
Tetrahedron Letters 47 (2006) 3701–3705
Synthesis of b-chloro a-amino acids: (2S,3R)- and
(2S,3S)-3-chloroleucine
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Abstract—The first syntheses of (2S,3R)- and (2S,3S)-3-chloroleucine (3-chloro-DD-leucines 1 and 2) have been achieved from DD-3-
hydroxyleucine and allo-DD-3-hydroxyleucine, respectively, through the formation of the corresponding N-Cbz b-lactones, followed
by a ring opening promoted by lithium chloride and a debenzylation process.
� 2006 Elsevier Ltd. All rights reserved.
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Figure 1.
3-Chloroleucine is a novel a-amino acid, which appears
in the peptide chain of a protease inhibitor of the coag-
ulation cascade, isolated from Dysidea sp. sponges by a
group of Pharmacia scientists1,2 (Fig. 1). Although the
configuration of this new a-amino acid has not yet been
established, we have addressed our efforts to the synthe-
sis of the two epimers of 3-chloro-DD-leucine (DD-Cleu),
since the a-amino acid linked to the nitrogen atom of
the octahydroindole core amino acid is always DD in the
pharmacologically and structurally related natural
products of aeruginosins3 and dysinosins,4 isolated from
cyanobacteria. Moreover, the synthesis of these new
a-amino acids is of interest since we suspect that the
DD-Cleu residue is also present in the glycopeptides aerug-
inosins 205.5 In order to test this hypothesis in our ongo-
ing studies on the total synthesis of aeruginosins,6 we
would need to incorporate DD-Cleu in the synthetic
sequence devoted to the coupling of the four fragments
of the aglycon part of aeruginosins 205.

In this letter, we describe the first preparation of 3-chloro-
leucine derivatives by chlorine-promoted ring opening
of enantiopure N-protected leucine b-lactones. This type
of protocol in which a-amino-b-lactones become precur-
sors of b-substituted a-amino acids by nucleophilic ring
opening (Scheme 1), is well precedented,7,8 but it has not
been applied to the synthesis of b-substituted leucine
derivatives. The required attack of the nucleophile at
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the hindered b-position of the b-substituted b-lactones
was expected to be difficult, as observed in threonine
b-lactones,9 in contrast to the facile ring opening at
the methylene of the serine-derived b-lactones.10–15

The required enantiopure N-protected a-amino-b-lac-
tones can be prepared from b-hydroxy-a-amino acids.16
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Although serine b-lactones are readily obtained by cycli-
zation of N-protected serine derivatives under Mitsu-
nobu conditions,7,17such hydroxyl group activation of
the corresponding b-substituted analogues, for instance
threonine derivatives, leads to a rapid stereospecific
decarboxylative elimination.9a,18 To circumvent this
problem,19 BOP reagent is used for the formation of
serine and threonine b-lactones20–24 through carboxyl
activation. Recently, HBTU has been reported as a very
efficient activating agent for this type of lactonization
process.12c

In a first series of experiments to test the b-lactone open-
ing with the chloride anion, which is the crucial step for
the synthesis of b-chloroleucines, we evaluated the ring
opening using b-lactones derived from threonine as
model compounds (Scheme 2).25 Intramolecular coup-
ling of N-Cbz-LL-Thr (3) was carried out with HBTU,
which proved to be a better activating agent than
PyBOP for this lactonization, giving b-lactone 4 in
75% yield.26 Treatment of 4 with LiCl at THF reflux
temperature overnight gave the enantiopure chloride
5,27 which after hydrogenolytic cleavage of the carba-
mate protecting group allowed the isolation of 3-chloro-
threonine 6.28

N-Cbz-LL-allo-Threonine-b-lactone (8) was prepared
according to the protocol reported by Vederas for the
synthesis of its enantiomer ent-8, but by using PyBOP
instead of BOP for the lactonization process. Following
the same two-step sequence as above, lactone 8 was
transformed to 3-chlorothreonine 10,29 via its N-benzyl-
oxycarbonyl derivative 9.27

The successful lactonization of the threonine derivatives
and their chloride-promoted ring opening to 3-chloro-
threonines prompted us to extend this methodology to
the synthesis of leucine compounds 1 and 2. b-Lacto-
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Scheme 2. Synthesis of 3-chloro-LL-threonines 6 and 10.
nization30 of (2R,3S)-hydroxyleucine (11) was carried
out with HBTU from its corresponding Cbz derivative
to afford 12 in 83% yield. As expected, the ring opening
of isopropyl substituted lactone 12 required longer reac-
tion times than those used in the methyl series to give the
chloro derivative 13, which was isolated in 46% yield.
Removing the carbamate protecting group by hydro-
genolysis afforded a-amino acid anti-(2S,3R)-(-)-1,
which constitutes its first synthesis.31

We next decided to prepare the (2S,3S)-3-chloroleucine
by following the same protocol. The required starting
material, (2R,3R)-3-hydroxyleucine (14), was prepared
according to the Hamada procedure32 from 3-hydroxy-
leucine 11, which was transformed into the methyl ester
of the N-benzoyl derivative and then epimerized
through an oxazoline intermediate. The b-lactone clo-
sure from the Cbz derivative of 14 was easy, even when
using PyBOP, while the ring opening of 15 was as slug-
gish as in leucine derivative 12. The yield in this stereo-
controlled ring opening of b-lactone (15! 16) was
worse (20% yield, 35% based on recovered starting
material) than in 12, as occurs in the threonine series,
in which the allo epimer also undergoes the opening in
lower yield than 4. Finally, deprotection of 16 produced
syn-(2S,3S)-2.33

The stereoselective b-chloro-a-amino acid formation
agrees with the stereochemical outcome observed in
the related b-lactone formation and its ring opening,
implying a stereochemical inversion in the second step.
(As indicated in Schemes 2 and 3, the configuration at
C(2) of the new amino acids is retained from the starting
threonines and leucines, but the descriptor of its nomen-
clature changes due to different prelation rules of the
substituents.) The stereochemistry of the b-lactones
and b-chloro-a-amino acids synthesized was confirmed
by 2D NMR spectra (COSY, HSQC, NOESY). Two
NMR features clearly distinguished the cis (4 and 12)
and trans (8 and 15) lactones: the chemical shift of H-
3, which is more deshielded in the cis than in the trans
isomers, and the chemical shift of C-3, which appears
upfielded in the cis isomers as compared with the trans
counterparts. The most significant differences in the 1H
NMR data of b-chloro-a-amino acids that can be used
to diagnose the stereochemistry are the chemical shifts
of H-3 in the Cbz derivatives, which appear at a higher
field (upfielded �0.35 ppm) in anti derivatives 5 and 13
than those observed in syn compounds 9 and 16. For
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Scheme 3. Synthesis of 3-chloro-DD-leucines 1 and 2.

Table 1. 1H (400 MHz) and 13C (75 MHz) NMR data (D2O) for b-chloro a-amino acids 1, 2, 6 and 10

6 (LL-Thr) 10 (LL-allo-Thr) 1 (DD-Cleu) 2 (DD-allo-Cleu)

dC dH J (Hz) dC dH J (Hz) dC dH J (Hz) dC dH J (Hz)

C-1 170.0 170.9 169.6 172.3
H-2 60.1 4.11 (d, 2.1) 60.0 4.13 (br s) 56.9 4.47 (d, 2.8) 58.0 4.19 (d, 3.6)
H-3 55.3 4.69 (qd) 55.8 4.79 (masked) 67.3 4.09 (dd) 68.4 4.30 (dd)

(6.9, 2.1) (9.5, 2.8) (9.2, 3.6)
H-4 19.4 1.61 (d, 6.9) 21.6 1.67 (d, 6.8) 32.2 2.31 (dhept) 32.7 2.01 (dhept)

(9.5, 6.5) (9.2, 6.3)
H-5 20.3 1.14 (d, 6.6) 20.0 1.14 (d, 6.4)
H-5 0 19.6 1.12 (d, 6.6) 19.8 1.07 (d, 6.4)
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NMR data of b-chloro a-amino acids reported in this
work, see Table 1.

In summary, we report the first synthesis of b-chloroleu-
cine34 derivatives consisting of chlorine promoted ring
opening of hydroxyleucine b-lactones. These new a-ami-
no acids could enable us to develop a synthetic approach
devoted to peptides incorporating 3-chloroleucine.
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5H; ArH); 13C NMR (75 MHz, CDCl3, HSQC): 18.8 (C-
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5), 19.1 (C-5 0), 30.7 (C-4), 56.3 (C-2), 67.2 (OCH2Ph), 76.6
(C-3), 127.9 (p-C), 128.0 (o-C), 128.4 (m-C), 136.0 (ipso-
Ar), 157.1 (NCO), 175.6 (C-1). A solution of the above
acid (385 mg, 1.37 mmol) in CH2Cl2 (10 mL) was cooled
to 0 �C and treated with Et3N (954 lL, 6.85 mmol). The
solution was transferred to a suspension of HBTU
(975 mg, 2.57 mmol) in CH2Cl2 (5 mL). The cooling bath
was removed and the resulting solution was stirred at
room temperature for 16 h. The solution was diluted with
CH2Cl2 (15 mL) and washed with brine (3 · 20 mL). The
organic layer was dried with Na2SO4 and concentrated to
give a residue, which was purified by column chromato-
graphy (SiO2, hexane/EtOAc 3:1) to give 12 (375 mg, 83%)
as a white solid: Rf 0.63 (SiO2, hexane/EtOAc 1:1); for
analytical and spectroscopic data, see Ref. 26. A solution
of lactone 12 (95 mg, 0.36 mmol) in THF (7 mL) was
added, under argon, to LiCl (153 mg, 3.61 mmol), previ-
ously dried at 80 �C under vacuum for 16 h. The reaction
mixture was stirred at reflux temperature for 90 h. Then,
THF was removed by evaporation, the residue was
dissolved in EtOAc (6 mL) and extracted with saturated
solution of NaHCO3 (4 · 5 mL). The combined aqueous
extracts were acidified until pH 2 with 6 N HCl and
extracted with EtOAc (4 · 15 mL), and the organic layer
was successively washed with H2O (2 · 30 mL) and brine
(2 · 15 mL), dried with Na2SO4 and concentrated to give
13 as a colourless oil (50 mg, 46%): ½a�20

D �27.1 (c 0.5,
CHCl3); 1H NMR (300 MHz, CDCl3, COSY): 1.10 (d,
J = 7.8 Hz, 3H, H-5), 1.55 (d, J = 7 Hz, 3H, H-5 0), 2.25
(m, H-4), 3.83 (dd, J = 8.4, 4.3 Hz, H-3), 4.89 (dq, J = 8.8,
4.3 Hz, H-2), 5.14 (s, OCH2Ph), 7.36 (s, 5H, ArH); 13C
NMR (75 MHz, CDCl3,HSQC): 20.5 (C-5, C-50), 32.2 (C-
4), 56.8 (C-2), 67.8 (OCH2Ph), 70.3 (C-3), 128.5 (p-C),
128.7(o-C), 128.9 (m-C), 136.1 (ipso-Ar), 155.9 (NCO),
173.8 (C-1). Pd(C) (10 mg) was added to a solution of 13
(50 mg, 0.17 mmol) in EtOH (6 mL). The mixture was
stirred for 16 h under hydrogen atmospheric pressure at
room temperature. The catalyst was removed by filtration
through Celite�, washing several times with MeOH. The
filtrate was concentrated to give 1 (27 mg, 96%) as a white
solid. mp 134–136 �C (dec); ½a�20

D �7.1 (c 0.88, H2O); NMR
data, see Table 1.

32. For the enantioselective synthesis of the four stereoiso-
meric 3-hydroxyleucines, see: Makino, K.; Okamoto, N.;
Hara, O.; Hamada, Y. Tetrahedron: Asymmetry 2001, 12,
1757–1762.

33. For NMR data of (2S,3S)-3-chloroleucines, see: 16, ½a�20
D

�16.7 (c 1.2, CHCl3); 1H NMR (300 MHz, CDCl3,
gCOSY) 1.08 (d, J = 6.6 Hz, H-5), 1.12 (d, J = 7 Hz, H-
50), 2.00 (dhept, J = 9.6, 6.6 Hz, H-4), 4.19 (dd, J = 9.6,
2.2 Hz, H-2), 4.94 (dd, J = 10.2, 2.2 Hz, H-3), 5.16 (s,
CH2), 5.49 (d, J = 10 Hz, NH), 7.35 (s, ArH); 13C NMR
(100 MHz, CDCl3, gHSQC) 20.2 and 20.8 (C-5 and C-5 0),
33.0 (C-4), 56.8 (C-2), 69.2 (C-3), 67.9 (CH2), 128.4, 128.7,
128.9, 136.2 (Ar), 156.9 (NCO), 175.2 (C-1). Compound 2,
see Table 1. LC-MS of the product indicated that a small
amount of an N-ethyl derivative had formed.

34. For the synthesis of (2S,3S)-(+)-3-fluoroleucine, see:
Davis, F. A.; Srirajan, V.; Titus, D. D. J. Org. Chem.
1999, 64, 6931–6934.
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