp 223–224 °C. ¹H NMR (DMSO- d_6) δ 9.09 (s, 1H), 7.82 (dd, *J*=8.8, 2.0 Hz, 1H), 7.76 (d, *J*=1.6 Hz, 1H), 7.48 (d, *J*=8.9 Hz, 1H), 7.14–7.12 (m, 2H), 7.06 (dd, *J*=8.9, 2.7 Hz, 1H), 5.43 (s, 2H), 3.85 (s, 3H), 3.84 (s, 3H). ¹³C NMR (DMSO- d_6) δ 172.3, 150.1, 148.4, 147.1, 145.8, 144.7, 137.5, 124.1, 122.0, 121.2, 118.8, 111.5, 110.9, 104.1, 55.6, 55.5. HRMS (ESI) calcd for C₁₇H₁₆NO₅ ([M+H]⁺) 314.1028. Found: 314.1020.

4.31. 6-Amino-3-hydroxy-2-(3'-methoxy-4'-(methoxymethoxy)phenyl)-4*H*-chromen-4-one (9b)

8b (0.200 g, 0.411 mmol). Purification by flash column chromatography (Hex:EtOAc=3:1–1:1; R_f 0.2, Hex:EtOAc=1:1) afforded a dark yellow solid. Yield=0.0380 g (28%). Mp 216–217 °C. ¹H NMR (DMSO- d_6) δ 9.13 (s, 1H), 7.80 (s, 1H), 7.76 (dd, *J*=8.8, 1.4 Hz, 1H), 7.48 (d, *J*=8.9 Hz, 1H), 7.22 (d, *J*=8.6 Hz, 1H), 7.14–7.13 (m, 1H), 7.07 (dd, *J*=9.1, 2.6 Hz, 1H), 5.44 (s, 2H), 5.24 (s, 2H), 3.86 (s, 3H), 3.41 (s, 3H). ¹³C NMR (DMSO- d_6) δ 172.4, 149.3, 147.1, 145.8, 144.5, 137.6, 125.7, 122.8, 122.1, 120.9, 118.8, 115.9, 112.6, 111.6, 104.1, 94.6, 55.9, 55.7. HRMS (EI) calcd for C₁₈H₁₇NO₆ ([M]⁺) 343.1056. Found: 343.1050.

4.32. 2-(3',4'-Bis(methoxymethoxy)phenyl)-6-amino-3hydroxy-4H-chromen-4-one (9c)

8c (0.100 g, 0.194 mmol). Purification by flash column chromatography (Hex:EtOAc=3:1–0:1; R_f 0.6, EtOAc) afforded a yellow solid. Yield=0.0190 g (26%). Mp 138–140 °C. ¹H NMR (DMSO-*d*₆) δ 9.13 (s, 1H), 7.92 (d, *J*=2.0 Hz, 1H), 7.83 (dd, *J*=8.8, 2.0 Hz, 1H), 7.45 (d, *J*=8.9 Hz, 1H), 7.26 (d, *J*=8.7 Hz, 1H), 7.13 (d, *J*=2.7 Hz, 1H), 7.07 (dd, *J*=9.0, 2.9 Hz, 1H), 5.44 (s, 2H), 5.28 (s, 2H), 5.24 (s, 2H), 3.45 (s, 3H), 3.43 (s, 3H). ¹³C NMR (DMSO-*d*₆) δ 172.4, 148.3, 147.1, 146.4, 145.8, 144.3, 137.7, 125.6, 122.5, 122.1, 122.0, 118.8, 116.7, 116.2, 104.1, 95.2, 94.5, 55.9 (×2). HRMS (EI) calcd for C₁₉H₁₉NO₇ ([M]⁺) 373.1162. Found: 373.1172.

4.33. 6-Amino-3-hydroxy-2-(4'-hydroxy-3'-methoxyphenyl)-4H-chromen-4-one (9d)

9b (0.0220 g, 0.064 mmol). Purification by flash column chromatography (Hex:EtOAc=1:1–1:2; R_f 0.25, Hex:EtOAc=1:2) afforded a yellow solid. Yield=0.0160 g (85%). Mp 197–198 °C. ¹H NMR (DMSO- d_6) δ 9.64 (s, 1H), 8.99 (s, 1H), 7.77 (s, 1H), 7.70 (d, *J*=8.3 Hz, 1H), 7.46 (d, *J*=8.9 Hz, 1H), 7.13 (s, 1H), 7.05 (d, *J*=8.8 Hz, 1H), 6.93 (d, *J*=8.5 Hz, 1H), 5.42 (s, 2H), 3.85 (s, 3H). ¹³C NMR (DMSO- d_6) δ 172.2,

148.4, 147.4, 147.1, 145.7, 145.2, 137.2, 122.8, 122.1, 121.9, 121.6, 118.8, 115.5, 111.7, 104.2, 55.8. HRMS (ESI) calcd for $C_{16}H_{14}NO_5$ ([M+H]⁺) 300.0872. Found: 300.0852.

4.34. 6-Amino-3-hydroxy-2-(3',4'-dihydroxyphenyl)-4H-chromen-4-one (9e)^{8c}

9c (0.030 g, 0.08 mmol). Purification by flash column chromatography (Hex:EtOAc=1:1–1:4; *R*_f 0.7, EtOAc) afforded a dark yellow solid. Yield=0.0150 g (66%). Mp 231 °C (decomposed). ¹H NMR (DMSO-*d*₆) δ 7.65 (s, 1H), 7.53 (d, *J*=8.3 Hz, 1H), 7.40 (d, *J*=8.9 Hz, 1H), 7.11 (d, *J*=2.3 Hz, 1H), 7.04 (dd, *J*=9.1, 2.8 Hz, 1H), 6.82 (d, *J*=8.4 Hz, 1H), 5.39 (s, 2H). ¹³C NMR (DMSO-*d*₆) δ 172.1, 147.2, 147.0, 145.7, 145.3, 145.0, 137.1, 122.7, 122.0, 121.9, 119.7, 118.6, 115.5, 115.1, 104.2. HRMS (EI) calcd for C₁₅H₁₁NO₅ ([M]⁺) 285.0637. Found: 285.0645.

Acknowledgements

The authors are gratefully acknowledged the National Science Council Taiwan (NSC-102-2113-M-032-003) and Tamkang University for financial supports. We thank the National Taiwan University and the National Chung Hsing University for LRMS/HRMS experiments.

Supplementary data

Copies of ¹H NMR and ¹³C NMR data for all new products. Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.tet.2014.04.022.

References and notes

- (a) Nijveldt, R. J.; van Nood, E.; van Hoorn, D. E.; Boelens, P. G.; van Norren, K.; van Leeuwen, P. A. Am. J. Clin. Nutr. 2001, 74, 418–425; (b) Verma, A. K.; Pratap, R. Nat. Prod. Rep. 2010, 27, 1571–1593; (c) Jäger, A. K.; Saaby, L. Molecules 2011, 16, 1471–1485 and references cited therein.
- 2. Koes, R. E.; Quattrocchio, F.; Mol, J. N. M. Bioessays 1994, 16, 123-132.
- Middleton, E., Jr.; Kandaswami, C.; Theoharides, T. C. Pharmacol. Rev. 2000, 52, 673–751.
- (a) Havsteen, B. Biochem. Pharmacol. 1983, 32, 1141–1148; (b) Veitch, N. C.; Grayer, R. J. Nat. Prod. Rep. 2011, 28, 1626–1695; (c) Valko, M.; Rhodes, C. J.; Moncol, J.; Izakovic, M.; Mazur, M. Chem. Biol. Interact. 2006, 160, 1–40.
- Manthey, J. A.; Grohmann, K.; Montanari, A.; Ash, K.; Manthey, C. L. J. Nat. Prod. 1999, 62, 441–444.

- (a) Dixon, R. A.; Steele, C. L. *Trends Plant Sci.* **1999**, *4*, 394–400; (b) Pietta, P.-G. J. Nat. Prod. **2000**, 63, 1035–1042; (c) Hernández-Abreu, O.; Castillo-España, P.; ILeón-Rivera, I.; Ibarra-Barajas, M.; Villalobos-Molina, R.; Gonzáles-Christen, J.; Vergara-Galicia, J.; Estrada-Soto, S. *Biochem. Pharmacol.* **2009**, *78*, 54–61; (d) Torres-Piedra, M.; Ortiz-Andrade, R.; Villalobos-Molina, R.; Singh, N.; Medina-Franco, J. L.; Webster, S. P.; Binnie, M.; Navarrete-Vázquez, G.; Estrada-Soto, S. *Eur. J. Med. Chem.* **2010**, *45*, 2606–2612.
- 7. (a) Deeb, O.; Clare, B. W. Chem. Biol. Drug Des. 2007, 70, 437–449; (b) Yılmaz, H.; Güzel, Y.; Önal, Z.; Altıparmak, G.; Kocakaya, S. O. Bull. Korean Chem. Soc. 2011, 32, 4352–4360.
- The reported synthetic aminoflavonoids and biological data, see: (a) Cushman, M.; Nagarathnam, D.; Burg, D. L.; Geahlen, R. L. J. Med. Chem. 1991, 34, 798–806; (b) Cushman, M.; Nagarathnam, D. J. Nat. Prod. 1991, 54, 1656–1660; (C Cushman, M.; Zhu, H.; Geahlen, R. L.; Kraker, A. J. J. Med. Chem. 1994, 37, 3353–3362; (d) Akama, T.; Shida, Y.; Sugaya, T.; Ishida, H.; Gomi, K.; Kasai, M. J. Med. Chem. 1996, 39, 3461–3469; (e) Thakur, A.; Vishwakarma, S.; Thakur, M. Bioorg. Med. Chem. 2004, 12, 1209–1214; (f) Yap, S.; Loft, K. J.; Woodman, O. L.; Williams, S. J. ChemMedChem 2008, 3, 1572–1579; (g) Casano, G.; Dumetre, A.; Pannecouque, C.; Hutter, S.; Azas, N.; Robin, M. Bioorg. Med. Chem. 2010, 18, 6012–6023; (h) Sousa, R. M. S.; Pinto, D. C. G. A.; Silva, A. M. S.; Serra, V. V.; Barros, A. I. R. N. A.; Maria, A. F.; Faustino, M. A. F.; Neves, M. G. P. M. S.; Cavaleiro, J. A. S. Eur. J. Org. Chem. 2012, 132–143; (i) Jin, F.; Gao, D.; Zhang, C.; Liu, F.; Chu, B.; Chen, Y.; Chen, Y. Z.; Tan, C.; Jiang, Y. Bioorg. Med. Chem. 2013, 21, 824–831.
- 9. Shih, T.-L.; Hsiao, C.-A.; Lin, Z.-Y.; Chen, Y.-H. Molecules 2012, 17, 8206-8216.
- 10. It is 2-(3',4'-diaminophenyl)-5,7-dihydroxy-4H-chromen-4-one.
- 11. Unpublished results.
- (a) Kalinin, A. V.; da Silva, A. J. M.; Lopes, C. C.; Lopes, R. S. C.; Snieckus, V. Tetrahedron Lett. 1998, 39, 4995–4998; (b) Barros, A. I. R. N. A.; Silva, A. M. S. Monatsh. Chem. 2006, 137, 1505–1528.
- 13. Xu, H.; Wolf, C. Chem. Commun. 2009, 3035–3037.
- Guo, Z.; Guo, J.; Song, Y.; Wang, L.; Zou, G. Appl. Organomet. Chem. 2009, 23, 150–153.
- 15. (a) Monguchi, Y.; Meajima, T.; Mori, S.; Sajiki, H. Chem.—Eur. J. 2010, 16, 7372–7375; (b) Maejima, T.; Shimoda, Y.; Nozaki, K.; Mori, S.; Sawama, Y.; Monguchi, Y.; Sajiki, H. Tetrahedron 2012, 68, 1712–1722; (c) Maejima, T.; Ueda, M.; Nakano, J.; Sawama, Y.; Monguchi, Y.; Sajiki, H. J. Org. Chem. 2013, 78, 8980–8985.
- (a) Yap, S.; Woodman, O. L.; Crack, P. J.; Williams, S. J. Bioorg. Med. Chem. Lett.
 2011, 21, 5102–5106; (b) Verma, A. K.; Pratap, R. Tetrahedron 2012, 68, 8523–8538.
- 17. (a) van Acker, F. A. A.; Hageman, J. A.; Haenen, G. R. M. M.; van der Vijgh, W. J. F.; Bast, A.; Menge, W. M. P. B. *J. Med. Chem.* **2000**, *43*, 3752–3760; (b) Smith, J. A.; Maloney, D. J.; Hecht, S. M.; Lannigana, D. A. *Bioorg. Med. Chem.* **2007**, *15*, 5018–5034 and references cited therein.
- 18. (a) Markiewicz, J. T.; Wiest, O.; Helquist, P. J. Org. Chem. 2010, 75, 4887-4890.
- 19. Ji, P.; Atherton, J. H.; Page, M. I. J. Org. Chem. 2012, 77, 7471-7478.
- Aoyama, H.; Sugita, K.; Nakamura, M.; Aoyama, A.; Salim, M. T. A.; Okamoto, M.; Baba, M.; Hashimoto, Y. *Bioorg. Med. Chem.* 2011, 19, 2675–2687.
- Jiang, L.; Lu, X.; Zhang, H.; Jiang, Y.; Ma, D. J. Org. Chem. 2009, 74, 4542–4546.
 (a) Tanaka, H.; Stohlmeyer, M. M.; Wandless, T. J.; Taylor, L. P. Tetrahedron Lett.
- **2000**, *41*, 9735–9739; (b) Lee, H. S.; Park, K.-S.; Lee, C.; Lee, B.; Kim, D.-E. Bioorg. *Med. Chem. Lett.* **2010**, *20*, 5709–5712.