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Abstract
In this study, a total of 18 new benzamide/ nicotinamide/ cinnamamide derivative compounds were designed and synthe-
sized for the first time (except B1 and B5) by conventional and microwave irradiation methods. The chemical structures of 
the synthesized compounds were characterized by 1H NMR, 13C NMR, and HRMS spectra. In vitro acetylcholinesterase 
(AChE) and butyrylcholinesterase (BuChE) inhibition effects of the compounds were evaluated to find out new possible drug 
candidate molecule/s. According to the inhibition results, the IC50 values of the compounds synthesized were in the range of 
10.66–83.03 nM towards AChE, while they were in the range of 32.74–66.68 nM towards BuChE. Tacrine was used as the 
reference drug and its IC50 values were 20.85 nM and 15.66 nM towards AChE and BuChE, respectively. The most active 
compounds B4 (IC50: 15.42 nM), N4 (IC50: 12.14 nM), and C4 (IC50: 10.67 nM) in each series towards AChE were docked 
at the binding site of AChE enzyme to explain the inhibitory activities of each series. On the other hand, the compounds B4, 
N4, and C4 showed satisfactory pharmacokinetic properties via the prediction of ADME profiles.
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Introduction

Alzheimer’s disease (AD), which is generally observed espe-
cially in the elderly, has become an important health prob-
lem worldwide [1]. One of the most important findings in 
patients with AD is a decrease in the level of acetylcholine 
in the cerebral cortex [2]. Thus, one of the most important 
methods to slow down the progression of AD is by increas-
ing the level of acetylcholine in the cerebral cortex via cho-
linesterase enzymes inhibition [3]. There are two types of 
cholinesterase enzymes which are known as acetylcholinest-
erase (AChE) and butyrylcholinesterase (BuChE). Both of 
these enzymes play an important role in the regulation of the 
level of acetylcholine [4, 5]. It was reported that inhibition 
of cholinesterase enzymes reduces the progression of the 
disease and improves perception in patients with AD [6, 7]. 
Tacrine, rivastigmine, and donepezil are the main cholinest-
erase inhibitors used in clinics for the treatment of AD [8, 
9]. On the other hand, ambenonium, a diamide derivative, is 
used in myasthenia gravis as an AChE inhibitor [10].

In order to reduce the hepatotoxicity of tacrine and 
increase its bioavailability, Ragab et al. made some modifi-
cations in the tacrine skeleton[11]. Among these modified 
compounds, chlorinated derivatives showed higher cho-
linesterase inhibitory activity and lower hepatotoxicity than 
non-chlorinated derivatives. In the same study, the derivative 
of tacrine with 1-benzylamino substituent was reported to 
have high cholinesterase inhibitory activity. There are also 
other studies in the literature reporting the cholinesterase 
inhibitory activities of various derivatives in which substi-
tuted benzene/benzyl structures are bound to the nitrogen 
atom [12–14].

There are many studies in the literature on the antimicro-
bial [15], antioxidant [16], antiasthmatic [17], and cholinest-
erase inhibitory [18, 19] activities of benzamide derivatives. 
Some compounds in the arylalkylaminoketone scaffold, in 
which structure of benzoyl/naphthoyl is linked to a second-
ary amine via the intermediate carbon chain, were reported 
to be cholinesterase inhibitors with an ADME profile that 
can pass into the central nervous system [20].

Nicotinamide is an amide derivative of nicotinic acid, 
also known as vitamin B3, found in many natural foods such 
as meat, milk, fish, and grains [21]. In humans, nicotinamide 
is converted to Nicotinamide Adenine Dinucleotide (NAD) 
which plays an important role in cellular functions in the 
body [22, 23]. Various nicotinamide derivatives have been 
reported with many biological activities such as antituber-
culosis [24, 25], antifungal [26] antitumor [27–29] antidia-
betic [30–32], antioxidative [33] and neuroprotective [34, 
35] activities. The effects of nicotinamide on AD and other 

neurodegenerative disorders have been investigated, and 
it was reported that nicotinamide can cross the blood and 
brain barrier [36] and thus, this may have some positive 
effects against neurodegenerative diseases [37–40]. Żurek 
et al. synthesized hybrid compounds in hydrazide structure 
containing donepezil and nicotinamide structures and these 
compounds had cholinesterase inhibitory activities with 
nanomolar enzyme inhibition constants [41].

Cinnamamide is a natural compound that has a phenyl 
ring at the 3rd position of the acrylamide structure and is 
found in many plants. In the literature, many biological 
activities of cinnamamide derivatives have been reported, 
such as antibacterial [42], anti-inflammatory [43], antima-
larial [44], anticancer [45], tyrosinase inhibitory [46], antivi-
ral [47], anticonvulsant [48], antifungal [49], anti-Alzheimer 
[50] activities. On the other hand, cinnamamide derivative 
some compounds and tacrine-cinnamic acid hybrids were 
reported with high cholinesterase inhibition effects with 
low nanomolar inhibition constant [51, 52]. Besides, in our 
previous study, new butendiamide and oxalamide deriva-
tive compounds were synthesized and some of them showed 
strong cholinesterase inhibition effects [53, 54].

In this study, we aimed to synthesize novel benzamide/
nicotinamide/cinnamamide derivatives which have 4-chlo-
robenzyl and 4-substituted phenyl on their nitrogen atoms, 
to evaluate their in vitro cholinesterase inhibitory activities 
to find out new possible drug candidate molecule/s. Besides, 
we planned to identify the binding profiles of the most active 
compounds (B4, N4, C4) of the series with AChE enzyme 
by molecular docking studies to determine their possible 
mechanism of cholinesterase inhibitory activities.

Materials and methods

Chemistry

General procedure of the synthesis of the secondary 
amines

By conventional method para-Substituted aniline (20 mmol) 
and sodium bicarbonate (6 mmol) in 15 ml water were 
heated to 90–95 ºC. To this mixture, p-chlorobenzyl chlo-
ride (5 mmol) was added and stirred for 1.5–2 h, give of 
 PhCH2NHPh. After completion of the reaction, the reaction 
mixture was extracted with  CH2Cl2 (2 × 10 mL). The com-
bined organic layer was dried over with  MgSO4, filtered, 
and concentrated by rotary evaporation and the crude prod-
uct was purified by silica gel column chromatography using 
hexane:ethylacetate (2:1).
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By microwave irradiation A mixture of para-substituted 
aniline (20 mmol), p-chlorobenzyl chloride (10 mmol) was 
adsorbed on a mixture of potassium carbonate (12 mmol) 
and tetrabutylammonium bromide (1 mmol). The result-
ing fine powder was irradiated with microwave irradia-
tion (150 W, 120 °C) for 5 min to give of  PhCH2NHPh. 
After completion of the reaction, the reaction mixture was 
quenched with 15 mL of distilled water and the aqueous 
phase was extracted with two parts of  CH2Cl2 (2 × 10 mL). 
The combined organic layers were dried over with  MgSO4, 
filtered, and concentrated. The crude product was purified by 
silica gel column chromatography using hexane:ethylacetate 
(2:1) [55].

General procedure of the synthesis of final compounds

By conventional method A mixture of the para-substituted 
benzaniline (1.7 mmol), triethylamine (TEA) (1.4 mmol), 
and benzoyl/nicotinoyl/cinnamoyl chloride (1.4 mmol) in 
dichloromethane (5 mL) were stirred at room temperature for 
12 h. After completion of the reaction, the reaction mixture 
was quenched with 15 mL of distilled water and the aque-
ous phase was extracted of  CH2Cl2 (2 × 10 mL). The com-
bined organic layers were dried over with  MgSO4, filtered, 
and concentrated. Finally, the crude product was purified 
by silica gel column chromatography hexane:ethylacetate 
(6:4) or crystallized from ethanol.

By microwave irradiation A mixture of para-substituted 
benzaniline (1.7  mmol), benzoyl/nicotinoyl/cinnamoyl 
chloride (1,7 mmol) in dioxane (0.6 mL) as solvent was 
reacted under microwave irradiation at 100 ºC for 10 min. 
After completion of the reaction, the reaction mixture was 
concentrated by rotary evaporation. Finally, the crude 
product was purified by silica gel column chromatography 
hexane:ethylacetate (6:4) or crystallized from ethanol.

1 H- and 13 C-NMR spectra were recorded with 400 (100) 
MHz Bruker and Varian instruments. Interchangeable hydro-
gens or carbons were shown with the same letters. Elemental 
analyses were performed with a LECO CHNS-932. HRMS 
spectra were recorded with an Agilent 6530 LC–MS QTOF.

N-(4-chlorobenzyl)-N-phenylbenzamide (B1) Yield: 76% 
(80% by MW), mp: 83–85 °C. 1H-NMR (400 MHz,  CDCl3) 
ẟ (ppm): 5.08 (s, 2H, N-CH2), 6.88 (d, 2H, J:8.5 Hz, Ar–H), 
7.16 -7.09 (m, 5 H, Ar–H), 7.25 -7.20 (m, 5 H, Ar–H) 
7.32–7.30 (m, 2H, Ar–H). 13C-NMR (100 MHz,  CDCl3) ẟ 
(ppm): 53.24 (Ar-CH2-N), 126.83  (CHAr), 127.74  (2xCHAr), 
127.75  (2xCHAr), 128.64  (2xCHAr), 128.79  (2xCHAr), 
129.13  (2xCHAr), 129.78  (CHAr), 129.95  (2xCHAr), 133.24 
 (CAr), 135.71  (CAr), 136.04  (CAr), 143.27  (CAr), 170.55 
(C = O). Anal. Calcd. for  C20H16ClNO (MW 321.09): 
C, 74.65; H, 5.01%. Found: C, 74.32; H, 4.99%. HRMS 
(Q-TOF) m/z Calcd for [M +  H]+ 322.0920, found. 322.099.

N-(4-chlorobenzyl)-N-(p-tolyl)benzamide (B2) Yield: 
77% (79% by MW), mp: 85–87 °C. 1H-NMR (400 MHz, 
 CDCl3) ẟ (ppm): 2.21(s, 3H,  CH3-Ar), 5.05 (s, 2H, 
N-CH2), 6.75 (d, 2H, J:8.20  Hz, Ar–H), 6.92 (d, 2H, 
J:8.12 Hz, Ar–H), 7.28–7.12 (m, 8H, Ar–H), 7.32–7.30 
(m, 2H, Ar–H). 13C-NMR (100 MHz,  CDCl3) ẟ (ppm): 
20.95  (CH3-Ar), 53.29 (Ar-CH2-N), 127.49  (2xCHAr), 
127.72  (2xCHAr), 128.59  (2xCHAr), 128.75  (2xCHAr), 
129.65  (CHAr), 129.75  (2xCHAr), 130.00  (2xCHAr), 133.17 
 (CAr), 135.87  (CAr), 136.14  (CAr), 136.65  (CAr), 140.59 
 (CAr), 170.58 (C = O). Anal. Calcd. for  C21H18ClNO (MW 
335.11): C, 75.11; H, 5.4%. Found: C, 74.48; H, 5.51%. 
HRMS (Q-TOF) m/z Calcd for [M +  H]+ 336,1077, found. 
336.1148.

N-(4-chlorobenzyl)-N-(4-methoxyphenyl)benzamide 
(B3) Yield: 80% (85% by MW), mp: 93–95 °C. 1H-NMR 
(400 MHz,  CDCl3) ẟ (ppm): 3.68(s, 3H, Ar-OCH3), 5.03 
(s, 2H, N-CH2), 6.65–6.63 (m, 2H, Ar–H), 6.77 (d, 2H, 
J:8.72 Hz, Ar–H), 7.20–7.14 (m, 5H, Ar–H), 7.25–7.22 (m, 
2H, Ar–H), 7.31–7.29 (m, 2H, Ar–H). 13C-NMR (100 MHz, 
 CDCl3) ẟ (ppm): 53.35 (Ar-CH2-N), 55.28  (OCH3-Ar), 
114.26  (2xCHAr), 127.74  (2xCHAr), 128.60  (4xCHAr), 
128.67  (2xCHAr), 128.95  (2xCHAr), 129.56  (CAr), 130.13 
 (CHAr), 133.21  (CAr), 135.91  (CAr), 136.09  (CAr), 158.07 
 (CAr), 170.58 (C = O). Anal. Calcd. for  C21H18ClNO2 (MW 
351.10): C, 71.69; H, 5.16%. Found: C, 74.44; H, 5.18%. 
HRMS (Q-TOF) m/z Calcd for [M +  H]+ 352.1026, found. 
352.1099.

N-(4-chlorobenzyl)-N-(4-fluorophenyl)benzamide (B4) 
Yield: 72% (73% by MW), mp: 132–134  °C. 1H-NMR 
(400 MHz,  CDCl3) ẟ (ppm): 5.04 (s, 2H, N-CH2), 6.83 
(d, 2H, J: 6.48 Hz, Ar–H), 7.30 -7.15 (m, 11H, Ar–H). 
13C-NMR (100 MHz,  CDCl3) ẟ (ppm): 53.26 (Ar-CH2-
N), 115.96–116.19 (JCF:22.7  2xCHAr), 127.88  (2xCHAr), 
128.64  (2xCHAr), 128.72  (2xCHAr), 129.52 -129.43 (JCF:8.7 
 2xCHAr), 129.85  (CHAr), 130.04  (2xCHAr), 133.43  (CAr), 
135.52  (CAr), 135.74  (CAr), 139.18  (CAr), 159.74–162.20 
(JCF:247.6  CAr), 170.56 (C = O). Anal. Calcd. for 
 C20H15ClFNO (MW 339.08): C, 70.7; H, 4.45%. Found: C, 
69.06; H, 4.29%. HRMS (Q-TOF) m/z Calcd for [M +  H]+ 
340.0826, found. 340.0899.

N-(4-chlorobenzyl)-N-(4-chlorophenyl)benzamide 
(B5) Yield: 75% (78% by MW), mp: 113–114  °C. 1H-
NMR (400 MHz,  CDCl3) ẟ (ppm): 5.05 (s, 2H,  CH2N), 
6.82–6.80 (m, 2H, Ar–H), 7.31–7.10 (m, 11H, Ar–H) 
13C-NMR (100 MHz,  CDCl3) ẟ (ppm): 53.15 (Ar-CH2-
N), 127.96  (2xCHAr), 128.72  (2xCHAr), 128.75  (2xCHAr), 
128.93  (2xCHAr), 129.34  (2xCHAr), 129.94  (2xCHAr), 
130.03  (CHAr), 132.51  (CAr), 133.46  (CAr), 135.34  (CAr), 
135.66(  CAr), 141.78  (CAr), 170.46 (C = O). Anal. Calcd. for 
 C20H15Cl2NO (MW 355.05): C, 67.43; H, 4.24%. Found: C, 
66.89; H, 4.28%. HRMS (Q-TOF) m/z Calcd for [M +  H]+ 
356.0530, found. 356.0603.
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N-(4-bromophenyl)-N-(4-chlorobenzyl)benzamide 
(B6) Yield: 73% (75% by MW), mp: 91–93  °C. 1H-
NMR (400 MHz,  CDCl3) ẟ (ppm): 5.05 (s, 2H, N-CH2), 
6.76–6.74 (m, 2H, Ar–H), 7.31–7.18 (m, 11H, Ar–H) 13C-
NMR (100  MHz,  CDCl3) ẟ (ppm): 53.12 (Ar-CH2-N), 
120.45  (CAr), 127.99 (2 ×  CHAr), 128.74 (2 ×  CHAr), 128.76 
(2 ×  CHAr), 129.24 (2 ×  CHAr), 129.92 (2 ×  CHAr), 130.07 
 (CHAr), 132.33 (2 ×  CHAr), 133.46  (CAr), 135.31  (CAr), 
135.65  (CAr), 142.32  (CAr), 170.41 (C = O). Anal. Calcd. for 
 C20H15BrClNO (MW 399.00): C, 59.95; H, 3.77%. Found: 
C, 59.82; H, 3.77%. HRMS (Q-TOF) m/z Calcd for [M +  H]+ 
400.0025, found. 400.0097.

N-(4-chlorobenzyl)-N-phenylnicotinamide (N1) Yield: 
78% (83% by MW), mp: 112–114 °C. 1H-NMR (400 MHz, 
 CDCl3) ẟ (ppm): 5.09 (s, 2H, N-CH2), 6.9 (d, 2H, J:6.7 Hz, 
Ar–H), 7.11 (dd, 1H, J: 4.9 Hz, J:5.0 Hz, Ar–H), 7.22–7.15 
(m, 4H, Ar–H), 7.27–7.24 (m, 4H, Ar–H), 7.64–7.61 
(m, 1H, Ar–H), 8.45–8.44 (m, 1H, Ar–H), 8.51 (d, 1H, 
J:2.6 Hz, Ar–H), 13C-NMR (100 MHz,  CDCl3) ẟ (ppm): 
53.32 (Ar-CH2-N), 122.71  (CHAr), 127.57  (CHAr), 127.97 
 (2xCHAr), 128.72  (2xCHAr), 129.54  (2xCHAr), 130.12 
 (2xCHAr), 131.61  (CAr), 133.49  (CAr), 135.42  (CAr), 136.21 
 (CHAr), 142.37  (CAr), 149.65  (CHAr), 150.47  (CHAr), 168.07 
(C = O). Anal. Calcd. for  C19H15ClN2O (MW 322.09): C, 
70.7; H, 4.68%. Found: C, 69.31; H, 4.88%. HRMS (Q-TOF) 
m/z Calcd for [M +  H]+ 323.0872, found. 323.0945.

N-(4-chlorobenzyl)-N-(p-tolyl)nicotinamide (N2) Yield: 
80% (80% by MW), mp: 126–128 °C. 1H-NMR (400 MHz, 
 CDCl3) ẟ (ppm): 2.24 (s, 3H,  CH3-Ar), 5.06 (s, 2H, N-CH2), 
6.77 (d, 2H, J: 8.1 Hz, Ar–H), 6.9 (d, 2H, J: 7.9 Hz, Ar–H), 
7.13 (dd, 1H, J: 4.8 Hz, J:4.8 Hz,, Ar–H), 7.27–7.22 (m, 
4H, Ar–H), 7.65 (d, 1H, J: 7.8 Hz, Ar–H), 8.45 (d, 1H, J: 
3.2 Hz, Ar–H), 8.49 (s, 1H, Ar–H). 13C-NMR (100 MHz, 
 CDCl3) ẟ (ppm): 21.05  (CH3-Ar), 53.32 (Ar-CH2-N), 
122.73  (CHAr), 127.72  (2xCHAr), 128.68  (2xCHAr), 130.15 
 (4xCHAr), 131.74  (CAr), 133.43  (CAr), 135.52  (CAr), 136.24 
 (CHAr), 137.49  (CAr), 139.70  (CAr), 149.64  (CHAr), 150.36 
 (CHAr), 168.07 (C = O). Anal. Calcd. for  C20H17ClN2O (MW 
336.10): C, 71.32; H, 5.09%. Found: C, 70.71; H, 5.10%. 
HRMS (Q-TOF) m/z Calcd for [M +  H]+ 337.1029, found. 
337.1102.

N-(4-chlorobenzyl)-N-(4-methoxyphenyl)nicotinamide 
(N3) Yield: 81%, (85% by MW), mp: 133–135 °C. 1H-
NMR (400 MHz,  CDCl3) ẟ (ppm): 3.71 (s, 3H, Ar-OCH3), 
5.03 (s, 2H, N-CH2), 6.68 (d, 2H, J: 8.7 Hz, Ar–H), 6.79 
(d, 2H, J: 8.6 Hz Ar–H), 7.12 (dd, 1H, J: 5.0 Hz, J:4.9 Hz, 
Ar–H), 7.27–7.14 (m, 4H, Ar–H), 7.63 (d, 1H, J: 7.8 Hz, 
Ar–H), 8.44 (d, 1H, J: 4.6 Hz, Ar–H), 8.5 (s, 1H, Ar–H). 
13C-NMR (100 MHz,  CDCl3) ẟ (ppm): 53.39 (Ar-CH2-N), 
55.32  (OCH3-Ar), 114.61  (2xCHAr), 122.75  (CHAr), 128.69 
 (2xCHAr), 129.18  (2xCHAr), 130.29  (2xCHAr), 131.83  (CAr), 
133.47  (CAr), 134.92  (CAr), 135.49  (CAr), 136.20  (CHAr), 
149.51  (CHAr), 150.22  (CHAr), 158.53  (CAr), 168.08 (C = O). 

Anal. Calcd. for  C20H17ClN2O2 (MW 352.10): C, 68.09; H, 
4.86%. Found: C, 67.18; H, 4.80%. HRMS (Q-TOF) m/z 
Calcd for [M +  H]+ 353.0978, found. 353.1051.

N-(4-chlorobenzyl)-N-(4-fluorophenyl)nicotinamide 
(N4) Yield: 76% (79% by MW), mp: 116–118  °C. 1H-
NMR (400 MHz,  CDCl3) ẟ (ppm): 5.05 (s, 2H, N-CH2), 
6.90–6.86 (m, 4H, Ar–H), 7.14 (dd, 1H, J: 5.0 Hz, J:4.9 Hz, 
Ar–H), 7.27–7.20 (m, 4H, Ar–H), 7.62 (d, 1H, J: 7.8 Hz, 
Ar–H), 8.47 (d, 1H, J: 4.7 Hz, Ar–H), 8.5 (s, 1H, Ar–H) 
13C-NMR (100 MHz,  CDCl3) ẟ (ppm): 53.39 (Ar-CH2-N), 
116.44–116.67 (JCF:22.6  2xCHAr), 122.84  (CHAr), 128.81 
 (2xCHAr), 129.71 -129.80 (JCF:10.7  2xCHAr), 130.20 
 (2xCHAr), 131.45  (CAr), 133.68  (CAr), 135.13  (CHAr), 
136.15  (CHAr), 138.31  (CAr), 149.45  (CHAr), 150.53  (CHAr), 
160.07–162.54 (JCF:248.6  CAr), 168.08 (C = O). Anal. Calcd. 
for  C19H14ClFN2O (MW 340.08): C, 66.97; H, 4.14%. 
Found: C, 66.99; H, 4.22%. HRMS (Q-TOF) m/z Calcd for 
[M +  H]+ 340.0778, found. 341.0851.

N-(4-chlorobenzyl)-N-(4-chlorophenyl)nicotinamide 
(N5) Yield: 78% (80% by MW), mp: 144–146  °C. 1H-
NMR (400 MHz,  CDCl3) ẟ (ppm): 5.05 (s, 2H, N-CH2), 
6.82 (d, 2H, J: 8.3 Hz, Ar–H), 7.27–7.14 (m, 8H, Ar–H), 
7.63 (d, 1H, J: 7.8 Hz, Ar–H), 8.50–8.47 (m, 1H, Ar–H). 
13C-NMR (100 MHz,  CDCl3) ẟ (ppm): 53.26 (Ar-CH2-
N), 122.92  (CHAr), 128.84  (2xCHAr), 129.18  (2xCHAr), 
129.78  (2xCHAr), 130.12  (2xCHAr), 131.27  (CAr), 133.36 
 (CAr), 133.71  (CHAr), 135.05  (CAr), 136.21  (CHAr), 140.87 
 (CAr), 149.54  (CHAr), 150.72  (CHAr), 167.96 (C = O). Anal. 
Calcd. for  C19H14Cl2N2O (MW 356.05): C, 63.88; H, 3.95%. 
Found: C, 62.71; H, 4.05%. HRMS (Q-TOF) m/z Calcd for 
[M +  H]+ 357.0483, found. 357.0555.

N-(4-bromophenyl)-N-(4-chlorobenzyl)nicotinamide 
(N6) Yield: 72% (72% by MW), mp: 156–158 °C. 1H-NMR 
(400 MHz,  CDCl3) ẟ (ppm): 5.06 (s, 2H, N-CH2), 6.77 (d, 
2H, J: 8.6 Hz, Ar–H), 7.33–7.15 (m, 8H, Ar–H), 7.65–7.62 
(m, 1H, Ar–H), 8.51–8.49 (m, 1H, Ar–H). 13C-NMR 
(100 MHz,  CDCl3) ẟ (ppm): 53.24 (Ar-CH2-N), 121.34 
 (CAr), 122.92  (CHAr), 128.90  (2xCHAr), 129.48  (2xCHAr), 
130.10  (2xCHAr), 131.23  (CAr), 132.77  (2xCHAr), 133.73 
 (CAr), 135.04  (CHAr), 136.21  (CHAr), 141.42  (CAr), 149.58 
 (CHAr), 150.77  (CHAr), 167.96 (C = O). Anal. Calcd. for 
 C19H14BrClN2O (MW 400.00): C, 56.81; H, 3.51%. Found: 
C, 57.20; H, 3.43%. HRMS (Q-TOF) m/z Calcd for [M +  H]+ 
400.9978, found. 401.0050.

N-(4-chlorobenzyl)-N-phenylcinnamamide (C1) Yield: 
80% (82% by MW), mp: 133–135 °C. 1H-NMR (400 MHz, 
 CDCl3) ẟ (ppm): 5.01 (s, 2H, N-CH2), 6.33 (d, H, Jtrans: 
15.5 COCH =), 7.08 (d, 2H, J: 5.0 Hz, Ar–H), 7.28–7.20 
(m, 8H, Ar–H), 7.41–7.30 (m, 4H, Ar–H), 7.76 (d, H, Jtrans: 
15.5 Ar–CH =). 13C-NMR (100 MHz,  CDCl3) ẟ (ppm): 
52.15 (Ar-CH2-N), 118.06 (COCH =), 127.40  (2xCHAr), 
127.49  (CHAr), 127.83  (2xCHAr), 128.08  (2xCHAr), 
128.19  (2xCHAr), 129.11  (2xCHAr), 129.15  (CHAr), 129.64 
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 (2xCHAr), 132.73  (CAr), 134.57  (CAr), 135.57  (CAr), 141.33 
 (CAr), 142.06 (CH =  CAr), 165.55 (C = O). Anal. Calcd. for 
 C22H18ClNO (MW 347.11): C, 75.97; H, 5.22%. Found: C, 
75.71; H, 5.42%. HRMS (Q-TOF) m/z Calcd for [M +  H]+ 
348.1076, found. 348.1149.

N-(4-chlorobenzyl)-N-(p-tolyl)cinnamamide (C2) Yield: 
78% (84% by MW), mp: 109–111 °C. 1H-NMR (400 MHz, 
 CDCl3) ẟ (ppm): 2.36 (s, 3H,  CH3Ar), 4.95 (s, 2H, N-CH2), 
6.33 (d, H, Jtrans: 15.5 COCH =), 7.38–7.13 (m, 12H, Ar–H), 
7.73 (d, H, Jtrans: 15.5 Ar–CH =).13C-NMR (100 MHz, 
 CDCl3) ẟ (ppm): 21.15  (CH3-Ar), 52.69 (Ar-CH2-N), 
118.64 (COCH =), 127.92  (2xCHAr), 128.06  (2xCHAr), 
128.55  (2xCHAr), 128.68  (2xCHAr), 129.60  (CHAr), 129.19 
 (2xCHAr), 130.23  (2xCHAr), 133.16  (CAr), 135.15  (CAr), 
136.17  (CAr), 137.91  (CAr), 139.12  (CAr), 142.43 (CH =  CAr), 
166.18 (C = O). Anal. Calcd. for  C20H15ClFNO (MW 
361.12): C, 76.34; H, 5.57%. Found: C, 74.49; H, 5.36%. 
HRMS (Q-TOF) m/z Calcd for [M +  H]+ 362.1233, found. 
362.1306.

N-(4-chlorobenzyl)-N-(4-methoxyphenyl)cinnamamide 
(C3) Yield: 85% (85% by MW), mp: 84–87 °C. 1H-NMR 
(400 MHz,  CDCl3) ẟ (ppm): 3.84 (s, 3H, Ar-OCH3), 4.96 (s, 
2H, N-CH2), 6.34 (d, H, Jtrans: 15.5 COCH =), 6.88 (d, 2H, 
J: 8.7 Hz, Ar–H), 6.96 (d, 2H, J: 8.6 Hz, Ar–H), 7.32–7.20 
(m, 8H, Ar–H), 7.74 (d, H, Jtrans: 15.5 Hz, Ar–CH =).13C-
NMR (100 MHz,  CDCl3) ẟ (ppm): 52.23 (Ar-CH2-N), 54.95 
 (OCH3-Ar), 114.20  (2xCHAr), 118.06 (COCH =), 127.39 
 (2xCHAr), 128.05  (2xCHAr), 128.18  (2xCHAr), 128.99 
 (2xCHAr), 129.09  (CHAr), 129.79  (2xCHAr), 132.70  (CAr), 
133.90  (CAr), 134.64  (CAr), 135.65  (CAr), 141.90(CAr), 
158.49 (CH =  CAr), 165.78 (C = O). Anal. Calcd. for 
 C23H20ClNO2 (MW 377.12): C, 73.11; H, 5.34%. Found: C, 
73.01; H, 5.28%. HRMS (Q-TOF) m/z Calcd for [M +  H]+ 
378.1182, found. 378.1255.

N-(4-chlorobenzyl)-N-(4-fluorophenyl)cinnamamide 
(C4) Yield: 73% (75% by MW), mp: 111–113  °C. 1H-
NMR (400 MHz,  CDCl3) ẟ (ppm): 4.98 (s, 2H, N-CH2), 
6.29 (d, H, Jtrans: 15.4 COCH =), 7.10–7.04 (m, 4H, Ar–H), 
7.32–7.19 (m, 8H, Ar–H), 7.76 (d, H, Jtrans: 15.4 Ar–CH =). 
13C-NMR (100 MHz,  CDCl3) ẟ (ppm): 52.17 (Ar-CH2-
N), 115.98–116.20 (JCF:22.6  2xCHAr), 117.61 (COCH =), 
127.41  (2xCHAr), 128.18  (2xCHAr), 128.21  (CHAr), 128.25 
 (2xCHAr), 129.30  (2xCHAr), 129.71 -129.61 (JCF:10.7 
 2xCHAr), 132.92  (CAr), 134.43  (CAr), 135.31  (CAr), 137.26 
 (CAr), 142.50 (CH =  CAr), 160.13–162.61 (JCF:248.6  CAr), 
165.78 (C = O). Anal. Calcd. for  C22H17ClFNO (MW 
365.10): C, 72.23; H, 4.68%. Found: C, 71.25; H, 4.61%. 
HRMS (Q-TOF) m/z Calcd for [M +  H]+ 366.0982, found. 
366.1055.

N-(4-chlorobenzyl)-N-(4-chlorophenyl)cinnamamide 
(C5) Yield: 81% (84% by MW), mp: 151–153 °C. 1H-NMR 
(400 MHz,  CDCl3) ẟ (ppm): 4.95 (s, 2H, N-CH2), 6.28 (d, H, 
Jtrans: 15.3 COCH =), 6.99–6.97 (m, 2H, Ar–H), 7.35–7.16 

(m, 10H, Ar–H), 7.75 (d, H, Jtrans: 15.7 Ar–CH =). 13C-NMR 
(100 MHz,  CDCl3) ẟ (ppm): 52.79 (Ar-CH2-N), 118.28 
(COCH =), 128.18  (2xCHAr), 128.92  (2xCHAr), 128.99 
 (2xCHAr), 129.86  (2xCHAr), 130.08  (4xCHAr), 130.35 
 (CHAr), 133.66  (CAr), 134.07  (CAr), 135.09  (CAr), 135.96 
 (CAr), 140.55  (CAr), 143.40 (CH =  CAr), 166.11 (C = O). 
Anal. Calcd. for  C22H17Cl2NO (MW 381.07): C, 69.12; H, 
4.48%. Found: C, 70.43; H, 4.62%. HRMS (Q-TOF) m/z 
Calcd for [M +  H]+ 382.0687, found. 382.0760.

N-(4-bromophenyl)-N-(4-chlorobenzyl)cinnamamide 
(C6) Yield: 74% (76% by MW), mp: 161–163 °C. 1H-NMR 
(400 MHz,  CDCl3) ẟ (ppm): 4.98 (s, 2H, N-CH2), 6.30 (d, 
H, Jtrans: 15.3 COCH =), 6.95 (d, 2H, J: 8.4 Hz, Ar–H), 7.19 
(d, 2H, J: 8.3 Hz, Ar–H), 7.33–7.26 (m, 6H, Ar–H), 7.52 (d, 
2H, J: 8.5 Hz, Ar–H), 7.77 (d, H, Jtrans: 15.4 Hz, Ar–CH =). 
13C-NMR (100 MHz,  CDCl3) ẟ (ppm): 52.04 (Ar-CH2-
N), 117.52 (COCH =), 121.34  (CAr), 127.47  (2xCHAr), 
128.21  (2xCHAr), 128.27  (2xCHAr), 129.38  (CHAr), 129.45 
 (2xCHAr), 129.61  (2xCHAr), 132.35  (2xCHAr), 132.95  (CAr), 
134.35  (CAr), 135.21  (CAr), 140.35  (CAr), 142.74 (CH =  CAr), 
165.34 (C = O). Anal. Calcd. for  C22H17BrClNO (MW 
425.02): C, 61.92; H, 4.02%. Found: C, 61.86; H, 4.09%. 
HRMS (Q-TOF) m/z Calcd for [M +  H]+ 426.0182, found. 
426.0254.

The chemical structures of the synthesized compounds 
were characterized by 1H NMR, 13C NMR, and HRMS (see 
the supporting file for details).

2.2. Pharmacological/biological assays

AChE and BuChE inhibition assay

Tertiary benzamide/ nicotinamide/ cinnamamide deriva-
tives were evaluated against AChE (E.C. 3.1.1.7, Type VI-S, 
Electrophorus electricus) and BuChE (E.C. 3.1.1.8, equine 
serum) spectrophotometrically by the method of Ellman with 
slight modifications using commercially available Tacrine as 
the reference compound [56]. Stock solutions were dissolved 
in dimethylsulfoxide and then diluted in a 50 mM Tris buffer 
(pH 8.0) to provide a final concentration range. In a 96-well 
polystyrene photometric microplates, the assay medium 
in each well consisted of 50 μL of a Tris buffer, 125 μL of 
3 mM 5,5-dithiobis-(2-nitrobenzoic acid) (DTNB), 25 μL 
of 0.2 U/mL enzyme (AChE or BuChE), and a 15 mM sub-
strate acetylthiocholine iodide (ATCI) or butyrylthiocholine 
iodide (BTCI). The assay mixture containing the enzyme, 
buffer, DTNB, and 25 μL of the inhibitor compound was 
preincubated for 15 min at 37 °C before the substrate was 
added to begin the reaction. All test compounds were pre-
pared at different concentrations: 4–65 ng/mL. The absorb-
ance of the reaction mixture was then measured three times 
at 412 nm every 45 s using a microplate reader (Bio-Tek 
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ELx800, Winooski, VT). IC50 values were obtained from 
activity (%) versus compounds plots.

Molecular docking studies

Docking simulation was carried out by using the Auto-
dock4.2 program [57]. The crystal structures of AChE 
(PDB: 1EVE) and BuChE (PDB: 1P0I) enzymes in PDB 
format were used for the preparation of proteins. Molecules 
were drawn by using Chemdraw 19.0, and then passed to 
Chemdraw 3D 19.0. The molecules were minimized in the 
MM2 area and saved in PDB format.

Using Autodock Tools (ADT ver 1.5.6): All other hydro-
gens, water molecules, and non-standardized residues were 
removed, except polar hydrogens in the structure of pro-
teins. Kollman united atom charges and solvation parameters 
were assigned to the proteins and the Gasteiger charge was 
assigned to the ligand. The modified structures obtained 
were converted to PDBQT format in ADT for AutoDock 
calculations. The grid size for specifying the search space 
was set at 60 × 60 × 60  cenrred on the macromolecule with 
a default grid point spacing of 0.375 Å. The Lamarckian 
Genetic Algorithm was implemented with a population size 
of 10 dockings. Analysis of clustering conformations was 
performed on the docked results using an RMSD tolerance 
of 2.0 Å. The conformation with the lowest binding energy 
was evaluated by using Pyton Molecule Viewer (PMV 
ver.1.5.6) and Protein–Ligand Interaction Profiler (PLIP).

Prediction of physicochemical and ADME properties

The free SwissADME web tool was used for in silico predic-
tion of the pharmacokinetic properties and ADME param-
eters of the synthesized compounds. The chemical structures 
of the compounds were drawn and converted to SMILES 

(simplified molecular-input line-entry system) by using the 
SwissADME. Finally, the program was run to calculate the 
physicochemical and pharmacokinetic parameters of the 
compounds. (http:// www. swiss adme. ch/ index. php) [58].

Results

Chemistry

The compounds were synthesized and purified for the first 
time (except B1 and B5) by conventional and microwave 
irradiation methods according to Scheme 1. First, secondary 
amines were synthesized by using a suitable aniline [aniline 
(1), 4-methylaniline (2), 4-methoxyaniline (3), 4-floroani-
line (4), 4-chloroaniline (5), and 4-bromoaniline (6)]. Then, 
amides were synthesized successfully in the second step by 
using a suitable acid chloride (Scheme 1). The acid chlo-
rides used in the series are as follows: benzoyl chloride for B 
series, nicotinamide chloride for N series, and cinnamamide 
chloride for the C series.

AChE and BuChE inhibitory activity

In vitro cholinesterase inhibitory activities of the compounds 
were reported for the first time in this study and the inhibi-
tion results were presented in Table 1.

Molecular docking studies

Among the benzamide, nicotinamide, and cinnamamide 
series, the compounds with the highest AChE inhibition 
potential (B4, N4, and C4) were docked at the binding 
site of AChE to explain the binding pattern of the com-
pounds. The X-ray crystallographic structures of AChE 

Scheme 1  Synthesis of the 
target compounds

http://www.swissadme.ch/index.php


Molecular Diversity 

1 3

(1EVE) were obtained from the Protein Data Bank (PDB, 
https:// www. rcsb. org/). The binding free energies of the 

most active compounds B4, N4, and C4 were presented 
in Table 2.

Prediction of physicochemical and ADME properties

Molecular weights, the numbers of hydrogen bond donors 
and acceptors, the topological surface areas (TPSA; a sum of 
polar atoms’ surfaces), lipophilicities, and water solubilities 
of all compounds were calculated and presented in the sup-
porting file. ADME profiles of the most active compounds in 
each series were calculated and presented in Table 3.

Table 1  Inhibitory activity 
(IC50) of the compounds 
against ChEs

*Tacrine was used as a standard inhibitor towards both AChE and BuChE enzymes.  r2: is a statistical meas-
ure of how close the data are to the fitted regression line. It is also known as the coefficient of determina-
tion, or the coefficient of multiple determinations for multiple regressions[59]

Compounds R1 R–C = O AChE
(nM)

r2 BuChE
(nM)

r2

B1 –H Benzoyl 83.03 0.9853 66.68 0.9787
B2 –CH3 Benzoyl 79.98 0.9675 59.28 0.9857
B3 –OCH3 Benzoyl 45.63 0.9979 38.37 0.9864
B4 –F Benzoyl 15.42 0.9776 37.88 0.9732
B5 –Cl Benzoyl 43.52 0.9881 49.16 0.9970
B6 –Br Benzoyl 34.95 0.9957 54.73 0.9782
N1 –H Nicotinoyl 51.09 0.9738 59.89 0.9897
N2 –CH3 Nicotinoyl 64.00 0.9810 55.68 0.9724
N3 –OCH3 Nicotinoyl 26.35 0.9911 42.02 0.9871
N4 –F Nicotinoyl 12.14 0.9676 43.32 0.9946
N5 –Cl Nicotinoyl 32.86 0.9676 45.55 0.9558
N6 –Br Nicotinoyl 28.23 0.9890 48.75 0.9759
C1 –H Cinnamoyl 48.94 0.9858 69.86 0.9806
C2 –CH3 Cinnamoyl 57.62 0.9984 62.77 0.9322
C3 –OCH3 Cinnamoyl 24.12 0.9516 32.74 0.9854
C4 –F Cinnamoyl 10.67 0.9629 37.78 0.9847
C5 –Cl Cinnamoyl 21.76 0.9947 49.50 0.9674
C6 –Br Cinnamoyl 26.90 0.9946 54.03 0.9949
Tacrine* 20.85 0.9839 15.66 0.9874

Table 2  Binding free energies 
of B4, N4, and C4 in the AChE 
binding site

Compound Binding Free 
Energy (kcal/
mol)

B4 − 9.09
N4 − 9.30
C4 − 9.58

Table 3  In silico 
physicochemical properties of 
the compounds B4, N4, and C4 

a Molecular weight (< 500 Da), 
b Number of hydrogen bond acceptors (< 10), 
c Number of hydrogen bond donors (< 5), 
d Topological polar surface area (20–130 Å2), 
e Octanol/water partition coefficient (recommended range: − 2.0 to 6.5), 
f Aqueous solubility prediction (not higher than 6),
 gNumber of Lipinski’s rule of 5 violations

Compound MWa HBAb HBDc TPSAd CLogPo/w
e logSf Violationsg

B4 339.79 2 0 20.31 4.92 − 5.42 1
N4 340.78 3 0 33.20 4.10 − 4.75 0
C4 365.83 2 0 20.31 5.29 − 5.75 1
Tacrine 198.26 1 1 38.91 2.59 − 3.27 0

https://www.rcsb.org/
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Discussion

Chemistry

Secondary amines were synthesized in the range of 80–90% 
yields by both conventional and microwave irradiation meth-
ods. The reaction took place in a solvent-free environment 
in a shorter period under the microwave irradiation method 
while it took place in the aqueous medium by the conven-
tional method. In both methods, the completion of the reac-
tion was checked by TLC and all of the compounds were 
purified by column chromatography on silica gel with hex-
ane: ethyl acetate (2:1) as the mobile phase.

 Amides were also synthesized in similar yields (72–85%) 
by both conventional and microwave irradiation methods 
(Scheme 1). The fact that the reaction takes place in lower 
solvent conditions (1 mL) and the procedure can be carried 
out in 10 min makes microwave assisted synthesis prefer-
able over the conventional method. Moreover, the meth-
odologies proceeds with high atom economy which is in 
harmony with the green chemistry laws. The reaction pro-
cesses includes low energy consumption process; it either 
occurs at room temperature in  CH2Cl2 or with a moderate 
temperature by microwave irradiation in dioxane. The prod-
ucts can be isolated with high yields and selectivity in both 
cases (microwave assisted and conventional). As a result, 
the microwave irradiation method provided great advantages 
in terms of reaction periods, especially for the synthesis of 
amide derivatives. 

AChE and BuChE inhibitory activity

Tacrine was used as the reference drug and its  IC50 values 
were 20.85 nM and 15.66 nM against AChE and BuChE, 
respectively. According to Table 1, IC50 values of the 
compounds were in the range from 10.67 nM to 83.03 nM 
against AChE, while they were in the range from 32.74 nM 
to 66.68 nM against BuChE.

According to Table 1, compound C4 had a higher IC50 
value (about 2 times) than the reference drug towards AChE. 
The inhibition results in Table 1 pointed out that the syn-
thesized compounds had stronger inhibition effects towards 
AChE than BuChE enzyme. The most active compound in 
the series was 4-fluoro substituted compound C4 (cinnama-
mide derivative) having  IC50 value of 10.67 nM in terms of 
AChE inhibitory activity. On the other hand, the results in 
Table 1 showed that halogen substitution at the 4th position 
of the phenyl ring (series 4, 5, 6) was a useful modification 
in terms of AChE inhibitory activity. When the inhibition 
results in Table 1 were evaluated, it was seen that the substi-
tution of a methoxy group rather than a methyl group at the 

4th position of the phenyl ring led to an increase in AChE 
inhibitory activity (about 2 times).

The inhibition results presented in Table 1 showed that all 
compounds synthesized had higher IC50 values than Tacrine 
against BuChE. According to BuChE inhibition results pre-
sented in Table 1, the most active compound was 4-methoxy 
substituted and cinnamamide derivative compound C3 hav-
ing  IC50 value of 32,74 nM against BuChE.

Molecular docking studies

According to the results in Table 2, the binding free energy 
of the C4 (-9.58 kcal/mol) was higher than the free bind-
ing energy of the compounds B4 (-9.09 kcal/mol) and N4 
(-9.30 kcal/mol). Also, the results showed that the binding 
free energy scores of the compounds B4, N4, and C4 pre-
sented in Table 2 were in an agreement with in vitro AChE 
inhibition results presented in Table 1.

According to the B4-1EVE complex presented in Fig. 1, 
π-π charge transfer interactions were observed between the 
indole ring of TRP84A and the 4-fluoro substituted phenyl 
ring of the compound B4 (3.63 Å and 4.02 Å, respectively). 
On the other hand, many hydrophobic interactions were 
determined between B4 and the active site of the enzyme, 
1EVE (Fig. 1).

According to the N4-1EVE complex presented in Fig. 2, 
hydrogen bondings were observed between N atom in the 
pyridine ring of the compound N4 and the amino acids 
GLY118A (NH; 3.13 Å), GLY119A (NH; 3.01 Å), HIS440A 
(ArNH; 3.33 Å), SER200A (OH; 1.89 Å). In addition, the 
carbonyl group of the compound N4 realized a hydrogen 

Fig. 1  Schematic presentation of interactions between B4 and AChE 
(1EVE). Green colour represents π-π charge transfer interactions and 
grey represents pink represents hydrophobic interactions
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bonding with the side chain of the amino acid SER122 (OH; 
2.86 Å). π-π charge transfer interactions were determined 
between the indole ring of TRP84A and the 4-fluoro phe-
nyl ring of the compound N4 (4.02 Å and 3.63 Å, respec-
tively). Besides, many hydrophobic interactions were iden-
tified between N4 and the active site of the enzyme, 1EVE 
(Fig. 2).

According to the C4—1EVE complex presented in Fig. 3, 
π-π charge transfer interactions were observed between the 

indole structure of TRP84A and the 4-fluoro substituted phe-
nyl ring of the compound C4 (4.43 Å and 3.93 Å, respec-
tively). Also, the benzene ring of the 4-chlorobenzyl of the 
molecule realized a π-π charge-transfer interaction with the 
benzene ring of PHE331A (4.70 Å) (Fig. 3).

The molecular modelling studies showed that the benzene 
rings in the amide part of the molecules realized the charge-
transfer interaction with the anionic side of AChE (TRP84A, 
PHE331A). Besides, the nicotinoyl structure replaced by 
the benzoyl structure of the compounds led to the forma-
tion of hydrogen bonds with both the catalytic (SER200A, 
HİS440A) and oxyanion side (GLY118A, GLY119A) of the 
enzyme.

Prediction of physicochemical and ADME properties

The physicochemical properties of a molecule are very 
important in designing drug-candidate because they deter-
mine the pharmacokinetic properties of the molecule. ‘Drug-
likeness’ is a term explained earlier in the literature that 
describes the possibility for a molecule to be used as an oral 
drug in terms of bioavailability [58]. In medicinal chemistry, 
Lipinski’s 5 rules are used to score the drug-likeness proper-
ties of a compound [60, 61].

According to the results presented in the supporting 
file, ClogP values of the compounds were in the range of 
4.59–5.21(<5) for benzamide (B) series, 3.76–4.38 (<5) for 
nicotinamide (N) series, and 4.94–5.59 for cinnamamide (C) 
series. The molecular weights of the compounds were in the 
range of 321.80–400.70 (<500) for benzamide (B) series, 
322.79–401.68 (<500) for nicotinamide (N) series, and 
347.84–426.76 (<500) for cinnamamide (C) series. HBA 
values of the compounds ranged 1–3 (≤ 10) and HBD values 
of the compounds were 0 (<5) for each series. When these 
results were compared with the reference drug Tacrine, it 
was seen that the ADME profiles of the N series had the 
closest values to the physicochemical properties of Tacrine. 
Besides, the most active compounds in each series towards 
AChE B4, N4, and C4 had desired logP values (Table 3) in 
terms of penetrating the blood–brain barrier. This means 
that the compounds had CNS effects in terms of being used 
as AChE inhibitors for the treatment of AD. According to 
Table 3, both compounds B4 and C4 had 1 violation in terms 
of Lipinski’s rule of five because of having a MlogP value 
higher than 4.15.

Conclusion

The newly designed (except B1 and B5) total of 18 com-
pounds, N-(4-chlorobenzyl)-N-(4-substituted phenyl)ben-
zamide/nicotinamide/cinnamamide, were synthesized and 
purified successfully for the first time with their potential 

Fig. 2  Schematic presentation of interactions between the compound 
N4 and AChE (1EVE). Blue colour represents hydrogen bondings, 
green colour represents π-π charge transfer interactions and grey rep-
resents hydrophobic interactions

Fig. 3  Schematic presentation of interactions between the compound 
C4 and AChE (1EVE). Green colour represents π-π charge transfer 
interactions and grey represents hydrophobic interactions
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inhibitory effects on AChE and BuChE enzymes. According 
to the inhibition results, the IC50 values of the compounds 
synthesized were in the range of 10.66–83.03 nM towards 
AChE, while they were in the range of 32.74–66.68 nM 
towards BuChE. The inhibition results showed that the 
newly synthesized compounds had higher inhibitory effects 
towards AChE than BuChE. According to the AChE inhi-
bition results, among the synthesized benzamide/nicotina-
mide/cinnamamide derivatives, 4-floroaniline derivatives 
(B4, N4, C4) showed the highest AChE inhibitory activities 
in each series and had the highest selectivity to AChE. The 
most active compounds B4 (IC50: 15.42 nM), N4 (IC50: 
12.14 nM), and C4 (IC50: 10.67 nM) in each series had 
higher in vitro AChE inhibitory activity than the reference 
drug TAC (IC50: 20.85 nM). The most active compound 
towards AChE in the series was the cinnamamide deriva-
tive compound C4 having a lower IC50 value (about two 
times) than TAC. Besides, the inhibition results of the com-
pounds towards AChE suggested that replacing the cinnama-
mide structure with benzamide and nicotinamide structure 
led to an increase in AChE inhibitory effect. On the other 
hand, the most active compounds B4, N4, and C4 in each 
series towards AChE were docked at the binding sites of the 
enzyme to explain the inhibitory activities of each series. 
ADME prediction studies of the compounds showed that 
the newly designed compounds were not only potent AChE 
inhibitors but also had desired physicochemical and ADME 
profiles for further studies as drug candidates.
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