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ABSTRACT: Encapsulation of flavin mononucleotide (FMN) in a porphyrinatomanganese(III)-based cubic cage allowed the fast
reduction of manganese(III) porphyrin in the presence of nicotinamide adenine dinucleotide (NADH). This supramolecular system
was capable of efficiently activating dioxygen and catalyzing the oxidation of benzyl alcohol. Control experiments suggested that the
close proximity between FMN and manganese(III) porphyrins forced by the host−guest interaction might benefit the electron-
transfer process from the FMN cofactor to the metal centers.

To design and prepare supramolecular systems that echo
the remarkable reactivity of natural enzymes, chemists

have constructed “molecular containers” with defined cavities
to catalyze unique chemical transformations with high
efficiency and selectivity based on their local microenviron-
ments.1 Among these containers, coordination-driven-as-
sembled metal−organic polyhedra are good candidates for
emulating the properties of enzyme active sites.2 These well-
designed hosts can provide unique confined environments for
encapsulated complementary guest molecules3 and have the
potential to achieve the selectivity and catalytic rate enhance-
ments displayed by biological systems.4 Additionally, the
components being forced closer within the inner space, leading
to an efficient enhancement in energy, electron, or substance
transfer, has also attracted much attention.5

In living organisms, cytochromes P450 (CYPs) composed of
cytochrome P450 reductase (CPR) and cytochrome P450 are
multidomain enzymes that play important roles in the
oxidation of various xenobiotics and metabolites through the
reductive activation of dioxygen.6,7 CPR consists of flavin
adenine dinucleotide/flavin mononucleotide (FMN) cofactors,
which collect electron pairs as hydride ions from NAD(P)H
and, in turn, transfer electrons to the metal centers of
cytochrome P450 (heme). The reduced metal center of heme
then activates a dioxygen molecule, which accepts an electron
from CPR.8 In each electron-transfer (ET) step, interactions
between different domains are the key factor affecting rapid
and controlled ET in multicomponent systems.9−11 Inter-
actions between the reduced pyridine−dinucleotide cofactors
and flavins have been investigated by adjusting their mutual
relative positions through covalent and noncovalent bind-
ing.12−14 However, crucial cytochrome P450 research into the
ET process between flavins and heme metal centers, which is
more complex owing to the heme metal centers being
vulnerable to the impact of substrates and other electron
donors,7c,10 still remains challenging.

Inspired by the significant advances in efficient host−guest
ET within cage-like hosts,15 we envisaged that such a
supramolecular strategy might also provide an approach to
mimicking cytochrome P450 enzymes. As metalloporphyrins
are widely applied as synthetic models for cytochrome P450
enzymes,16 herein, we constructed an artificial reductase
system with FMN encapsulated in a self-assembled cubic
M8L6 cage17 consisting of Mn(III)-porphyrin moieties
(Scheme 1). In the cavity of the cubic Mn(III)-porphyrin

cage, FMN is expected to collect electron pairs from
nicotinamide adenine dinucleotide (NADH), with reduced
FMN able to efficiently reduce Mn(III)-porphyrin to the
corresponding Mn(II)-porphyrin in a stepwise single-electron
process. Furthermore, the formed Mn(II)-porphyrin inter-
mediate activates dioxygen to realize an aromatic alcohol
oxidation catalysis process.
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Scheme 1. Schematic of Artificial Reductase System
Showing FMN Encapsulation and Benzyl Alcohol Oxidation
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Treating 2-formylpyridine (24 equiv) with tetrakis(4-
aminophenyl)porphyrinatomanganese(III) (Mn-TAPP; 6
equiv) in the presence of Zn(NTf2)2 (8 equiv) and nBu4NPF6
(6 equiv) resulted in the formation of complex Zn8(L-
Cl)6(NTf2)16 [cubic-(MnIIICl); L = manganese(III)
5,10,15,20-tetrayltetrakis(benzene-4,1-diyl)tetrakis[1-(pyridin-
2-yl)methanimine]porphine; Scheme S2]. Slow diffusion of
diethyl ether into the solution of cubic-(MnIIICl) afforded
crystals suitable for X-ray diffraction analysis. As shown in
Figure 1, cubic-(MnIIICl) crystallized in the monoclinic space

group C2/c, with half of the cubic cage in an asymmetric unit.
This arrangement of metal ions and coordination ligands led to
a cubic cage, with the eight vertices occupied by Zn ions and
the six faces occupied by the manganese porphyrin-based
ligand. Meanwhile, the Cl− ion served as the axial ligation to
each manganese porphyrin and was coordinated to manganese
inside/outside (disordered in a 2:1 ratio) of the cage at a
MnIII−Cl distance of 2.38 Å. The average Mn−Mn distance
between opposite faces was approximately 14.5 Å, and the
inner void volume was about 1436 Å3.18 However, because of
the paramagnetic nature of Mn(III), the fine NMR spectra
could not be obtained.
The electrospray ionization mass spectrometry (ESI-MS)

spectrum of cubic-(MnIIICl) in CH3CN exhibited signals at
m/z 891.88, 1022.29, 1185.19, and 1394.49 (Figure S2). A
simple comparison with the simulation results based on the
natural isotopic abundances suggested that the peaks
corresponded to [Zn8L6Cl6(NTf2)n]

(16−n)+ (n = 6−9). FMN
is a biomolecule produced from riboflavin (vitamin B2) by the
enzyme riboflavin kinase and functions as the prosthetic group
of CPR, with phosphorylated anion groups at its terminal. The
positively charged cubic-(MnIIICl) most likely allowed FMN
encapsulation in its cavity. The ESI-MS spectrum of cubic-
(MnIIICl) in the presence of excess FMN exhibited new
intense peaks at m/z 1253.30, 1472.32, and 1764.46, which
w e r e c l e a r l y a s s i g n e d t o [ Z n 8 L 6C l 5 ( FMN) -
(NTf2)n(CH3CN)3]

(16−n)+ (n = 8−10), indicating the binding
of one FMN molecule in the host (Figure S3), and one of the
chloride ions was dissolved from the Mn(III) center. The
density functional theory (DFT) results also suggested that
FMN could be encapsulated inside the MnIIICl cage. The
strong affinity of Mn(III) to the negatively charged phosphate
moiety accounts for the encapsulation (Figure S17).
An isothermal titration calorimetry (ITC) experiment was

conducted to better understand the guest binding interactions
between cubic-(MnIIICl) and FMN. The observed inclusion
number was 1.0, as determined by an independent model

(Figure S14). The association constant calculated from the
ITC titration was 1.6 × 105 M−1. Furthermore, fluorescence
titration experiments were performed to study the guest FMN
binding ability of the cubic-(MnIIICl) cage. Adding cubic-
(MnIIICl) (6.25 μM) to a CH3CN/H2O solution of FMN (10
μM) quenched approximately 70% of the emission intensity of
FMN (Figure 2), suggesting that FMN interacted strongly with

cubic-(MnIIICl). A Hill plot with the fitting curve of the profile
indicated the formation of a 1:1 complex with an association
constant of 3.1 × 105 M−1. Both the large association constant
and 1:1 stoichiometric ratio suggested the formation of a stable
FMN@cubic-(MnIIICl) host−guest complex in solution. In
contrast, the association constant of NADH with cubic-
(MnIIICl) (Figure S15) was 2.6 × 104 M−1, which was much
lower than that of FMN, indicating that FMN bound more
strongly with cubic-(MnIIICl) compared with the larger-sized
NADH at the same concentration, while luminescence
titrations of FMN (10 μM) with the addition of Mn-TAPP
(12 μM) quenched about 20% and gave a quenching constant
(Ksv) of about 5.7 × 104 M−1. Meanwhile, adding cubic-
(MnIIICl) (2 μM) to FMN (10 μM) quenched approximately
30% of the intensity (Figure 2b). Obviously, the quenching
efficiency of cubic-(MnIIICl) was higher than that of Mn-
TAPP.
The catalytic activities of most CYPs require one or more

redox partner proteins to sequentially deliver two electrons
from NADH to the heme metal reactive center for dioxygen
activation.19 The possible ET between NADH and the FMN@
cubic-(MnIIICl) supermolecular system was investigated.
Changes in the UV−vis spectra of FMN@cubic-(MnIIICl)
were recorded to study its reduction by NADH. Manganese-
(III) and -(II) porphyrins have distinctive absorption bands at
470 and 440 nm, respectively.13,20 Upon the addition of
NADH to FMN@cubic-(MnIIICl) in N,N-dimethylformamide
(DMF)/acetonitrile (CH3CN) (1:1), the absorption band at
470 nm gradually decreased and a new band at 440 nm was
observed (Figure S7a), reaching equilibrium within 30 min.
The appearance of clear isosbestic points at 418, 458, and 584
nm also demonstrated the direct one-electron reduction of
manganese(III) porphyrin, with no other intermediate
observed. Finally, once exposed to dioxygen, this Mn(II) was
rapidly reoxidized to Mn(III) with the same isosbestic points
(Figure S7b).
The reduction potential measured by the cyclic voltammo-

gram experiments for cubic-(MnIIICl) in DMF/CH3CN (1:1,

Figure 1. Crystal structure of cubic-(MnIIICl) showing the
coordination geometries of Zn(II) and Mn(II) ions and empty
spheres (red balls) for guest encapsulation. Solvent molecules, anions,
and H atoms were omitted for clarity.

Figure 2. (a) Emission spectra of FMN (10 μM) (black line) upon
the addition of cubic-(MnIIICl) up to 6.25 μM. Inset: Hill plot of the
titration curve of fluorescein upon the addition of cubic-(MnIIICl)
showing the associate constant. (b) Luminescence spectra of FMN
(10 μM, black line) in CH3CN/H2O (1:1) upon the addition of
cubic-(MnIIICl) (2.0 μM, red line) and Mn-TAPP (12 μM, blue
line).
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v/v) was −728 mV (vs Fc+/Fc; Figure S5). On the basis of
previous equilibrium measurements for enzyme-catalyzed
reactions, the thermodynamic redox potential for the NAD+/
NADH couple was estimated to be −997 mV (vs Fc+/Fc),21

which is low enough to reduce manganese(III) porphyrin.
The reduction experiment was performed in the absence of

FMN with NADH (30 μM) added to cubic-(MnIIICl) (5 μM)
in DMF/CH3CN (1:1, v/v) under argon. The Mn(II)
absorbances at around 440 and 470 nm increased and
decreased, respectively, indicating the reduction of Mn(III)
(Figure S9). The initial reaction rate calculated from the fitting
curve was 2 × 10−8 M min−1, as shown in Figure 3b (control

I), which was around one-fifth of that in the presence of FMN.
This result demonstrated that the FMN cofactor was essential
to facilitate ET in the reduction process, as found in nature.7,8

Control experiments with Mn-TAPP instead of cubic-
(MnIIICl) were also conducted for comparison (control II).
The time-dependent reduction experiment of monomeric Mn-
TAPP [30 μM, maintaining the same Mn(III) concentration as
that in cubic-(MnIIICl)] was performed. However, the
reduction process was much slower than that with cubic-
(MnIIICl) (Figure S8). The initial reaction rates were
measured as 1.0 × 10−7 M min−1 for cubic-(MnIIICl) and
only 5.0 × 10−9 M min−1 in the case of Mn-TAPP (Figure 3b).
The superiority of the host−guest system should be attributed
to the close proximity between the FMN and metal redox
centers within the host−guest system, which was beneficial to
the efficient ET process.10,12a

A similar but nonreactive species, adenosine triphosphate
[ATP; Ka = 1.08 × 10−5 M−1 for cubic-(MnIIICl); Figure S16]
was chosen as the inhibitor to illustrate the supramolecular
feature of the system. The addition of ATP (0.16 mM) to the
solution mixture containing FMN (10 μM) and cubic-

(MnIIICl) (10 μM) resulted in an emission recovery of the
same band, while the addition of ATP (0.5 mM) to the
solution of FMN (10 μM) did not cause any quenching of the
emission of FMN (Figure S13), suggesting substitution of the
encapsulated FMN in the pocket of cubic-(MnIIICl) by ATP.
The inhibition experiment was carried out by adding an excess
of ATP to the reaction mixture (control III). As shown in
Figure 3, the addition of an excess of ATP (160 μM) efficiently
reduced the reaction rate to 3.0 × 10−8 M min−1.
Cl− occupation of the cage cavity can potentially affect the

rate of oxidized FMN exchange and obstruct oxygen molecule
activation. Anion metathesis with AgCF3SO3 was employed to
replace coordinated Cl− located on the porphyrin metal
centers with weakly coordinated CF3SO3

−. The noncoordinat-
ing managanese porphyrin cage Zn8(L)6(OTf)22, abbreviated
as cubic-(MnIIICF3SO3), was obtained.

22 The experiment was
conducted using cubic-(MnIIICF3SO3) instead of cubic-
(MnIIICl), showing a higher rate of Mn(III) reduction (1.28
× 10−7 M min−1).
The present cubic cage featuring fast ET might efficiently

accelerate C−H oxygenation in the presence of NADH and
FMN. Supramolecular catalysis in this novel system proceeded
using dioxygen as the oxidant with aromatic alcohols as the
target substrates. In a model reaction, the C−H oxygenation
experiment of benzyl alcohol was performed in Table 1.

In entry 1, the mixture was stirred at room temperature for
10 h under an oxygen atmosphere (O2 at 1 atm), affording a
19% yield of the aldehyde product. Cubic-(MnIIICF3SO3) was
also used as the oxidation catalyst, affording a yield of 22%.
Control experiments with the absence of FMN or NADH, and
in the presence of Mn-TAPP instead of cubic-(MnIIICl),
showed lower reaction yields. The superiority of this
supramolecular system in promoting the oxidation reaction
was also extended to several types of benzyl alcohol with
modest yields (18−28%, Table S2).
In summary, a manganese porphyrin-based redox-active

cubic cage with large cavity sizes was constructed to
encapsulate FMN in the internal cavity. The host−guest

Figure 3. (a) Time dependence of Mn(III) reduction under argon
conditions by recording reduced Mn(II) at 440 nm, in the presence of
cubic-(MnIIICl) (5 μM), NADH (30 μM), and FMN (5 μM, red
circle). (b) Comparison of the initial reduction reaction rates of
manganese(III) porphyrin under different conditions. Inset: Plot
fitting of the kinetic initial reaction rates of the manganese(III)
porphyrin process under different conditions.

Table 1. Control Experiments of C−H Oxygenation of
Benzyl Alcohols

entry catalyst addition
yield
(%)

1 cubic-(MnIIICl) (2
mol %)

FMN (2 mol %), NADH (50
mol %)

19

2 cubic-(MnIIICl) (2
mol %)

FMN (2 mol %) 6

3 cubic-(MnIIICl) (2
mol %)

NADH (50 mol %) 4

4 cubic-
(MnIIICF3SO3) (2
mol %)

FMN (2 mol %), NADH (50
mol %)

22

5 Mn-TAPP (12
mol %)

FMN (12 mol %), NADH (50
mol %)

8

6 cubic-
(MnIIICF3SO3) (2
mol %)

0.4

7 FMN (2 mol %), NADH (50
mol %)

0.5

8 cubic-(MnIIICl) (2
mol %)

FMN (2 mol %), NADH (50
mol %), ATP (32 mol %)

5.5
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interaction system between the flavin cofactor and metal active
sites closely resembled the possible ET progress in CPR. This
new supramolecular system efficiently collected electron pairs
from NADH and rapidly delivered single electrons to
manganese(III) porphyrin, with 20-fold rate enhancement
compared with the monomer in solution. Meanwhile, this
supramolecular system was able to activate dioxygen at the
metal centers and catalyze the oxidation of benzyl alcohols in
the presence of NADH, using dioxygen as the oxygen source.
Manipulating the electronic properties of building blocks and
host−guest encapsulation in coordination cages can control
the ET process, which will promote the design of functional
molecular containers for supramolecular enzyme simulation.
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