Tetrahedron 70 (2014) 8280-8285

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

T3P[®]-assisted esterification and amidation of phosphinic acids^{\star}

^a Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary ^b API Research and Development, Spectroscopic Research, Gedeon Richter Plc., 1475 Budapest, Hungary

ARTICLE INFO

Article history: Received 18 June 2014 Received in revised form 27 August 2014 Accepted 8 September 2014 Available online 17 September 2014

Keywords: Phosphinic acid Phosphinic amide P-Heterocycles Phosphinate T3P[®] reagent Green synthesis

ABSTRACT

A few phosphinic acids, such as phenylphosphinic acids, 1-hydroxy-3-phospholene 1-oxides and 1-hydroxyphospholane oxides are esterified with simple alcohols in the presence of propylphosphonic anhydride (T3P[®]). If 1.1 equiv of the T3P[®] reagent is used, the esterifications are fast and efficient at 25° C. In the case of more reactive models it was enough to apply 0.66 equiv of T3P[®] at 85° C under microwave conditions. The amidation of 1-hydroxy-3-methyl-3-phospholene oxide could also be accomplished under similar conditions.

© 2014 Elsevier Ltd. All rights reserved.

Tetrahedror

1. Introduction

Phosphinic derivatives are most often prepared by the reaction of phosphinic chlorides with the corresponding nucleophiles, such as alcohols or amines.^{2–4} Regarding phosphinates, we have found that phosphinic acids may undergo direct esterification with alcohols under microwave (MW) conditions.^{5–8} However, thioesterification and amidation of phosphinic acids took place only partially on MW irradiation.^{9,10} According to another method, phosphinates may also be obtained by the alkylating esterification of phosphinic acids: it was found that the combined use of phase transfer catalysis and the MW technique is advantageous.^{8,11} In the last decade, a powerful condensing agent, the trimeric propylphosphonic acid anhydride (the T3P[®] reagent) emerged that could be used well in many reactions, such as the coupling of amino acids, acylations, esterifications and condensations.¹² The three-component Kabachnik-Fields reaction could also be performed under mild conditions utilizing the T3P[®] reagent.¹³

We have found that phosphinic acids may also be esterified by alcohols in the presence of the T3P[®] reagent. Our preliminary results were reported in a communication.¹

In this article, we show the general applicability of the T3P[®] reagent in the esterification and amidation of different cyclic phosphinic acids.

2. Results and discussion

2.1. Esterification of phosphinic acids

2.1.1. Optimization of the esterification. At first, two model compounds, phenyl-H-phosphinic acid (1) and 1-hydroxy-3-methyl-3phospholene 1-oxide (2) were chosen to find the most suitable conditions for the T3P[®]-mediated esterification with 3 equiv of butanol (Table 1). As was shown in the preliminary communication,¹ the esterification of phosphinic acids is practically quantitative in the presence of 1.1 equiv of the T3P[®] reagent at room temperature. After a reaction time of 30 min, phosphinates 3e and 4 were obtained in yields of 95% and 82%, respectively (Table 1, entries 1 and 6). The use of only 0.66 equiv of the T3P[®] reagent under the same conditions was almost as efficient for the $1 \rightarrow 3e$ transformation, as the application of 1.1 equiv (91%, Table 1, entry 2); however, the esterification of hydroxy-phospholene oxide 2 was, in this case, less efficient, as phosphinate **4** was obtained in only 42% (Table 1, entry 7). Carrying out the $2 \rightarrow 4$ esterification at 85 °C, the yield was somewhat increased, but 56% is still far from quantitative (Table 1, entry 8). The latter variation (85 °C and 0.66 equiv of the reagent) was also performed under MW conditions affording product 4 in a yield of 79% (Table 1, entry 9). In the case of the more reactive phenyl-H-phosphinic acid (1), the esterification was also tried out using 0.44 equiv of the T3P[®] reagent. In this instance, phosphinate 3e was obtained in 79% yield (Table 1, entry 3). Elevating the temperature to 85 °C did not help, but MW irradiation at

 $[\]stackrel{ riangle}{=}$ See Ref. 1.

^{*} Corresponding author. Tel.: +36 1 463 1111/5883; fax: +36 1 463 3648; e-mail address: gkeglevich@mail.bme.hu (G. Keglevich).

Table 1

Optimization of the esterification of phosphinic acids (1 and 2) with but anol in the presence of the T3P^ $\mbox{\sc respect}$ reagent

Entry	Y^1	Y ²	T3P [®] (equiv)	Temp (°C)	Time (h)	Yield (%)
1	Н	Ph	1.1	25	0.5	95 (3e)
2	Н	Ph	0.66	25	0.5	91 (3e)
3	Н	Ph	0.44	25	0.5	79 (3e)
4	Н	Ph	0.44	85 (Δ)	0.25 ^a	78 (3e)
5	Н	Ph	0.44	85 (MW)	0.25 ^b	89 (3e)
6 ¹		Mo	1.1	25	0.5	82 (4)
7	_		0.66	25	0.5	42 (4)
8	/-	-\	0.66	85 (Δ)	0.5	56 (4)
9		/	0.66	85 (MW)	0.5 ^b	79 (4)

^a No change on further heating.

^b No change on further irradiation.

the same temperature was quite efficient and led to a yield of 89% (Table 1, entries 4 and 5, respectively).

It can be seen that from among the three '^{*n*}PrP(O)O' units of the T3P[®] reagent, one fragment can be used without any problem. The utilization of the second unit of '^{*n*}PrP(O)O' is possible with reactive phosphinic acids, such as phenyl-*H*-phosphinic acid (1). With less reactive phosphinic acids, like 1-hydroxy-3-phospholene oxide **2**, MW irradiation at 85 °C was necessary to attain a yield of 79%, when 0.66 equiv of the T3P[®] reagent was used. The esterification using 0.44 equiv of the T3P[®] reagent was beneficial only with the more reactive phenyl-*H*-phosphinic acid (1) under MW conditions.

2.1.2. Esterification of acyclic phenylphosphinic acids (1 and 5). In the next stage, phenyl-*H*-phosphinic acid (1) was esterified with other simple (C_1-C_4) alcohols using 1.1 or 0.66 equiv of the T3P[®] reagent at 25 °C (Table 2). In the second variation, applying only 0.66 equiv of the T3P[®] reagent, the yields were 2–6% lower, than using 1.1 equiv of the T3P[®] reagent. The yields of phosphinates **3a-h**, regarding both series of experiments, fall in the range of 80–95% after flash column chromatography (Table 2, entries 1–8). It is worthy of mention that the sterically hindered tert-butyl alcohol could be used almost as efficiently as the other alcohols (Table 2, entry 8). The esterification with sec-butanol resulted in product **3g** as a 54–46% mixture of two diastereomers. The esterification of the sterically more crowded, and hence not too reactive diphenylphosphinic acid (5) was performed in the presence of 1.1 equiv of the T3P[®] reagent at 85 °C for 1 h under MW irradiation to afford the products in lower yields of 45-49% (Table 2, entries 9–12). The products **3a**–**h**, **6a**–**c** and **6e**, which, with the exception of **3g**, were described earlier, were identified on the basis of ³¹P NMR and HRMS. Compound $\mathbf{3g}$ was fully characterized also by 13 C and ¹H NMR data.

2.1.3. Esterification of cyclic phosphinic acids (**7**, **9** and **11**). The T3P[®]-mediated esterifications were then carried out with 1-hydroxy-3,4-dimethyl-3-phospholene 1-oxide (**7**) (Table 3). Using 1.1 equiv of the T3P[®] reagent, the reactions with *n*-al-cohols were complete at 25 °C after 1 h (Table 3, entries 1, 3, 5, 10), but the esterification with branched alcohols required heating at 85 °C for 1 h (Table 3, entries 8, 13, 16), as the latter

Table 2

Esterification of phenyl-H-phosphinic acid (1) and diphenylphosphinic acid (5) with a series of alcohols in the presence of $T3P^{\odot}$

1	5		
O ^{FC} OH Y H Ph		2.) ROH (3 equiv.)	0 ²¹ OR 3, 6
۲ _{、 р}	Ph	Temp., time 1.) T3P [®] / EtOAc	Y、Ph

R = Me (a), Et (b), Pr (c), ⁱPr (d), Bu (e), ⁱBu (f), ^sBu (g), ^tBu (h)

Entry	Y	ROH	T3P [®] (equiv)	Temp (°C)	Time (h)	Yield (%)
1	Н	MeOH	1.1 (0.66)	25	0.5	82 (80) (3a)
2	Н	EtOH	1.1 (0.66)	25	0.5	89 (83) (3b)
3	Н	PrOH	1.1 (0.66)	25	0.5	96 (91) (3c)
4	Н	ⁱ PrOH	1.1 (0.66)	25	1	81 (78) (3d)
5	Н	BuOH	1.1 (0.66)	25	0.5	95 (91) (3e)
6	Н	ⁱ BuOH	1.1 (0.66)	25	1	91 (86) (3f)
7	Н	^s BuOH	1.1 (0.66)	25	1	83 (81) (3g) ^a
8	Н	^t BuOH	1.1 (0.66)	25	1	82 (78) (3h)
9	Ph	MeOH	1.1	85 (MW)	1	45 (6a)
10	Ph	EtOH	1.1	85 (MW)	1	45 (6b)
11	Ph	PrOH	1.1	85 (MW)	1	47 (6c)
12	Ph	BuOH	1.1	85 (MW)	1	49 (6e)

^a As a 54-46% mixture of two isomers.

 Table 3

 Esterification of 1-hydroxy-3,4-dimethyl-3-phospholene 1-oxide (7)

R = Me(a), Et(b), Pr(c), Pr(d), Bu(e), Bu(f), Bu(f)

Entry	ROH	T3P [®] (equiv)	Temp (°C)	Time (h)	Yield (%)
1	MeOH	1.1	25	1	84 (8a)
2	MeOH	0.66	85 (MW)	1	83 (8a)
3	EtOH	1.1	25	1	82 (8b)
4	EtOH	0.66	85 (MW)	1	80 (8b)
5	PrOH	1.1	25	1	79 (8c)
6	PrOH	0.66	85 (MW)	1	80 (8c)
7	ⁱ PrOH	1.1	25	2 ^a	59 (8d)
8	ⁱ PrOH	1.1	85 ^b (Δ)	1 ^c	79 (8d)
9	ⁱ PrOH	0.66	85 (MW)	1	62 (8d)
10	BuOH	1.1	25	1	85 (8e)
11	BuOH	0.66	85 (MW)	1	79 (8e)
12	ⁱ BuOH	1.1	25	1	72 (8f)
13	ⁱ BuOH	1.1	85 ^b (Δ)	1 ^c	81 (8f)
14	ⁱ BuOH	0.66	85 (MW)	1	75 (8f)
15	^s BuOH	1.1	25	2 ^a	61 (8g)
16	^s BuOH	1.1	85 ^b (Δ)	1 ^c	71 (8g)
17	^s BuOH	0.66	85 (MW)	1	57 (8g)

^a No change on further stirring.

^b Temperature of the oil bath.

^c No change on further heating.

reactions were incomplete at 25 °C after \leq 2 h (Table 3, entries 7, 12, 15).

Eventually, the phosphinates **8a**–**g** could be obtained in yields of 71–85% after flash column chromatography. Carrying out the esterifications with *n*-alcohols using only 0.66 equiv of the T3P[®] reagent at 85 °C under MW, the yields of phosphinates **8a–c** and **8e** were 1–6% lower (Table 3, entries 2, 4, 6, 11), while with branched alcohols as the reactant, the yields of esters **8d**, **8f** and **8g** were 6–17% lower (Table 3, entries 9, 14, 17). It can be concluded that in the case of *n*-alcohols as the partners, the use of only 0.66 equiv of the T3P[®] reagent may be enough, but 85 °C and MW irradiation are necessary.

With the exception of phosphinate **8g**, the other compounds (8a-f) were described earlier in the literature. The known species were identified on the basis of ³¹P NMR and HRMS.

Then, 1-hydroxy-3-methylphospholane oxide (9) was esterified in a similar manner using 1.1 equiv of the T3P[®] reagent (Table 4). Reaction of the cyclic phosphinic acid (**9**) with alcohols at 25 °C furnished the phosphinates (10a-g) in yields of 54–81% after flash column chromatography (Table 4, entries 1, 3, 5, 7, 9, 11, 12). The lowest yields (55/54%) were obtained in the esterifications with isopropyl alcohol, and sec-butyl alcohol (Table 4, entries 7, 12). Performing the esterification with isopropyl alcohol at 85 °C did not help much (57%, Table 4, entry 8). Products 10a-f consisted of ca. 1:1 mixtures of two diastereomers, while the sec-butyl ester (10g) comprised four isomers. Carrying out the esterifications with only 0.66 equiv of the T3P[®] reagent at 85 °C under MW, the yields of the *n*-alkyl esters (**10a**–**c** and **10e**) were 10–14% lower (Table 4, entries 2, 4, 6, 10), suggesting that in the case of hydroxymethylphospholane oxide 9, that is of lower reactivity, it is better to use 1.1 equiv of the T3P[®] reagent to obtain the phosphinates (**10**) in higher yields.

Table 4

Esterification of 1-hydroxy-3-methylphospholane 1-oxide (9)

R = Me (a), Et (b), Pr (c), ⁱPr (d), Bu (e), ⁱBu (f), ^sBu (g)

Entry	ROH	T3P [®] (equiv)	Temp (°C)	Time (h)	Yield ^a (%)
1	MeOH	1.1	25	1	81 (10a)
2	MeOH	0.66	85 (MW)	1	67 (10a)
3	EtOH	1.1	25	1	71 (10b)
4	EtOH	0.66	85 (MW)	1	60 (10b)
5	PrOH	1.1	25	1	67 (10c)
6	PrOH	0.66	85 (MW)	1	57 (10c)
7	ⁱ PrOH	1.1	25	2 ^b	55 (10d)
8	ⁱ PrOH	1.1	85 ^c (Δ)	1.5 ^b	57 (10d)
9	BuOH	1.1	25	1	75 (10e)
10	BuOH	0.66	85 (MW)	1	61 (10e)
11	ⁱ BuOH	1.1	25	2	66 (10f)
12	^s BuOH	1.1	25	2 ^b	54 (10g) ^d

^a As an $\sim 1:1$ mixture of two diastereomers.

^b No change on further stirring.

^c Temperature of the oil bath.

 d As a 23:23:32;22% mixture of four diastereomers (determined on the basis of the relative ^{13}C NMR intensities of the C_5 signals).

1-Hydroxy-dimethylphospholane oxide **11** was also subjected to esterifications (Table 5). The experiences were similar to those observed for the monomethyl derivatives (**9**), however, in this instance, the esterification with isopropyl alcohol and *sec*-butyl alcohol was more efficient at 85 °C for 1.5/2 h (Table 5, entries 7, 8, 12). The phosphinates (**12a**–**g**), formed in this case as a mixture of three isomers, were obtained in yields of 45–75% after flash column chromatography (Table 5, entries 1, 3, 5, 8, 9, 11, 12). It can be seen from the data of Table 5 (entries 2, 4, 6, 10) that the use of only 0.66 equiv of the T3P[®] reagent led to ca. 11% lower yields of the corresponding phosphinates **12**.

The experience is that the lower reactivity of these saturated derivatives (9 and 11) did not justify attempts at the esterification with less $T3P^{\circledast}$.

The phosphinates **10a**–**d**, **10f** and **10g**, as well as **12a**–**d**, **12f**, and **12g** are new compounds and were fully characterized by ³¹P, ¹³C and ¹H NMR, as well as HRMS spectroscopy.

Table 5

Esterification of 1-hydroxy-3,4-dimethylphospholane 1-oxide (11)^a

R = Me (a), Et	(b), Pr (c),	'Pr (d), Bu (•	e), 'Bu (f)), ^s Bu (g)
-------------------------	--------------------------------	-------------------------	------------------------------	---------------------------------

Entry	ROH	T3P [®] (equiv)	Temp (°C)	Time (h)	Yield (%)	Composition
1	MeOH	1.1	25	1	69 (12a)	91:3:6
2	MeOH	0.66	85 (MW)	1	57 (12a)	_
3	EtOH	1.1	25	1	72 (12b)	92:3:5
4	EtOH	0.66	85 (MW)	1	65 (12b)	_
5	PrOH	1.1	25	1	67 (12c)	94:3:3
6	PrOH	0.66	85 (MW)	1	55 (12c)	_
7	ⁱ PrOH	1.1	25	2 ^b	35 (12d)	_
8	ⁱ PrOH	1.1	85 ^c (Δ)	1.5	45 (12d)	95:3:2
9	BuOH	1.1	25	1	75 (12e)	92:5:3
10	BuOH	0.66	85 (MW)	1	63 (12e)	_
11	ⁱ BuOH	1.1	25	2	54 (12f)	94:3:3
12	^s BuOH	1.1	85 ^c (Δ)	2	45 (12g)	47:45:3:5

^a The starting phosphinic acid comprised a 7:3 mixture of two isomers.

^b No change on further reaction.

^c Temperature of the oil bath.

One can see, that in most cases, phosphinic acids may be esterified efficiently with alcohols under mild conditions using 1.1 equiv of the T3P[®] reagent. With more reactive phosphinic acids, it is enough to apply the T3P[®] reagent in a quantity of 0.66 equiv, but more forcing conditions are necessary.

2.1.4. Amidation of 1-hydroxy-3-methyl-3-phospholene 1-oxide (**2**). We wished to extend the sphere of T3P[®]-promoted derivatizations of phosphinic acids. For this, 1-hydroxy-3-methyl-3-phospholene oxide **2** was reacted with a series of primary amines (propyl-, butyl-, hexyl- and benzyl-amines) and secondary amines (diethyl-, di-*n*-propyl- and di-*n*-butyl-amine) at 25 °C applying the T3P[®] reagent in a quantity of 1.1 equiv (Table 6). Depending on the reactivity of the amine, the completion required a reaction time of

Table 6 Amidation of 1-hydroxy-3-methyl-3-phospholene 1-oxide (2)

	N	Лe			25	°C, t	ime					Me	
[={		1.)	Т3Р	[®] / E	tOAc	(1.1	equiv.)	L	((7	
Ó	P 0 2	Н		2.)	R ¹ R (2	² NH/ equ	EtOA iv.)	λc		Ó	13	NR ¹ R ²	
	R^1	Pr	ⁱ Pr	Bu	ⁱ Bu	^s Bu	Hex	^c Hex	Bn	Et	Pr	Bu	
	R^2	Н	Н	Н	Н	Н	Н	Н	Н	Et	Pr	Bu	
		(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)	
Entry		I	ર 1			R ²		Tin	ne (h)		Yield (%)	
1		I	Pr			Н		0.5				61 (13a)	
2		1	Pr			Н		2				60 (13b)	
3		i	su Bu			H		0.5				65 (13C)	
4		s	BU			н ц		0.5				62 (130)	a
6		H	-Jex			н		0.5				86 (13f)	
7		c	Hex			Н		2				82 (13g)	
8		H	Bn			Н		0.5				87 (13h)	
9		H	Et			Et		2				65 (13i)	
10		Ι	Pr			Pr		2				61 (13j)	
11		I	Bu			Bu		2				70 (13k)	

^a As a 1:1 mixture of two diastereomers.

0.5 h or 2 h, and the phosphinic amides (**13a–k**) were obtained in a yield of 60–87% after column chromatography (**Table 6**, entries 1–11). The amide with the *sec*-butyl substituent (**13e**) was obtained as a 1:1 mixture of two diastereomers. The majority of the aminophospholene oxides (**13**) have been described earlier,^{21,22} only species **13a**, **13b**, **13e**, **13j** and **13k** are new and were characterized in detail by us.

It can be seen that the T3P[®] reagent is also suitable to promote efficient amidation of phosphinic acids under mild conditions. This is the first case that a phosphinic acid is converted to amides using the T3P[®] reagent.

3. Conclusions

It was shown that phosphinic acids that do not undergo direct esterification and amidation with alcohols and amines, respectively, may be derivatized using the corresponding nucleophile in the presence of 1.1 equiv of the T3P[®] reagent. In the case of more reactive phosphinic acids, it was enough to apply 0.66 equiv of the condensing agent, and in certain cases, it was helpful to accomplish the reactions at 85 °C under MW conditions. The method developed represents an environmentally-friendly approach for the preparation of phosphinic derivatives.

4. Experimental

4.1. General

The MW-assisted reactions were carried out in a 300 W CEM Discover focused reactor equipped with a pressure controller applying 30–50 W under isothermal conditions. Standard 5 mL glass reaction vessels were used distributed by the supplier of the CEM reactor, and the reaction mixtures were stirred magnetically. The ¹³C and ¹H NMR spectra were obtained in CDCl₃ solution on a Bruker DRX-500 spectrometer operating at 125.7, and 500.1 MHz, respectively. The ¹³C and ¹H chemical shifts are referred to TMS. ³¹P NMR spectra were obtained on a Bruker AV-300 spectrometer. Chemical shifts are downfield relative to 85% H₃PO₄. Mass spectrometry was performed on a Thermo LTQ-FT-Ultra spectrometer, or a Waters GCT Premier instrument applying ESI and EI modes of operation, respectively.

4.2. General procedure for esterification of phosphinic acids (1, 2, 5, 7, 9 and 11) in the presence of T3P[®]

A mixture of the phosphinic acid (0.76 mmol [phenyl-H-phosphinic acid (1): 0.11 g, 1-hydroxy-3-methyl-3-phospholene 1-oxide (2): 0.10 g, diphenylphosphinic acid (5): 0.15 g, 1-hydroxy-3,4dimethyl-3-phospholene 1-oxide (7): 0.11 g, 1-hydroxy-3methylphospholane 1-oxide (9): 0.10 g, 1-hydroxy-3,4dimethylphospholane 1-oxide (11): 0.11 g]) and the T3P[®] reagent (0.55 mL, 0.84 mmol 50 wt % ethyl acetate solution) was stirred for 10 min. To the resulting mixture was added the alcohol (2.3 mmol [methanol: 0.09 mL, ethanol: 0.13 mL, propanol: 0.17 mL, isopropanol: 0.17 mL, butanol: 0.21 mL, isobutanol: 0.21 mL, sec-butanol: 0.21 mL, tert-butanol: 0.22 mL]) and the contents of the flask were stirred for appropriate time (see Tables 2-5). The excess of the T3P[®] reagent was hydrolyzed with 10% NaHCO₃ solution (15 mL) and the aqueous phase was washed with ethyl acetate (30 mL). The combined organic phase was dried (Na₂SO₄), and concentrated in vacuum to provide the crude product that was passed through a thin (ca. 3–4 cm) layer of silica gel using 3% MeOH in CH₂Cl₂ as the eluent to give the products (2, 3, 6, 8, 10 and 12) in a purity >99% as oils. For details see Tables 1–5. During the optimization procedure and in a part of other experiments, the T3P® reagent was also used in a 0.50 mmol and a 0.33 mmol (0.33 mL and 0.22 mL, respectively) quantity (see the appropriate parts of Tables 1–5).

The following new compounds were thus prepared:

4.2.1. 1-Methylpropyl phenyl-H-phosphinate (**3g**). ³¹P NMR: (CDCl₃) δ : 22.2 (54%) and 23.6 (46%); ¹³C NMR (CDCl₃) δ : 9.6 and 9.8 (CH₂CH₃), 21.3 and 21.9 (d, *J* 3.2 and 3.4, CHCH₃), 30.7 and 30.8 (d, *J* 4.7, CHCH₂), 76.0 and 76.6 (d, *J* 6.8, OCH), 128.8 (d, *J* 13.9, C₂ or C₃), 130.6 (d, *J* 132.5, C₁), 131.0 (d, *J* 11.8, C₃ or C₂), 133.1 (d, *J* 2.0, C₄); ¹H NMR (CDCl₃) δ : 0.88 and 0.96 (t, *J* 7.4, 3H, CH₂CH₃), 1.30 and 1.37 (d, *J* 6.2, 3H, OCHCH₃), 1.50–1.77 (m, 2H, CHCH₂), 4.40–4.52 (m, 1H, OCH), 7.60 (d, *J* 558.1, 1H, PH), 7.31–7.62 (m, 3H, ArH), 7.69–7.85 (m, 2H, ArH); IR (neat) 1033, 1234, 1440, 2975 cm⁻¹; [M + H]⁺_{found} = 199.0889, C₁₀H₁₆O₂P requires 199.0888.

4.2.2. 1-(1-Methylpropoxy)-3,4-dimethyl-3-phospholene 1-oxide(**8g**). ³¹P NMR: (CDCl₃) δ : 68.5; ¹³C NMR (CDCl₃) δ : 9.6 (CH₂CH₃), 16.5 (d, *J* 15.8, C₃-CH₃), 21.7 (d, *J* 2.6, OCHCH₃), 30.7 (d, *J* 5.0, OCHCH₂), 36.4 and 36.8 (d, *J* 92.1, C₂), 74.3 (d, *J* 6.9, OCH), 127.3 and 127.5 (d, *J* 10.4 and 10.2, C₃); ¹H NMR (CDCl₃) δ : 0.82 (t, *J* 7.4, 3H, CH₂CH₃), 1.21 (d, *J* 6.2, 3H,OCHCH₃), 1.37-1.69 (m, 2H, OCHCH₂), 1.61 (s, 6H, C₃-CH₃, C₄-CH₃), 2.20-2.47 (m, 4H, PCH₂), 4.27-4.44 (m, 1H, OCH); IR (neat) 1030, 1244, 1446, 1651, 2973 cm⁻¹; [M + H]⁺_{found} = 203.1204, C₁₀H₂₀O₂P requires 203.1201.

4.2.3. 1-Methoxy-3-methylphospholane 1-oxide (**10a**). ³¹P NMR (CDCl₃) δ : 81.1; ¹³C NMR (CDCl₃) δ : isomer **A**: 21.1 (d, *J* 7.9, C₃–CH₃), 24.8 (d, *J* 88.0, C₅), 31.1 (d, *J* 9.8, C₄ or C₃), 31.7 (d, *J* 12.9, C₃ or C₄), 32.2 (d, *J* 89.5, C₂ or), 51.0 (d, *J* 6.8, OCH₃); isomer **B**: 21.3 (d, *J*=7.4, C₃–CH₃), 25.5 (d, *J*=87.4, C₅), 31.3 (d, *J*=9.8, C₄ or C₃), 32.0 (d, *J*=12.9, C₃ or C₄), 32.5 (d, *J*=89.0, C₂), 51.0 (d, *J*=6.8, OCH₃); ¹H NMR (CDCl₃) δ : 1.05 (d, *J* 5.3, 3H, C₃–CH₃), 1.15–2.31 (m, 7H, CH₂, CH), 3.66 (d, *J* 10.8, 3H, OCH₃); IR (neat) 1034, 1228, 1458, 2956 cm⁻¹; [M + H]⁺_{found} = 149.0732, C₆H₁₄O₂P requires 149.0732.

4.2.4. 1-Ethoxy-3-methylphospholane 1-oxide (**10b**). ³¹P NMR (CDCl₃) δ : 79.4; ¹³C NMR (CDCl₃) δ : isomer **A**: 16.5 (d, J 6.0, CH₂CH₃), 21.1 (d, J 8.0, C₃-CH₃), 25.4 (d, J 88.0, C₅), 31.2 (d, J 9.8, C₄ or C₃), 31.8 (d, J 13.0, C₃ or C₄), 32.9 (d, J 89.6, C₂), 60.45 (d, J 6.6, OCH₂); isomer **B**: 16.5 (d, J 6.0, CH₂CH₃), 21.3 (d, J 7.4, C₃-CH₃), 26.1 (d, J 87.6, C₅), 31.3 (d, J 9.8, C₄ or C₃), 32.0 (d, J 13.0, C₃ or C₄), 33.1 (d, J 89.1, C₂), 60.50 (d, J 6.5, OCH₂); ¹H NMR (CDCl₃) δ : 1.04 (d, J 6.2, 3H, C₃-CH₃), 1.28 (t, J 6.9, 3H, CH₂CH₃), 1.30-2.19 (m, 7H, skeletal CH₂, CH), 3.91-4.09 (m, 2H, OCH₂); IR (neat) 1036, 1228, 1458, 2957 cm⁻¹; [M + H]⁺_{found} = 163.0888, C₇H₁₆O₂P requires 163.0888.

4.2.5. 1-Propoxy-3-methylphospholane 1-oxide (**10c**). ³¹P NMR (CDCl₃) δ : 79.4; ¹³C NMR (CDCl₃) δ : isomer **A**: 10.0 (CH₂CH₃), 21.2 (d, J 15.0, C₃-CH₃), 23.9 (d, J 6.1, OCH₂CH₂), 25.3 (d, J 88.1, C₅), 31.2 (d, J 9.7, C₄ or C₃), 31.8 (d, J 12.9, C₃ or C₄), 32.8 (d, J 89.6, C₂), 65.98 (d, J 6.8, OCH₂); isomer **B** 10.0 (CH₂CH₃), 21.3 (d, J 14.3, C₃-CH₃), 23.9 (d, J 6.1, OCH₂CH₂), 26.0 (d, J 87.6, C₅), 31.4 (d, J 9.8, C₄ or C₃), 32.0 (d, J 12.9, C₃ or C₄), 33.1 (d, J 89.2, C₂), 66.03 (d, J 6.8, OCH₂); ¹H NMR (CDCl₃) δ : 0.91 (t, J 7.3, 3H, CH₂CH₃), 1.05 (d, J 5.4, 3H, C₃-CH₃), 1.19-2.18 (m, 9H, skeletal CH₂, CH, CH₂CH₃), 3.80-4.00 (m, 2H, OCH₂); IR (neat) 1056, 1228, 1459, 2963 cm⁻¹; [M + H]⁺_{found} = 177.1040, C₈H₁₈O₂P requires 177.1039.

4.2.6. 1-Isopropoxy-3-methylphospholane 1-oxide (**10d**). ³¹P NMR (CDCl₃) δ : 77.8 (**A**, 54%) and 77.7 (**B**, 46%); ¹³C NMR (CDCl₃) δ : isomer **A**: 21.3 (d, *J* 7.7, C₃-CH₃), 24.3 (d, *J* 4.2, OCHCH₃), 26.4 (d, *J* 88.2, C₅), 31.4 (d, *J* 10.0, C₄ or C₃), 32.0 (d, *J* 13.2, C₃ or C₄), 33.9 (d, *J* 89.7, C₂), 69.46 (d, *J* 6.6, OCH); isomer **B**: 21.5 (d, *J* 7.0, C₃-CH₃), 24.4 (d, *J* 4.2, OCHCH₃), 27.0 (d, *J* 88.0, C₅), 31.5 (d, *J* 10.9, C₄ or C₃), 32.2 (d, *J* 14.2, C₃ or C₄), 34.1 (d, *J* 89.5, C₂), 69.50 (d, *J* 6.6, OCH); ¹H NMR (CDCl₃) δ : 1.08 (d, *J*=6.2, 3H, C₃-CH₃), 1.31 (d, *J*=6.1, 6H, CHCH₃), 1.34-2.21 (m,

7H, skeletal CH₂, CH), 4.55–4.74 (m, 1H, OCH); IR (neat) 1059, 1229, 1458, 2960 cm $^{-1}$; $[M+H]^+_{found}=177.1039,\ C_8H_{18}O_2P$ requires 177.1039.

4.2.7. 1-Isobutoxy-3-methylphospholane 1-oxide (**10f**). ³¹P NMR (CDCl₃) δ : 79.2; ¹³C NMR (CDCl₃) δ : isomer **A**: 18.7 (CHCH₃), 21.2 (d, J 7.0, C₃-CH₃), 25.2 (d, J 88.2, C₅), 29.2 (d, J 6.3, OCH₂CH), 31.2 (d, J 9.7, C₄ or C₃), 31.8 (d, J 13.0, C₃ or C₄), 32.7 (d, J 89.8, C₂), 70.46 (d, J 6.9, OCH₂); isomer **B**: 18.7 (CHCH₃), 21.4 (d, J 6.2, C₃-CH₃), 25.9 (d, J 87.7, C₅), 29.2 (d, J 6.3, OCH₂CH), 31.4 (d, J 9.8, C₄ or C₃), 32.0 (d, J 13.1, C₃ or C₄), 33.0 (d, J 89.3, C₂), 70.51 (d, J 6.9, OCH₂); ¹H NMR (CDCl₃) δ : 0.79 (d, J 6.6) and 0.80 (d, J 6.6) total intensity 6H, CHCH₃, 0.96 (d, J 5.0, 3H, C₃-CH₃), 1.08-2.04 (m, 8H, skeletal CH₂, CH, CH₂CH), 3.52-3.72 (m, 2H, OCH₂); IR (neat) 1023, 1228, 1458, 2959 cm⁻¹; [M + H]⁺_{feund} = 191.1195, C₉H₂₀O₂P requires 191.1195.

4.2.8. 1-(1-Methylpropoxy)-3-methylphospholane 1-oxide (10g). ³¹P NMR (CDCl₃) δ : 77.8 (**A** and **B**, 46% [on the basis of the relative ¹³C NMR intensities of the signals of the C_5 atom, the ratio of **A** and **B** is 1:1]), 78.0 (**C**, 32%) and 77.9 (**D**, 22%); ¹³C NMR (CDCl₃) δ: isomer **A**: 9.7 (CH₂CH₃), 21.3 (d, J 15.1, C₃-CH₃), 21.74 (d, J 7.9, CHCH₃), 26.1 (d, J 88.3, C₅), 30.69 (d, J 5.2, CHCH₂), 31.3 (d, J 9.7, C₄ or C₃), 31.9 (d, J 13.4, C₃ or C₄), 33.6 (d, J 89.9, C₂), 74.06 (d, J 7.1, OCH); isomer B: 9.7 (CH₂CH₃), 21.3 (d, J 15.1, C₃-CH₃), 21.74 (d, J 7.9, CHCH₃), 26.6 (d, J 88.3, C₅), 30.69 (d, J 5.2, CHCH₂), 31.4 (d, J 9.1, C₄ or C₃), 31.94 (d, J 13.4, C₃ or C₄), 33.9 (d, J 89.5, C₂), 74.08 (d, J 6.8, OCH); isomer C: 9.7 (CH₂CH₃), 21.4 (d, J 14.4, C₃-CH₃), 21.77 (d, J 8.0, CHCH₃), 26.8 (d, J 88.1, C₅), 30.71 (d, J~5, CHCH₂), 31.5 (d, J 9.3, C₄ or C₃), 32.04 (d, J 13.0, C₃ or C₄), 34.0 (d, J 89.9, C₂), 74.2 (d, J=7.1, OCH); isomer **D**: 9.7 (CH₂CH₃), 21.4 (d, / 14.4, C₃-CH₃), 21.71 (d, / 8.0, CHCH₃), 27.3 (d, / 88.0, C₅), 30.8 (d, J~5, CHCH₂), 31.6 (d, J 9.7, C₄ or C₃), 32.12 (d, J 13.6, C₃ or C₄), 34.4 (d, / 89.5, C₂), 74.3 (d, / 6.9, OCH); ¹H NMR (CDCl₃) δ: 0.88 (t, J 7.3, 3H, CH₂CH₃), 1.05 (d, J 4.7, 3H, C₃-CH₃), 1.26 (d, J 6.1, 3H, CHCH₃), 1.10-141 (m, 2H, CHCH₂), 1.45-2.15 (m, 7H, skeletal CH₂, CH), 4.27-4.48 (m, 1H, OCH); IR (neat) 1030, 1228, 1458, 2967 $cm^{-1}; \ [M+H]^+_{found} = 191.1196, \ C_9H_{20}O_2P$ requires 191.1195.

4.2.9. 1-Methoxy-3,4-dimethylphospholane 1-oxide (**12a**). ³¹P NMR (CDCl₃) δ : 74.7 (**A**, 91%), 81.3 (**B**, 6%) and 80.6 (**C**, 3%); ¹³C NMR (CDCl₃) δ : 18.9 (d, *J* 15.7, C₃-CH₃ or C₄-CH₃), 19.1 (d, *J* 14.7, C₄-CH₃ or C₃-CH₃), 33.8 (d, *J* 88.4, C₅ or C₂), 34.1 (d, *J* 87.9, C₂ or C₅), 38.6 (d, *J* 10.8, C₄ or C₃), 38.7 (d, *J* 10.8, C₃ or C₄), 51.1 (d, *J* 6.7, OCH₃); ¹H NMR (CDCl₃) δ : 1.05 (br d, *J* 4.7, total intensity 6H, C₃-CH₃/C₄-CH₃), 1.24-2.10 (m, 6H, skeletal CH₂, CH), 3.65 (d, *J* 10.8, 3H, OCH₃); IR (neat) 1033, 1242, 1456, 2961 cm⁻¹; [M + H]⁺_{found} = 163.0886, C₇H₁₆O₂P requires 163.0888.

4.2.10. 1-Ethoxy-3,4-dimethylphospholane 1-oxide (**12b**). ³¹P NMR (CDCl₃) δ : 72.6 (**A**, 92%), 79.1 (**B**, 5%) and 78.5 (**C**, 3%); ¹³C NMR (CDCl₃) δ : 16.4 (d, *J* 6.0, CH₂CH₃), 18.7 (d, *J* 15.1, C₃-CH₃ or C₄-CH₃), 18.9 (d, *J* 14.2, C₄-CH₃ or C₃-CH₃), 34.3 (d, *J* 88.5, C₅ or C₂), 34.6 (d, *J* 88.1, C₂ or C₅), 38.50 (d, *J* 10.8, C₄ or C₃), 38.54 (d, *J* 10.9, C₃ or C₄), 60.4 (d, *J* 6.5, OCH₂); ¹H NMR (CDCl₃) δ : 1.01 (br d, *J*~4.4, total intensity 6H, C₃-CH₃/C₄-CH₃), 1.24 (t, *J* 7.0) and 1.25 (t, *J* 7.0), total intensity 3H, CH₂CH₃, 1.15-2.02 (m, 6H, skeletal CH₂, CH), 3.89-4.10 (m, 2H, OCH₂); IR (neat) 1035, 1242, 1455, 2963 cm⁻¹; [M + H]⁺_{found} = 177.1042, C₈H₁₈O₂P requires 177.1039.

4.2.11. 1-Propoxy-3,4-dimethylphospholane 1-oxide (**12c**). ³¹P NMR (CDCl₃) δ : 72.6 (**A**, 94%), 78.5 (**B**, 3%) and 79.2 (**C**, 3%); ¹³C NMR (CDCl₃) δ : 10.0 (CH₂CH₃), 18.7 (d, *J* 15.3, C₃-CH₃ or C₄-CH₃), 19.0 (d, *J* 14.4, C₄-CH₃ or C₃-CH₃), 23.8 (d, *J* 62., OCH₂CH₂), 33.8 (d, *J* 88.5, C₅ or C₂), 35.0 (d, *J* 88.2, C₂ or C₅), 38.5 (d, *J* 10.8, C₄ or C₃), 38.6 (d, *J* 10.9, C₃ or C₄), 65.9 (d, *J* 6.7, OCH₂); ¹H NMR (CDCl₃) δ : 0.91 (t, *J* 7.4, 3H, CH₂CH₃), 1.05 (br d, *J*~4.7, total intensity 6H, C₃-CH₃/C₄-CH₃),

1.29–1.75 (m, 6H, skeletal CH₂, CH), 1.93–2.08 (m, 2H, CH₂CH₃), 3.84–3.96 (m, 2H, OCH₂); IR (neat) 1064, 1243, 1456, 2965 cm⁻¹, $[M + H]^+_{found} = 191.1197, C_9H_{20}O_2P$ requires 191.1195.

4.2.12. 1-Isopropoxy-3,4-dimethylphospholane 1-oxide (**12d**). ³¹P NMR (CDCl₃) δ : 70.9 (**A**, 95%), 77.4 (**B**, 3%) and 76.9 (**C**, 2%); ¹³C NMR (CDCl₃) δ : 18.9 (d, *J* 14.9, C₃–CH₃ or C₄–CH₃), 19.1 (d, *J* 14.1, C₄–CH₃ or C₃–CH₃), 24.2 and 24.3 (d, *J* 4.0 and *J* 3.7, OCHCH₃), 35.3 (d, *J* 88.6, C₅ or C₂), 35.6 (d, *J* 88.4, C₂ or C₅), 38.7 (d, *J* 10.8, C₃ and C₄), 69.3 (d, *J* 6.6, OCH); ¹H NMR (CDCl₃) δ : 1.06 (br d, *J*~4.8) and 1.07 (br d, *J*~4.8, total intensity 6H, C₃–CH₃/C₄–CH₃), 1.31 (br d, *J* 6.2, 6H, CHCH₃), 1.31–2.09 (m, 6H, skeletal CH₂, CH), 4.60–4.71 (m, 1H, OCH); IR (neat) 1065, 1244, 1457, 2961 cm⁻¹; [M + H]⁺_{found} = 191.1197, C₉H₂₀O₂P requires 191.1195.

4.2.13. 1-Isobutoxy-3,4-dimethylphospholane 1-oxide (**12f**). ³¹P NMR (CDCl₃) δ : 72.7 (**A**, 94%), 79.3 (**B**, 3%) and 78.5 (**C**, 3%); ¹³C NMR (CDCl₃) δ : 18.9 (CHCH₃), 19.0 (d, *J* 17.1, C₃-CH₃ or C₄-CH₃), 19.2 (d, *J* 14.8, C₄-CH₃ or C₃-CH₃), 29.3 (d, *J* 6.3, OCH₂CH), 34.3 (d, *J* 88.6, C₅ or C₂), 34.7 (d, *J* 88.3, C₂ or C₅), 38.8 (d, *J* 10.8, C₃ and C₄), 70.6 (d, *J* ~ 5.0, 6H, C₃-CH₃/C₄-CH₃), 126-2.08 (m, 7H, skeletal CH₂, CH, OCH₂CH), 3.60-3.77 (m, 2H, OCH₂); IR (neat) 1024, 1244, 1456, 2961 cm⁻¹; [M + H]⁺_{found} = 205.1355, C₁₀H₂₂O₂P requires 205.1352.

4.2.14. 1-(1-Methylpropoxy)-3,4-dimethylphospholane 1-oxide (**12g**). ³¹P NMR (CDCl₃) δ : 71.2 (**A**, 49%), 71.3 (**B**, 47%), 77.3 (**C**, 2%) and 77.8 (**D**, 2%); ¹³C NMR (CDCl₃) δ : isomer **A**: 9.6 (CH₂CH₃), 18.8 (d, J 15.3, C₃-CH₃ or C₄-CH₃), 19.1 (d, J 14.5, C₄-CH₃ or C₃-CH₃), 21.6 (d, J 2.8, OCHCH₃), 30.6 (d, J 5.3, CHCH₂), 35.0 (d, J 88.8, C₅ or C₂), 35.4 (d, J 88.7, C₂ or C₅), 38.6 (d, J 10.9, C₄ or C₃), 38.66 (d, J 10.8, C₃ or C₄), 74.0 (d, J 7.0, OCH); isomer **B**: 9.6 (CH₂CH₃), 18.8 (d, J 15.3, C₃-CH₃ or C₄-CH₃), 19.1 (d, J 14.5, C₄-CH₃ or C₃-CH₃), 21.8 (d, J 2.4, OCHCH₃), 30.7 (d, J 5.1, CHCH₂), 35.3 (d, J 88.5, C₅ or C₂), 35.8 (d, J 88.6, C₂ or C₅), 38.66 (d, J 10.8, C₄ or C₃), 38.71 (d, J 10.6, C₃ or C₄), 74.2 (d, J 7.0, OCH); ¹H NMR (CDCl₃) δ : 0.90 (t, J 7.4, 3H, CH₂CH₃), 1.05 (br d, J~4.8) and 1.06 (br d, J~4.8, total intensity 6H, C₃-CH₃/C₄-CH₃), 1.28 (d, J 6.2, 3H, CHCH₃), 1.37-2.04 (m, 8H, skeletal CH₂, CH, CHCH₂), 4.30-4.45 (m, 1H, OCH); IR (neat) 1031, 1239, 1457, 2966 cm⁻¹; [M + H]⁺_{found} = 205.1352, C₁₀H₂₂O₂P requires 205.1352.

The identification of the known compounds (**3a–f**, **3h**, **6a–c**, **6e**, **8a–f**, **10e** and **12e**) is given in Table 7.

ahle	7	
aDie		

Selected spectral data for the known esters (3a-f, 3h, 6a-c, 6e, 8a-f, 10e and 12e)

Product	³¹ P NMR (CDCl ₃)	δ_{P} (lit.)	$\left[M+H\right]^+_{found}$	$\left[M + H ight]^+_{requires}$
3a	27.2	27.6 [14]	157.0423	157.0413
3b	25.7	24.7 [15]	171.0575	171.0575
3c	25.0	24.9 [15]	185.0733	185.0731
3d	22.3	22.3 [15]	185.0733	185.0731
3e	25.7	24.9 [15]	199.0888	199.0888
3f	25.2	25.0 [15]	199.0887	199.0888
3h	15.2	15.3 [<mark>16</mark>]	199.0888	199.0888
6a	33.4	34.5 [17]	233.0737	233.0737
6b	31.4	30.8 [18]	247.0888	247.0888
6c	31.2	33.5 [<mark>19</mark>]	261.1040	261.1039
6e	31.2	31.2 [15]	275.1196	275.1195
8a	70.5	70.1 [20]	161.0730	161.0731
8b	68.5	68.3 [11]	175.0887	175.0888
8c	68.6	68.5 [15]	188.0955 ^a	188.0966 ^a
8d	66.8	66.8 [11]	188.0959 ^a	188.0966 ^a
8e	68.5	68.4 [15]	203.1203	203.1201
8f	67.6	68.5 [15]	203.1204	203.1201
10e	79.4	79.40 (50%)	191.1204	191.1201
		79.38 (50%) [8]		
12e	72.4 (92%)	72.5 (60%)	205.1350	205.1357
	78.3 (3%)	78.4 (20%)		
	79.0 (5%)	79.0 (20%) [8]		

^a For the unprotonated M.

4.3. General procedure for the amidation of 1-hydroxy-3-methyl-3-phospholene 1-oxide (2) in the presence of T3P[®]

A mixture of 1-hydroxy-3-methyl-3-phospholene 1-oxide (2) (0.76 mmol, 0.10 g) and the T3P® reagent (0.55 mL, 0.84 mmol 50 wt % ethyl acetate solution) was stirred for 10 min. The amine (1.52 mmol [propylamine: 0.12 mL, isopropylamine: 0.13 mL, butylamine: 0.15 mL isobutylamine: 0.15 mL sec-butylamine: 0.15 mL, hexylamine: 0.20 mL, cyclohexylamine: 0.17 mL, benzylamine: 0.17 mL, diethylamine: 0.17 mL, dipropylamine: 0.21 mL, dibutylamine: 0.26 mL]) was added to the resulting mixture and the contents of the flask were stirred for the appropriate time (see Table 6). The excess of T3P[®] reagent was hydrolyzed with 10% NaHCO₃ solution (7 mL) and the aqueous phase was washed with of ethyl acetate (30 mL). The combined organic phase was dried (Na_2SO_4) , filtered and concentrated in vacuum to provide the crude product that was passed through a thin (ca. 3–4 cm) layer of silica gel using 3% MeOH in CH_2Cl_2 as the eluent to give the products (13) in a purity >99% as oils. For details, see Table 6.

The following new compounds were thus prepared:

4.3.1. 1-Propylamino-3-methyl-3-phospholene 1-oxide (**13a**). ³¹P NMR: $(CDCl_3) \delta$: 63.2; ¹³C NMR $(CDCl_3) \delta$: 11.2 (CH_2CH_3) , 20.6 $(d, J 12.1, C_3-CH_3)$, 25.2 $(d, J 6.3, CH_2CH_3)$, 32.1 $(d, J 82.1, C_5)$, 35.0 $(d, J 85.6, C_2)$, 42.4 $(d, J 1.7, NCH_2)$, 120.7 $(d, J 9.7, C_4)$, 136.6 $(d, J 15.2, C_3)$; ¹H NMR $(CDCl_3) \delta$: 0.90 $(t, J 7.4, 3H, CH_2CH_3)$, 1.42–1.64 $(m, 2H, CH_2)$, 1.77 $(s, 3H, C_3-CH_3)$, 2.19–2.61 $(m, 5H, CH_2, NH)$, 2.78–2.98 $(m, 2H, NHCH_2)$, 5.49 $(d, J 33.8, 1H, C_4-H)$; IR (neat) 773, 1173, 1457, 1649, 2962 cm⁻¹; $[M + H]_{found}^+=174.1049, C_8H_{17}NOP$ requires 174.1043.

4.3.2. 1-Isopropylamino-3-methyl-3-phospholene 1-oxide (**13b**). ³¹P NMR: (CDCl₃) δ : 61.0; ¹³C NMR (CDCl₃) δ : 20.8 (d, *J* 12.1, C₃-CH₃), 26.0 (CHCH₃), 33.3 (d, *J* 82.3, C₅), 36.1 (d, *J* 85.8, C₂), 43.4 (d, *J* 2.0, NHCH), 120.8 (d, *J* 9.7, C₄), 136.8 (d, *J* 15.2, C₃); ¹H NMR (CDCl₃) δ : 1.20 (d, *J* 6.4, 6H, CHCH₃), 1.79 (s, 3H, C₃-CH₃), 2.10-2.65 (m, 5H, CH₂, NH), 3.30-3.59 (m, 1H, NHCH), 5.51 (d, *J* 32.6, 1H, C₄-H); IR (neat) 776, 1173, 1467, 1650, 2966 cm⁻¹; [M + H]⁺_{found}=174.1054, C₈H₁₇NOP requires 174.1043.

4.3.3. 1-(1-Methyl propylamino)-3-methyl-3-phospholene 1-oxide (**13e**). ³¹P NMR: (CDCl₃) δ : 61.3; ¹³C NMR (CDCl₃) δ : isomers **A** and **B** 10.4 (CH₂CH₃), 20.7 (d, *J* 12.1, C₃-CH₃), 23.4 (d, *J* 2.1, CHCH₃), 32.2 (d, *J* 4.7, CH₂CH₃), 33.1 and 33.2 (d, *J* 82.7 and 82.2, C₅), 35.9 and 36.1 (d, *J* 86.3 and 85.2, C₂), 48.7 (d, *J* 1.8, CH), 120.7 (d, *J* 9.7, C₄), 136.7 (d, *J* 15.3, C₃); ¹H NMR (CDCl₃) δ : 0.92 (t, *J* 7.4, 3H, CH₂CH₃), 1.19 (d, *J* 6.4, 3H, CHCH₃), 1.40–1.55 (m, 2H, CH₂CH₃), 1.79 (s, 3H, C₃-CH₃), 2.17–2.62 (m, 5H, CH₂, NH), 3.06–3.28 (m, 1H, NHCH), 5.52 (d, *J* 33.2, 1H, C₄-H); IR (neat) 778, 1173, 1467, 1652, 2966 cm⁻¹; $[M + H]_{\text{found}}^{+}=188.1206$, C₉H₁₉NOP requires 188.1204.

4.3.4. 1-Dipropylamino-3-methyl-3-phospholene 1-oxide (**13***j*). ³¹P NMR: (CDCl₃) δ : 66.3; ¹³C NMR (CDCl₃) δ : 11.2 (CH₂CH₃), 20.6 (d, *J* 12.1, C₃-CH₃), 21.6 (d, *J* 2.8, CH₂CH₃), 32.0 (d, *J* 80.9, C₅), 34.7 (d, *J* 84.1, C₂), 46.1 (d, *J* 3.3, NCH₂), 121.2 (d, *J* 9.7, C₄), 137.0 (d, *J* 15.2, C₃); ¹H NMR (CDCl₃) δ : 0.86 (t, *J* 7.4, 6H, CH₂CH₃), 1.40–1.61 (m, 4H, CH₂CH₃), 1.78 (s, 3H, C₃-CH₃), 2.18–2.52 (m, 4H, CH₂), 2.71–2.96 (m, 4H, NCH₂), 5.53 (d, *J* 33.7, 1H, C₄-H); IR (neat) 768, 1195, 1465, 1647, 2963 cm⁻¹; [M + H]⁺_{found}=216.1517, C₁₁H₂₃NOP requires 216.1517.

4.3.5. 1-Dibutylamino-3-methyl-3-phospholene 1-oxide (**13k**).^{21 31}P NMR: (CDCl₃) δ: 66.3; ¹³C NMR (CDCl₃) δ: 13.8 (CH₂CH₃), 20.1 $\begin{array}{l} (CH_2CH_3), 20.6 \ (d, J \ 12.1, C_3-CH_3), 30.7 \ (d, J \ 2.8, \ NCH_2CH_2), 32.0 \ (d, J \ 80.8, C_5), 34.7 \ (d, J \ 84.1, C_2), 44.1 \ (d, J \ 3.3, \ NCH_2), 121.2 \ (d, J \ 9.7, C_4), \\ 137.0 \ (d, J \ 15.2, C_3); \ ^1H \ NMR \ (CDCl_3) \ \delta: \ 0.89 \ (t, J \ 7.3, \ 6H, \ CH_2CH_3), \\ 1.15-1.32 \ (m, 4H, \ CH_2CH_3), 1.34-1.55 \ (m, 4H, \ NCH_2CH_2), 1.76 \ (s, 3H, C_3-CH_3), 2.26-2.50 \ (m, 4H, \ CH_2), 2.79-2.98 \ (m, 4H, \ NCH_2), 5.51 \ (d, J \ 32.4, \ 1H, \ C_4-H); \ IR \ (neat) \ 776, \ 1186, \ 1466, \ 1647, \ 2959 \ cm^{-1}; \\ [M + H]^+_{found} = 244.1838, \ C_{13}H_{27}NOP \ requires \ 244.1825. \end{array}$

The identification of the known compounds (**13c**, **13d** and **13f**–**i**) is given in Table 8.

 Table 8

 Selected spectral data for the known amides (13c, 13d and 13f-i)

Product	³¹ P NMR (CDCl ₃)	δ_{P} (lit.)	$\left[M+H\right]_{found}^{+}$	$\left[M+H ight]_{requires}^{+}$
13c	63.4	63.2 [<mark>22</mark>]	188.1207	188.1204
13d	63.3	63.6 [<mark>22</mark>]	188.1207	188.1204
13f	63.7	63.1 [<mark>22</mark>]	216.1518	216.1517
13g	60.9	60.7 [22]	214.1359	214.1361
13h	63.9	63.5 [<mark>22</mark>]	222.1046	222.1048
13i	65.8	65.5 [23]	188.1204	188.1204

Acknowledgements

This project was supported by the Hungarian Scientific Research Fund (OTKA K83118).

References and notes

- 1. Preliminary Communication: Jablonkai, E.; Milen, M.; Drahos, L.; Keglevich, G. *Tetrahedron Lett.* **2013**, *54*, 5873–5875.
- Quin, L. D. A Guide to Organophosphorus Chemistry; Wiley: New York, NY, 2000; pp 138–141.
- Proto Weyl, Methoden der Organischen Chemie, Organische Phosphorverbindungen II, Band E2; Regitz, M., Ed.; Georg Thieme: Stuttgart, Germany, 1982; pp 213–214; 230–233.
- Crofts, P. C. In Organic Phosphorus Compounds; Kosolapoff, G. M., Maier, L., Eds.; J. Wiley & Sons: New York, NY, 1973; Vol. 6, pp 39–42; Ch. 14, SubCh. XXIe.
- Keglevich, G.; Kiss, N. Z.; Mucsi, Z.; Körtvélyesi, T. Org. Biomol. Chem. 2012, 10, 2011–2018.
- Kiss, N. Z.; Böttger, É.; Drahos, L.; Keglevich, G. Heteroat. Chem. 2013, 24, 283–288.
- 7. Mucsi, Z.; Kiss, N. Z.; Keglevich, G. RSC Adv. 2014, 4, 11948–11954.
- Keglevich, G.; Bálint, E.; Kiss, N. Z.; Jablonkai, E.; Hegedűs, L.; Grün, A.; Greiner, I. Curr. Org. Chem. 2011, 15, 1802–1810.
- Keglevich, G.; Kiss, N. Z.; Drahos, L.; Körtvélyesi, T. Tetrahedron Lett. 2013, 54, 466–469.
- 10. Keglevich, G.; Kiss, N. Z.; Körtvélyesi, T. Heteroat. Chem. 2013, 24, 91–99.
- 11. Bálint, E.; Jablonkai, E.; Bálint, M.; Keglevich, G. Heteroat. Chem. 2010, 21, 211–214.
- Basavaprabhu; Vishwanatha, T. M.; Panguluri, N. R.; Sureshbabu, V. V. Synthesis 2013, 1569–1601.
- 13. Milen, M.; Ábrányi-Balogh, P.; Dancsó, A.; Frigyes, D.; Pongó, L.; Keglevich, G. Tetrahedron Lett. 2013, 54, 5430–5433.
- 14. Dumond, Y. R.; Baker, R. L.; Montchamp, J.-L. Org. Lett. 2000, 2, 3341–3344.
- Kiss, N. Z.; Ludányi, K.; Drahos, L.; Keglevich, G. Synth. Commun. 2009, 39, 2392–2404.
- Storer, R.; Dousson, C.; Alexandre, F. -R.; Roland, A. U.S. Patent 74054, 2006; Chem. Abstr. 2006, 144, 370242.
- Schuman, M.; Lopez, X.; Karplus, M.; Gouverneur, V. Tetrahedron 2001, 57, 10299–10307.
- 18. Olszewski, T. K.; Boduszek, B. Tetrahedron 2010, 66, 8661–8666.
- 19. Keglevich, G.; Jablonkai, E.; Balázs, L. B. RSC Adv. 2014, 4, 22808–22816.
- Keglevich, G.; Petneházy, I.; Miklós, P.; Almásy, A.; Tóth, G.; Tőke, L. J. Org. Chem. 1987, 52, 3983–3986.
- Arbuzov, B. A.; Vizel, A. O.; Zvereva, M. A.; Studentsova, I. A.; Garaev, R. S. *Izv. Akad. Nauk SSSR, Ser. Khim.* 1966, 1848–1850.
- Kiss, N. Z.; Simon, A.; Drahos, L.; Huben, K.; Jankowski, S.; Keglevich;, G. Synthesis 2013, 45, 199–204.
- 23. Szewczyk, J.; Lloyd, J. R.; Quin, L. D. Phosphorus Sulfur 1984, 21, 155-160.