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ABSTRACT: Discovering molecules that regulate closely related
protein isoforms is challenging, and in many cases the consequences
of isoform-specific pharmacological regulation remains unknown. RAF
isoforms are commonly mutated oncogenes that serve as effector kinases
in MAP kinase signaling. BRAF/CRAF heterodimers are believed to be
the primary RAF signaling species, and many RAF inhibitors lead to a
“paradoxical activation” of RAF kinase activity through transactivation
of the CRAF protomer; this leads to resistance mechanisms and
secondary tumors. It has been hypothesized that CRAF-selective
inhibition might bypass paradoxical activation, but no CRAF-selective
inhibitor has been reported and the consequences of pharmacologically
inhibiting CRAF have remained unknown. Here, we use bio-orthogonal
ligand tethering (BOLT) to selectively target inhibitors to CRAF. Our results suggest that selective CRAF inhibition promotes
paradoxical activation and exemplify how BOLT may be used to triage potential targets for drug discovery before any target-selective
small molecules are known.

■ INTRODUCTION

Selective regulation of protein isoforms with small molecules
remains an outstanding challenge. In many cases no small
molecule exists that can selectively target a specific isoform and
so the potential of selective pharmacological regulation
remains unknown. Strategies that define the consequence of
selective pharmacological regulation for specific isoforms
would provide an approach for triaging molecular targets and
enable efforts to be focused on developing selective small
molecules for the most valuable and validated targets.
However, addressing this challenge without isoform-selective
small molecules in hand presents an apparent paradox. For
protein kinases this paradox has been addressed by the
mutation of a gatekeeper residue in the active site to create an
active enzyme containing a “hole” that can be selectively
inhibited by an ATP analogue containing a chemical “bump”;1

this principle has recently been extended to bromodomain
proteins,2 glyco-transferases,3 and methyl transferases.4

We previously described a distinct approach for the selective
regulation of protein isoforms named biorthogonal ligand
tethering (BOLT). In this approach we site-specifically and
cotranslationally encode a noncanonical amino acid (ncAA)
bearing a bio-orthogonal group (commonly (2S)-2-amino-6-
((((1R,8S)-bicyclo[6.1.0]non-4-yn-9-ylmethoxy)carbonyl)
amino) hexanoic acid (BCNK (Figure 1A)) or Nε-(((2-
methylcycloprop-2-en-1-yl)methoxy)carbonyl)- L-lysine
(CypK)5,6 into the target protein using genetic code
expansion.7,8 We then add a druglike small molecule−tetrazine
conjugate to cells. The conjugate reacts with the target protein
through a rapid bioorthgonal inverse electron demand Diels−

Alder reaction9−12 and tethers the druglike small molecule to
the target (Figure 1B). Such tethering can increase the effective
concentration of the ligand in proximity of the active site13−19

and lead to selective regulation of the target protein. We have
previously shown that this approach enables the selective
inhibition of MEK1 or MEK2, and by using a photoswitchable
linker in the druglike small molecule−tetrazine conjugate, we
have demonstrated reversible photocontrol of MEK1; we have
also extended the approach to LCK.20 Because the ligand is
tethered at sites distinct from the active site, BOLT does not
require mutation of conserved residues in the active site, which
can abrogate the functions of many enzymes. Moreover, sites
of tethering distal from the active site, which do not affect
protein function, can be simply found and transferred between
similar proteins.
The Ras/ERK signaling pathway controls many cellular

processes, including differentiation, proliferation, and survival.
Frequent mutations in the pathway, primarily generating
activated forms of RAS and BRAF, are observed in more than
30% of human cancers.21,22 The canonical pathway integrates
extracellular signals through transmembrane receptors,
switches Ras GTPase to the active GTP-bound form, and
recruits RAF kinases to the membrane, where they are
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activated.23 Three RAF protein kinase (A, B, and C) serve as
effector kinases in the RAS-ERK signaling cascade. These
kinases drive the activating phosphorylation of MEK, which
ultimately results in an ERK-mediated transcriptional re-
sponse.24 Key to the activation of RAF kinases is the RAS-
mediated disruption of their autoinhibited conformation25 and
the formation of homo- and heterodimers.26−28

A great deal of effort has gone into generating RAF
inhibitors. In cells expressing mutant BRAF (e.g., V600E),
inhibitors suppress RAF activity and ERK signaling, while in
cells expressing wild-type BRAF most inhibitors cause an
undesired increase in RAF activity and ERK signaling (so-
called “paradoxical activation”).29−32 Understanding the
specific mechanism of action of RAF inhibitors has been the
focus of intense research efforts and has challenged the
academic and drug discovery communities for nearly 2
decades.33−38

Prevailing models of paradoxical activation center on
inhibitors promoting RAF dimerization and ultimately eliciting
MEK-ERK pathway activation, an outcome that is amplified by
oncogenic RAS mutations.37 The role of RAF dimerization is
central to both physiological and inhibitor induced signal-
ing.23,39 The homo- and heterodimers formed by wild-type
BRAF and CRAF are responsible for phosphorylating MEK.
While mutant BRAFV600E is constitutively active and has a
limited role in dimerization,40 the BRAF-CRAF heterodimer is
believed to be the primary species in both native signaling and
paradoxical activation.39,41,42 Genetic and biochemical results
have repeatedly implicated CRAF as the primary species
responsible for phosphorylating MEK in paradoxical activation
and native signaling.30−32,43−46 Specifically, inhibitor-bound
BRAF is implicated in promoting heterodimerization with
unbound CRAF, causing transactivation of CRAF through an
allosteric mechanism at the protein−protein interface between
protomer kinase domains.30,32

Decades of genetics research have employed both germline
and conditional allele manipulations of RAF isoforms; these
studies have revealed both redundancy and distinct functions
for BRAF and CRAF in different cell types and stages of cancer
progression.47−50 Recent genetic ablation of CRAF suggested
that removal of the protein may afford a therapeutic
benefit.45,51 However, as no well-characterized CRAF-selective
inhibitors have been reported, the consequences of selective
CRAF inhibition have remained unknown. Here, we develop
BOLT to selectively target inhibitors to CRAF. Our results
suggest that selective CRAF inhibition promotes paradoxical
activation.

■ RESULTS AND DISCUSSION
There are over 2 dozen well-characterized small-molecule
inhibitors targeting RAF kinases, with characterization
spanning in vitro, preclinical, and clinical studies.37 Notably,
none are selective to the CRAF isoform in mutant RAS cells.
Drawing upon available RAF-selective pharmacophores, we
designed and synthesized a series of potential BOLT ligands
composed of three chemical moieties: a pharmacophore, a
linker, and a tetrazine (Figure 1C and Supporting Informa-
tion). Pharmacophores were chosen from classic and distinct
RAF inhibitors, PLX4720 (type I, αC-OUT/DFG-IN) and
AZ628 (type II, αC-IN/DFG-OUT). We created AZ13-tet
(containing the AZ628 pharmacophore) and the AZ181-tet
(containing the PLX4720 pharmacophore). We used the
structure of RAF-inhibitor complexes52,53 to design syntheti-
cally accessible BOLT ligands that should not interfere with
pharmacophore binding. We demonstrated that BOLT ligands
exhibited similar cellular responses and paradoxical activation
to their parent inhibitors; as expected, BOLT ligands showed a
decrease in potency (Figure S1).
We chose sites for ncAA incorporation in CRAF based on

the structure of RAF, a structural alignment of its kinase
domain with that of MEK, and previous work developing
BOLT on MEK (Figure 1D and Figure S2).20 We encoded
BCNK at sites in both the N and C lobes of CRAF using the
MmPylRS(Y306A, Y384F)54 /MmtRNAPyl

CUA pair, BCNK,
and CRAF (YXXXTAG) (Figure S3A,B). The majority of
selected positions showed BCNK-dependent expression of full
length CRAF and were efficiently labeled with a fluorescent
tetrazine conjugate (Figure S3F). We also incorporated BocK
(Figure 1A), an amino acid containing a nonreactive side
chain.

Figure 1. Designing BOLT ligands and sites of CRAF tethering. (A)
Structures of noncanonical amino acids (ncAA) BocK and BCNK.
ncAA are site-specifically incorporated into amber (UAG) variants of
the CRAF gene. (B) Schematic of tethering between BOLT ligand,
containing tetrazine (blue), linker (green), and pharmacophore (red),
and BCNK containing proteins following an inverse electron demand
Diels−Alder reaction between the BCNK and tetrazine. (C) Chemical
structures of parent pharmacophores and the corresponding BOLT
ligands. RAF pharmacophores, AZ628 (type II), and PLX4720 (type
I) are shown in red. BOLT ligands AZ13-tet and AZ181-tet are
shown; the tetrazine moiety is in blue, the linker in green, and the
pharmacophore in red. (D) Structural superposition of MEK (gray)
and CRAF (blue) kinase structures. A small-molecule inhibitor
(yellow) occupies the ATP binding pocket. Spheres highlight
positions tested for amber suppression expression and tethering,
MEK (red) and CRAF (orange). Figure created using Pymol. PDB:
3ZLS MEK; 3OMV CRAF. (E) Immunoblot of the indicated CRAF
variants showing full length and ncAA-dependent expression. Variants
(small arrow) include C terminal epitope tags, FLAG, and HA
(3xFLAG-HA) to ensure immunoprecipitation and detection of full
length CRAF. Plasmids containing 4x[tRNAPyl] and CRAF-
(S357TAG) or CRAF(Q436TAG) variants were transfected into
HCT116* cells. Cells were grown with indicated ncAA (2 mM BocK,
200 μM BCNK). Lysates were collected after 48 h of expression.
Extended screening and testing of CRAF(YXXXTAG) alleles are
available in Figure S3; XXX indicates the position at which the codon
for a canonical amino acid (Y) is replaced with the amber codon
(TAG).
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We chose CRAF(S357TAG) and CRAF(Q436TAG) (in the
N lobe and C lobe of the kinase, respectively) for further
characterization; these mutants produce good levels of ncAA-
dependent expression and position the ncAA, adjacent to the
solvent channel, where tethering may enable the pharmaco-
phores to access their native binding sites within the same
monomer. Distance measurements suggest that tethering
across the RAF dimer − in a trans mode− is prevented by
the relatively short linker. Analogous positions on ARAF and
BRAF were also amenable to ncAA incorporation (Figure S4).
The greatest potential utility of selective CRAF inhibition

would be in tumors containing activating RAS mutations;
additionally, the phenomenon of paradoxical RAF activation by
current RAF inhibitors is amplified in cells containing activated
RAS. We therefore engineered HCT116 (KRASG13D) cells
with genetic code expansion machinery to enable the site-
specific incorporation of either BCNK or BocK. A dual
expression cassette encoding MmtRNAPyl

CUA and MmPylRS-
(Y306A, Y384F) as a BFP-T2A fusion was assembled and
integrated into the genome of HCT116 cells using the
PiggyBac Transposase (Figure S5A).55 We used FACS
selection for BFP fluorescence to discover clones expressing
a high level of the synthetase. We thus created the stable cell
line: HCT116 4x[MmtRNAPyl ]-BFP-2A-PylRS(Y306A,
Y384F) (henceforth designated HCT116*) (Figure S4B−D).
We transfected 4x[MmtRNAPyl] CRAF(YXXXTAG) into this
cell line and supplemented cells with either BCNK or BocK
(Figure 1E). CRAF expression was ncAA-dependent and
efficient, and we used this system to investigate the cellular
consequence of BOLT ligands on RAF kinases in all
subsequent experiments. In all experiments, we distinguished
the effects of ligand tethering (BOLT) from the effects of
reversible ligand binding to all RAF species using matched

controls in which BocK (which does not react with tetrazines)
replaced BCNK in CRAF.
To investigate the consequence of selective CRAF

inhibition, we expressed CRAF containing BCNK or BocK
at position S357 or Q436 in HCT116* cells. We washed cells
to remove the free ncAA and then added 2 μM AZ13-tet or
AZ181-tet to cells for 2 h. ncAA-containing CRAF was then
immunoprecipitated via a C-terminal 3xFLAG epitope tag and
the eluted material was immediately assayed for RAF kinase
activity, using kinase-dead, recombinant MEK1 as a substrate
(Figure 2A,B and Figure S6A,B). CRAF (S357BCNK) showed
an increase in MEK phosphorylation with respect to CRAF
(S357BocK) in this assay when both proteins were
immunoprecipitated from cells to which AZ181-tet had been
added (Figure 2A). Similarly, CRAF (Q436BCNK) showed an
increase in MEK phosphorylation with respect to CRAF
(Q436BocK), when both proteins were immunoprecipitated
from cells to which AZ181-tet had been added (Figure 2B).
CRAF (S357BCNK) showed an increase in MEK phosphor-
ylation with respect to CRAF (S357BocK) when both proteins
were immunoprecipitated from cells to which AZ13-tet had
been added (Figure 2A). However, CRAF (Q436BCNK) and
CRAF (Q436BocK) led to comparably low levels of MEK
phosphorylation, when both proteins were immunoprecipi-
tated from cells to which AZ13-tet had been added.
Next, we repeated the experiments described above using

AZ13-tet or AZ181-tet at concentrations spanning 3 orders of
magnitude (20 nM, 200 nM, and 2 μM). Crucially, we observe
a dose-dependent increase in MEK phosphorylation for CRAF
(S357BCNK), but not CRAF (S357BocK), with both AZ13-
tet and AZ181-tet (Figure 2C, Figure S6C). Notably, we
observe a similar dose-dependent increase in MEK phosphor-
ylation for CRAF (Q436BCNK) but not CRAF (Q436BocK),

Figure 2. BOLT of CRAF variants elicits kinase activation. (A) Immunoblot of kinase assays using CRAF (S357TAG) expressed with BCNK or
BocK in HCT116*. Cells were washed to remove excess ncAA and then treated with indicated BOLT ligand (AZ13-tet or AZ181-tet, 2 μM).
CRAF(S357BCNK) or CRAF(S357BocK) were immunoprecipitated via their C-terminal FLAG tag. The immunoprecipitate was assayed for RAF
kinase activity in vitro, using catalytically dead MEK1 as a substrate. All CRAF amber alleles are HA tagged. (B) Immunoblot of kinase assays using
CRAF (Q436TAG) expressed with BCNK or BocK in HCT116*. Cells were washed to remove excess ncAA and then treated with indicated
BOLT ligand (AZ13-tet or AZ181-tet, 2 μM). CRAF(Q436BCNK) or CRAF(Q436BocK) were immunoprecipitated via their C-terminal FLAG
tag. The immunoprecipitate was assayed for RAF kinase activity in vitro, using catalytically dead MEK1 as a substrate. All CRAF amber alleles are
HA tagged. (C) Immunoblot of kinase assays using CRAF (S357TAG) expressed with BCNK or BocK in HCT116* treated with varying
concentrations of BOLT ligands. The experiment was performed as described in panel A. Ligand concentrations were 2000, 200, and 20 nM. (D)
Immunoblot of kinase assays using CRAF (Q436TAG) expressed with BCNK or BocK in HCT116* treated with varying concentrations of BOLT
ligands. The experiment was performed as described in panel B. Ligand concentrations were 2000, 200, and 20 nM.
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with AZ181-tet (Figure 2D, Figure S6D). We observe an
increase in MEK phosphorylation within 20 min of ligand
addition (Figure S7). Interestingly, CRAF (Q436BCNK), but
not CRAF (Q436BocK), shows a high level of MEK
phosphorylation, after immunoprecipitation from cells treated
with 20 nM AZ13-tet, but higher concentrations of AZ13-tet
decrease the MEK phosphorylation mediated by CRAF
(Q436BCNK) without affecting the MEK phosphorylation
mediated by CRAF (Q436BocK); the level of MEK
phosphorylation mediated by CRAF (Q436BCNK) from
cells treated with 2 μM AZ13-tet is low and comparable to
that mediated by CRAF (Q436BocK) treated with AZ13-tet
(from 20 nM to 2 μM) (Figure 2B,D).
Our data are consistent with selective CRAF inhibition, via

bio-orthogonal ligand tethering, leading to transactivation of
associated RAF monomers in a RAF dimer (paradoxical
activation). For all of the ncAA position/BOLT ligand
combinations tested, the activation is dependent on BOLT
ligand concentration when the protein contains BCNK, but
does not show the same level of activation when the protein
does not contain BCNK. This indicates that the observed
paradoxical activation is selective for CRAF and is dependent
on the tethering of the ligand to CRAF. For CRAF
(Q436BCNK) with AZ13-tet this activation occurs at lower
concentrations of BOLT ligand and at higher concentrations
we see inhibition; this is consistent with the second RAF
protomer in a dimer being occupied by a ligand, and with the
expected bell-shaped activity concentration curve for such
systems.30,32 We hypothesized that when CRAF (S357BCNK)
and CRAF (Q436BCNK) are immunoprecipitated, they may
coimmunoprecipitate wild-type RAF species. We demonstrated
that kinase-dead CRAF variants, (D486V, S357BCNK),
(D486V, Q436BCNK), (A490T, S357BCNK), (A490T,
Q436BCNK),56,57 transactivate associated RAF monomers in
the presence of BOLT ligands; the matched BocK controls did
not lead to transactivation (Figure S8). This strongly suggested
that associated RAF dimers are responsible for the tethering-
dependent paradoxical activation we observe.
Next, we aimed to confirm that wild-type RAF species can

be copurified in our immunoprecipitations. AZ628, like many
RAF inhibitors, is known to promote and stabilize RAF dimers

in immunoprecipitations and have pronounced effects in wild-
type RAF or mutant Ras cells.30,31 Upon immunoprecipitating
CRAF (S357BCNK) or CRAF (Q436BCNK) from cells
coexpressing BRAF and CRAF nanoluciferase fusions
(BRAFnLuc and CRAFnLuc), we coimmunoprecipitated
both exogenous RAF species; specifically, we detected
increasing amounts of BRAFnluc with increasing concen-
trations of AZ13-tet (Figure S9). Control experiments using
the matched BocK controls suggest this coimmunoprecipita-
tion is stimulated by ligand tethering. These experiments
suggest that wild-type RAF species can be coimmunoprecipi-
tated with immunoprecipitated CRAF. Thus, the paradoxical
activation we observe for CRAF (S357BCNK) or CRAF
(Q436BCNK) in our BOLT experiments may result from the
dimerization and transactivation of uninhibited wild-type RAF
species.
We used a nanoBRET assay to further investigate BOLT-

induced dimerization of CRAF in cells.58 RAF species were
expressed with a Halo tag and CRAF (WT or variants
containing BCNK or BocK) were expressed with a C-terminal
nanoluciferase fusion (Figure 3A). Since AZ628 is a potent
inducer of RAF dimers, we focused our experiments on
characterizing AZ628 and its BOLT derivative, AZ13-tet. We
observed a clear increase in dimerization of CRAF
(S357BCNK) and CRAF (Q436BCNK) when cells were
treated with AZ13-tet. This increase was not observed for
CRAF containing BocK in place of BCNK, WT CRAF, or
upon treatment with AZ628 (Figure 3B−D). We conclude that
tethering of AZ-13-tet to CRAF (S357BCNK) and CRAF
(Q436BCNK) leads to an increase in heterodimerization with
BRAF in cells. Parallel experiments examining CRAF
homodimerization, utilizing a CRAF-HaloTag variant, revealed
a similar tethering-dependent increase in dimerization (Figure
S10).
For S357BCNK we observe a notably steep BRET signal

versus AZ13-tet concentration curve. This corresponds to a
Hill slope coefficient (nH) of greater than 1. While many
factors impact the Hill slope coefficient, values greater than 1
can indicate covalent and/or bivalent cooperative binding.59,60

Average calculated EC50 values from independent dose
response experiments show a clear increase in potency under

Figure 3. Dimerization of cellular RAF using BOLT. (A) Cellular RAF dimerization assay based on the BRET donor nanoluciferase(nLuc) and
BRET acceptor chloroalkane conjugate and Halo-tagged (HT) species of BRAF kinases. Addition of nLuc substrate, furimazine, results in a
dimerization-dependent energy transfer, as detected by emission of the fluorescent-dye chloroalkane conjugate. (B) Heterodimizeration of
CRAFnLuc variants (wild-type and CRAF(S357TAG) incorporating BCNK or BocK) in response to an increasing concentration of AZ628 and
AZ13-tet. Error bars correspond to standard deviation across four biological replicates. The continuous line corresponds to nonlinear regression
(four variable) completed using Prism software. Data are color-coded as shown in the associated table. (C) Heterodimizeration of CRAFnLuc
variants (wild-type and CRAF(Q436TAG) incorporating BCNK or BocK) in response to increasing concentrations of AZ628 and AZ13-tet. Error
bars correspond to standard deviation across four biological replicates. Continuous line corresponds to nonlinear regression (four variable)
completed using Prism software. Data are color-coded as in panel B. (D) Summary of calculated apparent EC50 values across the different CRAF
variants and ligands, mean values shown with error bars representing standard deviation between at least two independent dose response
experiments. Error bars correspond to standard deviation between calculated EC50 values based on nonlinear regression (four variable) modeling.
Calculated EC50 values with confidence intervals shown in Figure S11.
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BOLT conditions (Figure 3D). Regression curve parameters
and confidence intervals across independent experiments
suggest EC50 values for untethered conditions are best
interpreted as an upper limit of ligand potency, that is,
>EC50 (Figure S11). In summary, BOLT led to at least a
fourfold decrease in the EC50 for RAF dimerization. Our
activity and dimerization data are consistent with selective
inhibition of CRAF, leading to enhanced dimerization of other
RAF monomers, and the activation of those monomers to
phosphorylate MEK1.

■ CONCLUSIONS
The development of small-molecule inhibitors targeting RAF
protein kinases has driven advances in biomedical research and
delivered drugs for the treatment of mutant BRAF-driven
melanomas, which have improved patient outcomes. However,
initial clinical success has been tempered by the emergence of
resistance mechanisms and development of secondary tumors
resulting from “paradoxical activation”.61 A decade of research
has since deepened our understanding of the unusual
pharmacology and complex regulatory mechanisms governing
RAF biology and MAPK signaling.37,53,62−66 While our
improved molecular understanding of RAF transactivation
has guided patient treatment selection and influenced
treatments targeting two or more nodes in the MAPK
pathway,61,62 progress in developing RAF inhibitors effective
against mutant RAS-driven tumors remains an unsolved
challenge. Recent research has indicated the potential for
selective inhibition of CRAF-driven signaling to be a more
effective and tolerated therapeutic approach for mutant RAS
tumors.45,51 Identifying selective CRAF kinase inhibitors that
would block BRAF-CRAF heterodimer signaling could thus be
a valuable drug for the treatment of mutant RAS-driven
tumors, but would present a major challenge for medicinal
chemistry. Before embarking on such a challenging drug
discovery goal, it would be desirable to have greater confidence
and confirmation that such an approach was valid and that
selective CRAF inhibitors would not suffer the same problem
of paradoxical activation shown by previous RAF inhibitors.
We have used BOLT to selectively tether inhibitors to

CRAF and interrogate the consequences of selective CRAF
inhibition. Our results suggest that selective CRAF inhibition
will not be spared the liabilities observed with BRAF-selective
and pan RAF inhibitors in eliciting transactivation. We suggest
that future CRAF-selective pharmacophores may benefit from
considering strategies taken for paradox breaking mutant
BRAF inhibitors.67 Our results exemplify how BOLT may be
used to triage potential targets for drug discovery before any
target-selective small molecules are known.
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