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This Letter describes novel methodology for the rapid assembly of new and biologically appealing 1,5-
substituted tetrazole-hydantoins and thiohydantoins. The product of a TMSN3-Ugi multi-component
reaction is treated with an excess of isocyanate or isothiocyanate to generate the final scaffold in mod-
erate to good yields. The applicability of this solution phase methodology to the preparation of a small
collection of compounds is discussed.
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In the post-genomic era, medicinal chemists have been pro-
vided with an unprecedented series of novel pharmacological tar-
gets validated with small molecules to varying degrees. Currently,
many of these targets are in dire need of small molecule partners to
elucidate their role in disease pathogenesis. As a result, there is an
increasing need to access new dimensions in chemical space in a
quest for the discovery of biologically relevant molecules in a rapid
and economic fashion. To this end, studies on the discovery and
utility of multi-component reactions offer an extremely attractive
route to deliver a multitude of new fundamental methodologies
and subsequently scaffolds for evaluation in biological systems.!

Specifically, the hydantoin (imidazoline-2,4-dione) scaffold rep-
resents a common motif in many biologically relevant compounds
with anti-convulsant, anti-muscarinic, anti-ulcer, anti-viral, and
anti-diabetic activities to name but a few.? Interesting examples
are represented by known drugs Azimilide*> and Fosphenytoin
(Cerebyx,® Prodilantin®) and preparations of this class of molecule
still attract the interest of organic and medicinal chemists as noted
in recent work.# In analogous fashion, 1,5-disubstituted tetrazoles
exist in a pharmacologically rich vein of chemical space,® with their
value thought to reside in their capacity to act as effective cis-
amide bioisosteres.® Consequently, an on-going research effort in
this laboratory has been carried out to explore the utility of the
so-called Ugi-azide MCR which delivers a scaffold in one step
containing a 1,5-disubstituted tetrazole and either a secondary or
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tertiary amine, generally imparting desirable physicochemical
properties on the MCR product.” Reported in 1961, the Ugi-azide
MCR (or TMSN3; modified Ugi reaction) differs from the classical
Ugi MCR in that an azide 4 traps out the intermediate nitrilium
ion 6 (replacing the carboxylic acid seen in the Ugi MCR) leading
to the formation of the final 1,5-disubstituted tetrazole 8 (Scheme
1)8

In a continuation of recent studies, we herein describe a strat-
egy based on a post-condensation modification of the TMSN;-Ugi
reaction product 8, which leads to the unprecedented and pharma-
cologically relevant bis-heterocyclic scaffold 9 (Scheme 2). It was
envisioned that the employment of ethyl glyoxalate 1 as the car-
bonyl component of the MCR would afford the TMSN3-Ugi product
8 where subsequent treatment of 8 with an isocyanate or isothio-
cyanate enables rapid assembly of the target scaffold 9 in two
operationally friendly synthetic operations (Scheme 2).

Thus, ethyl glyoxalate 1 and n-butylamine 2a were mixed in
dichloroethane (DCE) and subjected to microwave irradiation to
pre-form the corresponding Schiff base (Scheme 3). Addition of tri-
fluoroethanol as solvent, the aryl-isocyanide 3a, and TMSN3 with
stirring under ambient conditions afforded the condensation prod-
uct in good isolated yield.® 8a was treated with an excess of isocy-
anate 10a in ethanol at ambient temperature and 9a precipitated
as a microcrystalline powder directly from the reaction mixture,
isolated in a satisfactory 77% yield.'® The structure of 9a was
unambiguously confirmed by X-ray crystallography (Fig. 1).

With satisfactory conditions in hand, the reaction scope in
terms of substrate tolerance was explored. A small collection of
12 examples was prepared according to the same synthetic proto-
col (9a-1, Fig. 2). Seven amines (2a-g), six isonitriles (3a-f), six
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Scheme 1. Four-component TMSN3-UGI reaction mechanism.
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Scheme 2. Retrosynthetic analysis (X=0 or S).
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Figure 1. Crystal structure of 9a.

isocyanates (10a-f), and one isothiocyanate (10g) were employed
to impart significant diversity in the final collection of analogues.
The TMSN;3-Ugi condensations afforded the desired condensation
products in modest to high yields (8a-i, 21-60%) and generally,
treatment of these products with an excess of isocyanate afforded
the expected products 9a-j in good to excellent yields (49-99%).
Stoichiometry and conditions employed (room temperature vs.
microwave irradiation, method A vs. method B, respectively) were

optimal for different examples (Table 1). Target compounds 9a-f
formed smoothly at room temperature (49-77%), and further
improvement was gained in the formation of bis-heterocyclics
9g-j through the use of microwave irradiation at higher tempera-
tures, affording 9g-j in good yields (59-99%). Remarkably, most of
the final products 9a-j were formed as microcrystalline solids and
easily isolated by suction filtration, thus greatly facilitating the
production process.

Intrigued by the possibility to replace one of the carbonyl func-
tional groups of the hydantoin core with a thio-carbonyl moiety,
we employed neat TMSNCS for the production of 9k and 91. Ele-
vated temperatures generated by microwave irradiation enabled
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Figure 2. Example analogues (x% = TMSN;-Ugi yield; y% = final cyclization yield; Z = method employed).

the formation of 9k (75% yield), and 91 (25% yield) respectively. The
difference in the yields between 9k and 91 can be rationalized by
the weaker nucleophilic character of the aniline-like TMSN3-Ugi
product 8l.

In summary, a series of novel and biologically appealing 1,5-
substituted tetrazole-hydantoins and thiohydantoins were pre-
pared in two steps via rigidification of the TMSN5-Ugi condensa-
tion product through treatment with an excess of isocyanates or
isothiocyanate. Being characterized by four points of diversity,
the novel chemotypes are rapidly assembled in two operationally
friendly steps and the methodology proved to be general and toler-
ated a wide range of functional groups. Due to the potential biolog-
ical activity of the novel scaffolds and the applicability of this
methodology to high-throughput synthesis, we expect this article
to be embraced by the lead generation community.
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10. General procedure for the preparation of 9a: Ethyl glyoxalate (1, 50% solution

in toluene, 1.1g, 5.28 mmol, 1equiv) and 1-butylamine (2a, 385 mg,
5.28 mmol, 1equiv) were dissolved in DCE (10 mL) in a 35-mL vial and
subjected to microwave irradiation at 120 °C for 1h using a CEM initiator.
CF;CH,0H (5 mL) was added, followed by azidotrimethylsilane (4, 610 mg,
5.28 mmol, 1equiv) and 2-chloro-6-methyl-phenylisocianide (3a, 797 mg,
528 mmol, 1equiv), and the resulting mixture was stirred at room
temperature for 12 h. After removal of the solvent under reduced pressure,
8a was purified by silica gel column chromatography (EtOAc-hexane, 0-30%)
and isolated as a pale yellow oil (500 mg, 1.42 mmol, 54%). 8a (250 mg,
0.80 mmol, 1equiv) was dissolved in dry ethanol (2 mL) under a nitrogen
atmosphere, 4-bromo-phenylisocyanate (10a, 474 mg, 2.40 mmol, 3 equiv)
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was added, and the reaction was stirred at room temperature for 12 h. The final
product 9a precipitated from the reaction mixture and was isolated by suction
filtration as a white microcrystalline solid (220 mg, 0.43 mmol, 77%). Crystals
suitable for X-ray crystal structure determination were obtained by means of
slow evaporation from EtOAc-hexane. Mp 185-188 °C; 'H NMR (400 MHz,
CDCl3) 6: 7.58-7.39 (m, 5H), 7.28-7.24 (m, 2H), 5.24 (s, 1H), 3.92-3.85 (m, 1H),
3.24-3.16 (m, 1H), 2.22 (s, 3H), 1.58-1.54 (m, 2H), 1.35-1.33 (m, 2H), 0.92 (t,
3H, J=7.4 Hz); '*C NMR (100 MHz, CDCl3) é: 165.3 (C), 154.4 (C), 150.7 (C),
141.3 (C), 133.0 (CH), 132.6 (CH), 131.0 (CH), 130.9 (C), 130.4 (C), 129.7 (C),
128.1 (CH), 127.6 (CH), 122.7 (C), 54.7 (CH), 53.6 (CH3), 42.5 (CH>), 42.5 (CH,),
29.9 (CHy), 13.9 (CH3); LC MS [M+1]" m/z 503.00.
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