ORGANOMETALLICS-

Streamlined Preparation and Coordination Chemistry of Hybrid Phosphine–Phosphaalkene Ligands

Kevin W. Magnuson,[†] Shelly M. Oshiro,[†] Joshua R. Gurr,[†] Wesley Y. Yoshida,[†] Milan Gembicky,[§] Arnold L. Rheingold,[§] Russell P. Hughes,[‡] and Matthew F. Cain^{*,†}

[†]Department of Chemistry, University of Hawaiʻi at Mānoa, 2545 McCarthy Mall, Honolulu, Hawaii 96822, United States [‡]6128 Burke Laboratory, Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States [§]Department of Chemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States

S Supporting Information

ABSTRACT: A rationally designed and selective synthesis of hybrid phosphine–phosphaalkene ligands *E*-1a (Cy₂PCH₂CH= PMes*, Mes* = 2,4,6-tri-*tert*-butylphenyl) and *E*-1b (Ph₂PCH₂CH=PMes*) was developed using phospha-Wittig methodology. The new hybrid ligands *E*-1a and *E*-1b were used to prepare the Pd and Pt dichloride complexes Pd(Cy₂PCH₂CH=PMes*)Cl₂ (2a), Pd(Ph₂PCH₂CH=PMes*)Cl₂ (2b), Pt(Cy₂PCH₂CH=PMes*)Cl₂ (3a), and Pt(Ph₂PCH₂CH=PMes*)Cl₂ (3b). The crystal structures of *E*-1a, *E*-1b, 2a·1.33CHCl₃, 3a·CH₃CN, and 3b were determined. DFT calculations (M06/LACV3P**) on 2a revealed that the π^* orbital located on the P=C unit is low-lying and accessible. An NBO analysis concluded that the phosphaalkene ligand is a significantly poorer σ donor and a slightly better π acceptor than its tertiary phosphine counterpart, due to the presence of the P=C double bond.

B identate phosphines are typically designed based on a 2fold axis of proper rotation (C_2) .¹ However, hybrid ligands,² in which two sterically and electronically different phosphorus groups are linked, represent an underutilized but valuable class of ligands.³ Mixed phosphine—phosphinidines^{4,5} (phosphaalkenes)⁶ were targeted as potential supporting ligands for Pd-catalyzed polymerization and oligomerization of ethylene.⁴ However, synthesis of 1 as a mixture of phosphaalkene isomers (*E* or *Z*) in a 10:3 ratio, with a 17% isolated yield of the major isomer (Scheme 1: R = Mes = 2,4,6trimethylphenyl; Mes^{*} = 2,4,6-tri-*tert*-butylphenyl)⁷ was plagued by "instability of the ligand and synthetic intermediates (high air and moisture sensitivity, low crystallinity)".^{4,8}

Perhaps overlooked due to synthetic difficulties,⁹ development of two carbon-bridged hybrid ligands, incorporating a modular and tunable phosphine group¹⁰ and a π -accepting phosphaalkene¹¹ unit, could find application in catalytic and bond activation processes.^{7,12} Bidentate (bis)phosphaalkene ligands¹³ have been used in hydroamination,⁷ hydrosilylation,¹⁴ conjugate addition,¹⁵ and other transition-metal-catalyzed reactions.¹⁶ Redox-active/noninnocent¹⁷ phosphaalkene-based pincer complexes have been implicated in N–H,¹⁸ C–H,¹⁹ and P-C bond cleavage events,²⁰ catalytic N-alkylation of amines with alcohols,²¹ unanticipated disproportionations²² and reductions,²³ and the stabilization of low-coordinate electronrich metal complexes.²⁴ The range of applications is consistently tied to the accessibility and responsiveness of the low-lying π^* orbital located on the P=C fragment.^{11,13} This reactivity enhancement with redox-active/noninnocent ligands,¹⁷ combined with the opportunity to add diversity²⁵ to an underexplored ligand pool, provided the impetus required to reinvest in a modified synthesis of ligands of type 1.

Reexamination of the synthetic pathway to 1 suggested that trapping the first phosphinated intermediate as an air-stable phosphonium dimer²⁶ would simplify the reaction. Controlled

Received: February 9, 2016

fragmentation of the dimer with base to release the tethered aldehyde²⁷ would allow treatment with phospha-Wittig²⁸ reagents (Mes*P=PMe₃) to access hybrid phosphine–phosphaalkene ligands in an *E*-selective fashion. Here we report the successful implementation of this strategy and the coordination chemistry of these new ligands with Pd(II) and Pt(II).

Phosphination of the functionalized acetals with PHCy₂ or KPPh₂ affords phosphonium dimers (A: R = Cy, X = Br; R = Ph, X = Cl) as described in the literature (Scheme 2).²⁶

Scheme 2. Selective Synthesis of E-1a and E-1b

Treatment of A^{26} with KOtBu (2 equiv in toluene) generated the phosphine-functionalized aldehyde **B**,²⁷ which reacted with the phosphinidene transfer agent Mes*P==PMe₃ (C)²⁹ to give selective formation of *E*-1a and *E*-1b,³⁰ characterized by the expected two doublets (*E*-1a, *J*_{PP} = 37 Hz; *E*-1b, *J*_{PP} = 47 Hz) in their ³¹P{¹H} NMR spectra.

E-1a and *E*-1b were isolated as pale yellow solids and characterized by ³¹P{¹H}, ¹H, and ¹³C{¹H} NMR spectroscopy, mass spectrometry, and elemental analysis. The ¹H NMR signals of the CH₂ protons located on the two-carbon backbone are particularly diagnostic, appearing as doublets of doublets of doublets (*E*-1a, J = 2.5, 9.5, 22 Hz; *E*-1b, J = 2.5, 9, 21 Hz). Although partially hidden under the prominent Mes* resonance, the phosphaalkene proton of *E*-1a displayed a complex doublet of triplets of doublets pattern; the analogous signal in *E*-1b was buried beneath the PPh₂/Mes* region.³⁰ The structures of *E*-1a and *E*-1b were confirmed by X-ray crystallography (Figure 1).

Figure 1. X-ray crystal structures of *E*-1a (left) and *E*-1b (right). Selected bond lengths (Å): for *E*-1a, $P_1-C_1 = 1.8685(16)$, P_2-C_2 (P=C) = 1.6645(17); for one of the two independent molecules of *E*-1b, $P_3-C_{45} = 1.867(2)$, $P_4-C_{46} = (P=C) = 1.663(2)$.

Addition of *E*-1a in chloroform to $Pd(COD)Cl_2$ or $Pt(Et_2S)_2Cl_2$ generated dichlorides 2a and 3a, respectively (Scheme 3). The ³¹P{¹H} NMR spectra of both complexes showed a dramatic upfield chemical shift change versus the free ligand with greatly reduced J_{PP} couplings (2a, $J_{PP} = 17$ Hz; 3a,

Scheme 3. Synthesis of Pd(II) and Pt(II) Complexes

 $J_{PP} = 3 \text{ Hz}$), with 3a also displaying Pt satellites ($J_{PtP} = 4520 \text{ Hz}$, P=C; $J_{PtP} = 3280 \text{ Hz}$, PCy₂).

Likewise, *E*-1b generated 2b and 3b ($J_{PtP} = 4425 \text{ Hz}, P==C$; $J_{PtP} = 3390 \text{ Hz}, PPh_2$). The significantly larger J_{PtP} couplings of the phosphaalkenes are consistent with higher s character in the P donor orbital (vide infra). Complexes 2 and 3 were fully characterized by ³¹P{¹H}, ¹H, and ¹³C{¹H} NMR spectroscopy, mass spectrometry, and elemental analysis. In both sets of metal complexes, the ¹H NMR spectra displayed a distinctive doublet of doublets of triplets signal for the phosphaalkene proton.³⁰ Structures of 2a and 3a,b were unequivocally established by Xray crystallography (Figure 2), exhibiting distorted-squareplanar geometries around the Pd/Pt center, with the hybrid ligands adopting bite angles of less than 86°.³¹

Figure 2. X-ray crystal structures of 2a (top left), 3a (bottom left), and 3b (top right). Selected bond lengths (Å): for 2a, $Pd-P_1 = 2.2558(13)$, $Pd-P_2 = 2.2194(14)$, $P_1-C_1 = 1.863(5)$, P_2-C_2 (P=C) = 1.648(5), $Pd-Cl_1 = 2.3485(13)$, $Pd-Cl_2 = 2.3748(13)$; for 3a, $P_1-C_1 = 1.847(8)$, P_2-C_2 (P=C) = 1.651(8); for 3b, $P_1-C_{13} = 1.850(9)$, P_2-C_{14} (P=C) = 1.653(9). The DFT calculated structure of 2a is shown at the bottom right with selected bond lengths (Å).

The significant upfield shifts in the ³¹P NMR spectra on coordination are not correlated with changes in the P==C bond length, which does not increase upon binding to Pd or Pt centers, an initially surprising observation given the reported π accepting ability of phosphaalkenes.^{11,18,20–23} However, phosphaalkene-derived pincers and bidentate ligands^{32,33} also showed negligible change in the P==C bond length upon coordination to Pd(II) or Pt(II), and the π^* orbitals located on these phosphaalkene-supported complexes were readily able to reversibly accept an electron³² or undergo nucleophilic attack.³³ Furthermore, a recent report on Ir PNP pincers featuring phosphaalkene donor groups¹⁹ suggested that the degree of change in the P==C bond length and upfield shift of the ³¹P NMR signal is governed by both the electron-donating ability of the X-type ligand and the overall charge on the metal complex.³⁴ Alternatively, the substantial increase in the C=P-C angle ($\sim 10^{\circ}$) on coordination may reflect increased s character in the P-C bonds, leaving the P=C bond length largely unperturbed.

DFT studies (M06/LACV3P**++) were carried out on the full molecules **2a** and the free ligand *E*-**1a**. Full details are provided in the Supporting Information.³⁰ The calculated structure for **2a** (Figure 2) shows an excellent match with the crystallographic metrics, including a slightly shorter bond from Pd to the phosphalkene in comparison to the phosphalkene. Two minima were located for *E*-**1a**: a gauche conformer similar to that found crystallographically, and a cis conformer with a P–C–C–P dihedral angle of 1° lying only 3.1 kcal/mol higher in energy. Clearly, the energy cost of ligand distortion for cis chelation is small. For energy comparisons, we have utilized data for the cis conformer of *E*-**1a** and its cis-chelated complex **2a**.

In *cis-E-1a*, the C==P π/π^* energy gap is 5.52 eV. Coordination to Pd in **2a** stabilizes both π and π^* levels slightly with a small increase in the π/π^* gap to 5.62 eV. A partial MO energy level diagram for **2a** is shown in Figure 3.

Figure 3. Partial MO energy level diagram for 2a.

The C=P π MO is HOMO-7 (171A); the higher occupied MOs are Pd and Cl lone pair combinations. The C=P π^* MO (180A) lies slightly above the LUMO (179A), the expected Pd-ligand σ^* combination. The C=P π^* orbital remains available energetically and provides opportunities for further ligand functionalization via nucleophilic attack or reduction.

Donor/acceptor capabilities of the two phosphorus centers were evaluated using the natural bond orbital (NBO) method,³⁵ with a reference Lewis structure³⁶ chosen (using the \$CHOOSE keyword in NBO) as the *E*-1a ligand and the bent PdCl₂ fragments frozen in their geometries in 2a. Relative to this reference, delocalization results in donor NBOs showing depletion from full occupancies of 2 and acceptor NBOs showing occupancies above 0. Second-order perturbation

analysis of the Fock matrix provides energy stabilizations resulting from individual donor/acceptor delocalizations, which are visualized as natural localized molecular orbitals (NLMOs). Key data are provided in Figure 4.

The two phosphorus lone pairs are distinguished by significantly different hybridizations: P(2) sp^{2.50} and P(3) sp^{1.55}. As a result, despite its slightly longer bond length to Pd, P(2) is the better σ donor to PdCl₂. The occupancy of the P(2) lone pair (1.30) is depleted more than that of P(3) (1.54), and

NLMO	Donor/acceptor delocalization; acceptor NBO occupancy	Stabilization Energy (kcal/mol)
	P(3)lp→Pd-Cl(4) σ* Pd-Cl(4) σ* 0.57	E = 139.6
	P(2)lp→Pd-Cl(5) σ* Pd-Cl(5) σ* 0.61	E = 213.1
	Pd(d)→P(2)-C(6) σ* P(2)-C(6) σ* 0.13 in plane	E = 2.2
	Pd(d)→P(2)-C(11) σ* P(2)-C(11) σ* 0.06 out of plane	E = 2.0
	Pd(d)→P(2)-C(13) σ* P(2)-C(13) σ* 0.07 out of plane	E = 1.5
	Pd(d)→P(3)-C(9) σ* P(3)-C(9) σ* 0.05 in plane	E = 1.4
	Pd(d)→P(3)-C(15) σ* P(3)-C(15) σ* 0.04 in plane	E = 2.7
	Pd(d)→P(3)-C(9) π^* P(3)-C(9) π^* 0.13 out of plane	E = 7.4

Figure 4. Calculated NLMOs with NBO occupancies and delocalization energies for the interactions of ligand *E*-1a with $PdCl_2$ in complex 2a. For clarity only those carbon atoms directly bound to phosphorus are shown.

increased occupancies of Pd–Cl(4) σ^* (0.61) in comparison to Pd-Cl(5) σ^* (0.57) are consistent with a slightly shorter Pd-Cl bond trans to the phosphaalkene. Stabilization energies corresponding to these delocalizations are 213.1 and 139.6 kcal/mol, respectively. Unsurprisingly, the π interactions are much smaller. The π -acceptor components for the tertiary phosphorus P(2) are the three P-C σ^* orbitals; of these P-C(6) lies in the coordination plane and P-C(11) and P-C(13) lie out of the plane. The in-plane energy stabilization for P(2) is 2.2, and the two out of plane interactions sum to 3.5, giving a total of 5.7 kcal/mol in π -acceptor interactions. In contrast, P(3) has two in-plane interactions involving P–C σ^* orbitals affording 4.1 kcal/mol stabilization, and a significant out-of-plane interaction with the P=C π^* orbital (7.4 kcal/ mol) giving a total 11.5 kcal/mol stabilization. This method of appraisal concludes that the phosphaalkene component is a poorer σ donor and a slightly better π acceptor than its tertiary phosphine partner.

In summary, we have reported a rationally designed and streamlined synthesis of an unexplored class of hybrid phosphine-phosphaalkene ligands. The methodology is modular and tunable, as phosphine groups featuring either large alkyl groups (*E*-1a) or small aryl groups (*E*-1b) were both tolerated. Furthermore, the coordination chemistry with Pd and Pt to afford 2a,b and 3a,b was straightforward, yielding robust and crystalline metal-ligand platforms. Future investigations will target synthesizing an expanded library of new hybrid ligands, with the goal of exploiting the innate reactivity of the P=C bond to enhance catalytic reactions and bond activation events. The low-lying π^* component of the P=C bond suggests these hybrid phosphine-phosphaalkene ligands may harness redox-active/noninnocent behavior,³⁷ which will be the focus of upcoming reactivity studies.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.organo-met.6b00101.

Experimental details, NMR spectra, and full details of DFT and NBO computational methodology (PDF)

Crystallographic data (CIF)

- Crystallographic data (CIF)
- Crystallographic data (CIF)
- Crystallographic data (CIF)
- Crystallographic data (CIF)
- Cartesian coordinates (XYZ)
- Cartesian coordinates (XYZ)
- Cartesian coordinates (XYZ)

AUTHOR INFORMATION

Corresponding Author

*E-mail for M.F.C.: mfcain@hawaii.edu.

Author Contributions

The manuscript was written through contributions of all authors. All authors have given approval.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

M.F.C. thanks the University of Hawai'i at Mānoa for generous start-up funds and laboratory space, the UHM faculty for

support and access to their chemical inventories, Strem Chemical Co., Sigma-Aldrich, Chemglass Life Sciences, Fisher Scientific, Wilmad-Labglass, Dr. Christian Ehm for a critical reading of an early draft, and William Brennessel (University of Rochester) for elemental analyses.

REFERENCES

(1) (a) Whitesell, J. K. Chem. Rev. **1989**, 89, 1581–1590. (b) Burk, M. J. Acc. Chem. Res. **2000**, 33, 363–372.

(2) (a) Czauderna, C. F.; Cordes, D. B.; Slawin, A. M. Z.; Müller, C.; van der Vlugt, J. I.; Vogt, D.; Kamer, P. C. J. *Eur. J. Inorg. Chem.* 2014, 2014, 1797–1810. (b) Ohashi, A.; Kikuchi, S.; Yasutake, M.; Imamoto, T. *Eur. J. Org. Chem.* 2002, 2002, 2535–2546.

(3) (a) Hoge, G.; Wu, H.-P.; Kissel, W. S.; Pflum, D. A.; Greene, D. J.; Bao, J. J. Am. Chem. Soc. **2004**, 126, 5966–5967. (b) Gridnev, I. D.; Imamoto, T.; Hoge, G.; Kouchi, M.; Takahashi, H. J. Am. Chem. Soc. **2008**, 130, 2560–2572. (c) Noonan, G. M.; Fuentes, J. A.; Cobley, C. J.; Clarke, M. L. Angew. Chem., Int. Ed. **2012**, 51, 2477–2480.

(4) Daugulis, O.; Brookhart, M.; White, P. S. Organometallics 2002, 21, 5935–5943.

(5) Aktas, H.; Slootweg, J. C.; Lammertsma, K. Angew. Chem., Int. Ed. 2010, 49, 2102–2113.

(6) The nomenclature used in ref 4 is somewhat misleading. Formally, phosphinidenes are phosphorus analogues of carbenes and nitrenes. Phosphaalkanes are the phosphorus versions of alkenes. The ligands in ref 4 are phosphaalkenes.

(7) Takita, R.; Takada, Y.; Jensen, R. S.; Okazaki, M.; Ozawa, F. Organometallics 2008, 27, 6279-6285.

(8) Brookhart, M.; Daugulis, O. WO 03/076450A1, 2003.

(9) Kyba, E. P.; Kerby, M. C.; Rines, S. P. Organometallics 1986, 5, 1189–1194.

- (10) Tolman, C. A. Chem. Rev. 1977, 77, 313-346.
- (11) Le Floch, P. Coord. Chem. Rev. 2006, 250, 627-681.

(12) (a) Brauer, D. J.; Liek, C.; Stelzer, O. J. Organomet. Chem. 2001, 626, 106–112. (b) Liang, H.; Nishide, K.; Ito, S.; Yoshifuji, M. Tetrahedron Lett. 2003, 44, 8297–8300.

(13) Ozawa, F.; Yoshifuji, M. Dalton Trans. 2006, 4987-4995.

(14) Hayashi, A.; Yoshitomi, T.; Umeda, K.; Okazaki, M.; Ozawa, F. Organometallics 2008, 27, 2321–2327.

(15) Jensen, R. S.; Umeda, K.; Okazaki, M.; Ozawa, F.; Yoshifuji, M. J. Organomet. Chem. **2007**, 692, 286–294.

(16) (a) Ito, S.; Nanko, M.; Mikami, K. ChemCatChem 2014, 6, 2292–2297. (b) Dugal-Tessier, J.; Dake, G. R.; Gates, D. P. Org. Lett. 2010, 12, 4667–4669.

(17) Chirik, P. J. Inorg. Chem. 2011, 50, 9737-9740.

(18) (a) Chang, Y.-H.; Nakajima, Y.; Tanaka, H.; Yoshizawa, K.; Ozawa, F. J. Am. Chem. Soc. **2013**, 135, 11791–11794. (b) Chang, Y.-H.; Nakajima, Y.; Tanaka, H.; Yoshizawa, K.; Ozawa, F. Organometallics **2014**, 33, 715–721.

(19) Chang, Y.-H.; Takeuchi, K.; Wakioka, M.; Ozawa, F. Organometallics **2015**, *34*, 1957–1962.

(20) Lin, Y.-F.; Nakajima, Y.; Ozawa, F. Dalton Trans. 2014, 43, 9032–9037.

(21) (a) Nakajima, Y.; Okamoto, Y.; Chang, Y.-H.; Ozawa, F. *Organometallics* **2013**, *32*, 2918–2925. (b) Chang, Y.-H.; Nakajima, Y.; Ozawa, F. *Organometallics* **2013**, *32*, 2210–2215.

(22) Lin, Y.-F.; Ichihara, N.; Nakajima, Y.; Ozawa, F. Organometallics 2014, 33, 6700-6703.

(23) Nakajima, Y.; Ozawa, F. Organometallics 2012, 31, 2009–2015.
(24) (a) Nakajima, Y.; Shiraishi, Y.; Tsuchimoto, T.; Ozawa, F. Chem. Commun. 2011, 47, 6332–6334. (b) Nakajima, Y.; Nakao, Y.; Sakaki, S.; Tamada, Y.; Ono, T.; Ozawa, F. J. Am. Chem. Soc. 2010, 132, 9934–9936.

(25) Lennon, I. C.; Pilkington, C. J. Synthesis 2003, 2003, 1639–1642.

(26) (a) Mikhailine, A. A.; Kim, E.; Dingels, C.; Lough, A. J.; Morris, R. H. *Inorg. Chem.* **2008**, 47, 6587–6589. (b) Lagaditis, P. O.; Mikhailine, A. A.; Lough, A. J.; Morris, R. H. *Inorg. Chem.* **2010**, 49, 1094-1102. (c) Zuo, W.; Morris, R. H. Nat. Protoc. 2015, 10, 241-257.

(27) Matt, D.; Ziessel, R.; de Cian, A.; Fischer, J. New J. Chem. 1996, 20, 1257–1263.

(28) (a) Shah, S.; Protasiewicz, J. D. Chem. Commun. **1998**, 1585–1586. (b) Shah, S.; Protasiewicz, J. D. Coord. Chem. Rev. **2000**, 210, 181–201.

(29) Deschamps, E.; Deschamps, B.; Dormieux, J. L.; Ricard, L.; Mézailles, N.; Le Floch, P. Dalton Trans. **2006**, 594–602.

(30) See the Supporting Information for experimental details, selected NMR spectra, DFT calculations, and X-ray crystallography data.

(31) Birkholz, M.-N.; Freixa, Z.; van Leeuwen, P. W. N. M. Chem. Soc. Rev. 2009, 38, 1099–1118.

(32) Jouaiti, A.; Geoffroy, M.; Terron, G.; Bernardinelli, G. J. Am. Chem. Soc. 1995, 117, 2251–2258.

(33) (a) Jouaiti, A.; Geoffroy, M.; Bernardinelli, G. Chem. Commun. 1996, 437–438. (b) Jouaiti, A.; Geoffroy, M.; Terron, G.; Bernardinelli, G. J. Chem. Soc., Chem. Commun. 1992, 155–156.

(34) Related rationalizations are well established in metal carbonyl chemistry (see ref 10).

(35) (a) Glendening, E. D.; Landis, C. R.; Weinhold, F. Wiley Interdisciplinary Reviews: Computational Molecular Science 2012, 2, 1– 42. (b) Weinhold, F.; Landis, C. R. Discovering Chemistry with Natural Bond Orbitals; Wiley: Hoboken, NJ, 2012. (c) Weinhold, F.; Landis, C. R. Valency and Bonding: A Natural Bond Orbital Donor-Acceptor Perspective; Cambridge University Press: Cambridge, U.K., 2005.

(36) The importance of a judicious choice of reference structure is discussed in: Landis, C. R.; Hughes, R. P.; Weinhold, F. Organometallics **2015**, *34*, 3442–3449.

(37) (a) Chirik, P. J.; Wieghardt, K. Science 2010, 327, 794–795.
(b) Serin, S. C.; Patrick, B. O.; Dake, G. R.; Gates, D. P. Organometallics 2014, 33, 7215–7222.