

Subscriber access provided by Georgia Tech Library

Metal-free Three-Component Oxyazidation of Alkenes with Trimethylsilyl Azide and N-Hydroxyphthalimide

Xiao-Feng Xia, Zhen Gu, Wentao Liu, Haijun Wang, Yongmei Xia, Haiyan Gao, Xiang Liu, and Yong-Min Liang

J. Org. Chem., Just Accepted Manuscript • Publication Date (Web): 09 Dec 2014

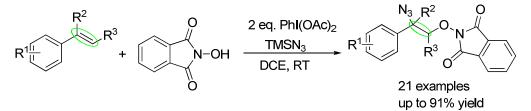
Downloaded from http://pubs.acs.org on December 9, 2014

Just Accepted

Article

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

The Journal of Organic Chemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

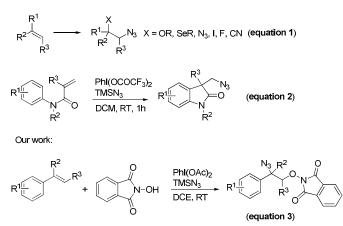

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Metal-free Three-Component Oxyazidation of Alkenes with Trimethylsilyl Azide and N-Hydroxyphthalimide

Xiao-Feng Xia,*[†] Zhen Gu,[†] Wentao Liu,[†] Haijun Wang[†] Yongmei Xia,[†] Haiyan Gao,[†] Xiang Liu,[†] Yong-Min Liang[‡]

 [†] The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China.
[‡] State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China.

E-mail: xiaxf@jiangnan.edu.cn


A novel and facile oxyazidation of alkenes under metal-free and mild conditions has been reported. A remarkable feature of the developed procedure is consecutive construction of C-O and C-N bonds in one step. The process allows quick and selective assembly of alkyl azide from readily available starting materials, where N-hydroxyphthalimide was used as an oxygen-radical precursor and TMSN₃ as the N₃ source. A range of aromatic alkenes bearing synthetically useful functional groups were tolerated.

INTRODUCTION

Nitrogen-containing compounds occupy a significant position in natural products, material science, and pharmaceuticals, which has inspired the search for more milder and efficient C-N bond-forming reactions.¹ As highly important nitrogen-containing compounds, organic azides gained great attention and have been recognized as efficient synthetic intermediates, which can be easily transformed into amines under reductive conditions.² The traditional methods for most organic azides syntheses are based on the transformation of alkyl halides *via* a $S_N 2$ reaction. Recently, chemists found that using azidyl radicals in the functionalization

of alkenes can directly realize various straightforward transformations for the construction of substituted organic azides.³ For example, in the past decade, several groups have reported some methods of azidyl radical addition to alkenes followed by formation of C-X (X= O, Se, N, I, F, CN) bonds using TMSN₃, NaN₃ or IN₃ as the N₃ source (Scheme 1, equation 1).⁴ However, to the best of our knowledge, these procedures are not well developed, and up to now straightforward and efficient approaches for organic azide syntheses by the addition of the oxygen radical to alkenes followed C-N bonds formation have been rarely reported. In addition, direct azidation of alkene under metal-free oxidation conditions was also developed.^{4a,5} For instance, in 2013, the Antonchick^{5a} group has independently reported a novel azidation method for the construction of azide oxindoles from alkene compounds using PhI(OCOCF₃)₂ as oxidant (Scheme 1, equation 2). Herein, we report a metal-free functionalization of alkenes by the addition of oxygen radicals followed by trapping with an azidyl source at room temperature to give synthetically useful 2-azido-2-phenylethoxy-isoindolinone compounds, which could provide a broad range of possibilities for further derivatization (Scheme 1, equation 3).

Previous work:

Scheme 1. Azidation of alkenes.

RESULTS/DISCUSSION

It was revealed that N-hydroxyphthalimide (NHPI) can generate the phthalimide N-oxyl (PINO) radical, which is an active catalytic species to realize C-H bond functionalization.⁶ Recently, PINO was also utilized

The Journal of Organic Chemistry

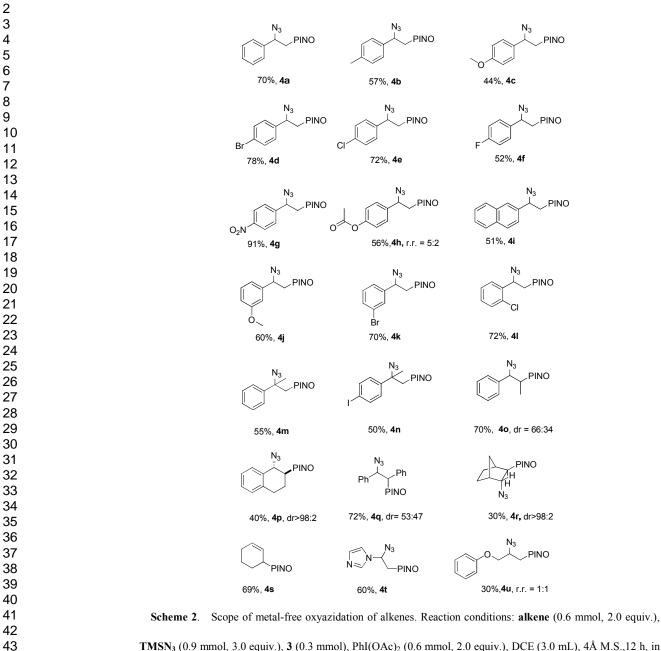
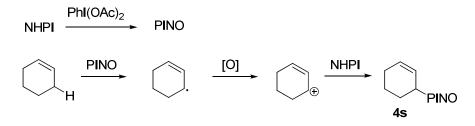
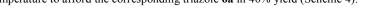

as a stoichiometric reactant in organic synthesis to construct the C-O bond.⁷ We envisaged that PINO can be also utilized as a stoichiometric reactant for radical addition, and the results are reported herein. Our investigation began with the reaction of styrene **1a**, TMSN₃, and N-hydroxyphthalimide using 20 mmol% CuCl as catalyst and PhI(OAc)₂ as oxidant, and the target product **4a** was obtained in 57% yield at ambient temperature (see Table 1, entry 1). In order to increase the yield, several copper catalysts were evaluated, including CuCl, CuBr, CuI, Cu(OTf)₂, CuBr₂, Cu(OAc)₂, and CuCl₂²H₂O, wherein CuCl₂²H₂O displayed high catalytic activity (see Table S1, entry 18). When 4Å MS was added into the reaction system, the yield was increased. To our delight, in the absence of copper catalyst, **4a** was still formed (Table 1, entry 4), which meant that the copper catalyst did not play a decisive role in the reaction. When 2.0 equiv. PhI(OAc)₂ was used, the yield increased to 70% similar to previous results (entry 2 *vs* entry 5). PhI(OCOCF₃)₂ (2.0 equiv.) gave a lower yield (entry 6). When NaN₃ was used as the nitrogen source instead of TMSN₃, a very low yield was obtained (entry 7). Meanwhile, screening of solvents revealed that DCE was the best for the reaction under metal-free conditions (entries 8-12). Control experiment showed that only a little product was detected by GC in the reaction in the absence of oxidant (PhI(OAc)₂).

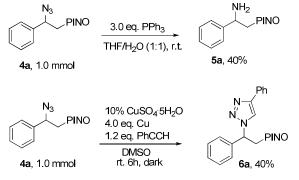
Table 1. Selected List	of Screening f	for the Optimized	Conditions. ^a


la	↑ TMS 2	5N ₃ + 3	OH <u>cat. [Cu]</u> Oxidant Additive Solvent		o
Entry	1a : 2 : 3	Catalyst (%)	Oxidant	Solvent	Yield[%] ^b
1	1:2:1.2	20% CuCl	$1.2 \text{ eq. PhI}(OAc)_2$	DCE	57%
2	2:2:1	10% CuCl ₂ 2H ₂ O	1.2 eq. PhI(OAc) ₂	DCE+4Å MS	73%
3	2:2:1	5% CuCl ₂ ·2H ₂ O	$1.2 \text{ eq. PhI(OAc)}_2$	DCE+4Å MS	52%
4	2:2:1	_	$1.2 \text{ eq. PhI(OAc)}_2$	DCE+4Å MS	47%
5	2:3:1	—	2.0 eq. PhI(OAc) ₂	DCE+4Å MS	70%
6	2:3:1	_	2.0 eq.	DCE+4Å MS	64%
			PhI(OCOCF ₃) ₂		
7^c	2:3:1	—	$2.0 \text{ eq. PhI}(OAc)_2$	DCE+4Å MS	20%
8	2:3:1	—	2.0 eq. PhI(OAc) ₂	CH ₃ CN+4Å	40%
				MS	
9	2:3:1	—	2.0 eq. $PhI(OAc)_2$	DCM+4Å	30%
				MS	
10	2:3:1	_	2.0 eq. PhI(OAc) ₂	THF+4Å MS	20%
11	2:3:1	—	2.0 eq. $PhI(OAc)_2$	toluene+4Å	45%
				MS	
12	2:3:1	_	2.0 eq. PhI(OAc) ₂	actone+4Å	56%
				MS	
13	2:3:1	_		DCE+4Å MS	<5%

^{*a*} Conditions: **3** (0.3 mmol), **1a** (equiv.), azide (equiv.) in solvent (2.0 mL), at room temperature, in air, 12h. ^{*b*} Yields of isolated product after chromatography on silica gel. ^{*c*} 2 equiv. NaN₃ was used instead of TMSN₃.

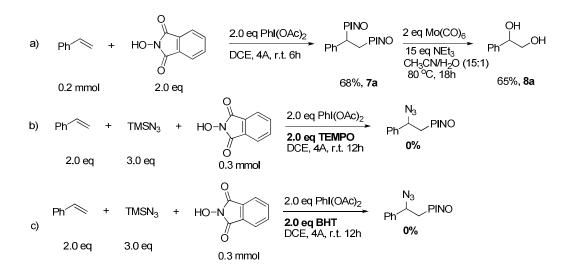
Using the optimized conditions (Table 1, entry 21), the scope of the transformation was investigated. As shown in scheme 2, a great variety of substituted styrenes were converted to the corresponding alkyl azides in good to moderate yields. Several useful functional groups were tolerated, including fluoro, chloro, bromo, iodo, nitro, ester, ether and alkyl substituents, at the different positions of styrenes. An electron-withdrawing substituent favored product formation, whereas an electron-donating group gave slightly lower yields. When 4-vinylphenyl acetate was employed, poor regioselectivity was observed (4h, regioisomeric ratio = 5:2). Naphthalenes bearing vinyl groups at position 2 afforded the desired products in 51% (4i) yield. α -Methyl styrene gave the corresponding product 4m in moderate yield; (E)- β -methyl styrene was also compatible, and provided a mixture of diastereoisomers 40 (dr = 66:34). Dihydronaphthalene can also participate in the reaction, but gave a low yield (4p). (E)-1,2-Diphenylethene gave a mixture of diastereoisomers 4q (dr = 53:47). Several non-styrenes also reacted. For example, norbornylene can deliver the target product, and only the major isomer was separated in spite of a low yield (4r). When cyclohexene was employed as a substrate, cyclohexenyl-PINO (4s) was selectively obtained in good yield. A possible mechanism for the formation of cyclohexenyl-PINO product (4s) was proposed (Scheme 3). The imidazole analogue of styrene gave the expected 4t in moderate yield, while allyl phenyl ether gave a mixture of products with no apparent regioselectivity (r.r. = 1:1, 4u).

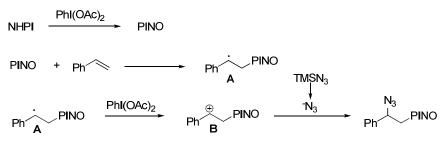

TMSN₃ (0.9 mmol, 3.0 equiv.), **3** (0.3 mmol), PhI(OAc)₂ (0.6 mmol, 2.0 equiv.), DCE (3.0 mL), 4Å M.S.,12 h, in air, at room temperature. r.r.= regioisomeric ratio (major : minor). PINO = phthalimide N-oxyl.



Scheme 3. The mechanism for the formation of 4s.

As mentioned above, azido compounds are very useful synthetic intermediates and building blocks in


organic synthesis. Hence, the azido products were further utilized in other transformations. In the presence of PPh₃ and water, 2-(2-azido-2-phenylethoxy)-isoindoline-1,3-dione (**4a**) was efficiently reduced to the corresponding amine product **5a** in 40% yield at room temperature.^{4b} The product **4a** can also undergo the classical click reaction in the presence of CuSO₄⁻5H₂O (10 mmol%) and Cu powder (4.0 equiv.) at room temperature to afford the corresponding triazole **6a** in 40% yield (Scheme 4).^{3j}


Scheme 4. Further synthetic transformations

In order to gain insight into the mechanism, some control experiments were carried out (Scheme 5). In the absence of TMSN₃ the dioxygenation product **7a** was obtained in 68% yield, which was consistent with a mechanism involving the PINO radical intermediate. The structure of the product **7a** was further confirmed by X-ray crystallography (see the Supporting Information).⁸ The product **7a** can be transformed into 1-phenylethane-1,2-diol **8a** in moderate yield by cleavage of the N-O bond with Mo(CO)₆ (Scheme 5-a). To gain further understanding about the reaction mechanism, inhibition experiments were conducted. When 2.0 equiv. of TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy) or BHT (2,6-di-tert-butyl-4-methylphenol) was added into the reaction system, the desired transformation was found to be completely inhibited, providing further evidence that a radical addition mechanism was involved in this transformation (Scheme 5-b and c).

Scheme 5. Mechanistic experiments

According to the above experimental results and related published research studies^{7c,9}, a possible mechanism is outlined in Scheme 6. First, NHPI is oxidized to give the oxygen-centred radical PINO. PINO then quickly reacts with styrene to give radical **A**, which can be further oxidized to cation **B** in the presence of PhI(OAc)₂. Last, cation **B** was attacked by $^{-}N_{3}$ to give the azido product.

Scheme 6. Proposed Mechanism

In conclusion, we have developed an efficient metal-free oxyazidation of activated and unactivated alkenes for the synthesis of alkyl azides that holds great potential for the subsequent transformation of the azido unit. A radical addition process is involved in this transformation with the formation of C-O and C-N bonds. Further investigations on the scope and synthetic application of these reactions are ongoing in our group.

EXPERIMENTAL SECTION

General Remarks: Column chromatography was carried out on silica gel. Unless noted ¹H NMR spectra

were recorded on 400 MHz in CDCl₃ and *d*-DMSO, ¹³C NMR spectra were recorded on 100 MHz in CDCl₃ and *d*-DMSO. IR spectra were recorded on an FT-IR spectrometer and only major peaks are reported in cm⁻¹. Melting points were determined on a microscopic apparatus and were uncorrected. All new products were further characterized by HRMS (high resolution mass spectra), high resolution mass spectrometry (HRMS) spectra was obtained on a micrOTOF-Q instrument equipped with an ESI source; copies of their ¹H NMR and ¹³C NMR spectra are provided. Commercially available reagents **1**, **2**, **3** and solvents were used without further purification.

Typical procedure for the synthesis of products 4

To a solution of N-hydroxyphthalimide (**3**, 0.3 mmol, 48.9 mg) in DCE (3.0 mL) was added styrene (**1**, 0.6 mmol), TMSN₃ (**2**, 0.9 mmol), PhI(OAc)₂ (193.2 mg, 2.0 equiv.) and 4Å MS (40 mg). The reaction mixture was then stirred for 12 h at room temperature in air. After the reaction, the resulting mixture was quenched with water and extracted twice with EtOAc. The combined organic extracts were washed with brine, dried over Na₂SO₄ and concentrated. Purification of the crude product by flash column chromatography afforded the product **4** (petroleum ether/ethyl acetate as eluent (6:1)).

Characterization data of compounds 4

2-(2-azido-2-phenylethoxy)isoindoline-1,3-dione (**4a**, 70%, 64.7mg), M.P.=66-68 °C, white solid, ¹H NMR (400 MHz, CDCl₃): 7.68-7.76 (m, 4 H), 7.51-7.52 (m, 2 H), 7.36-7.37 (m, 3 H), 5.50-5.53 (m, 1 H), 3.89-3.94 (*dd*, 1 H, J = 12.0 Hz, 8.0 Hz), 3.59-3.63 (*dd*, 1 H, J = 12.0 Hz, 4.0 Hz); ¹³C NMR (100 MHz, CDCl₃): 163.3, 135.8, 134.9, 134.4, 134.1, 129.0, 128.5, 127.8, 123.4, 87.5, 54.1; IR (cm⁻¹): 3064, 3035, 2935, 2105, 1789, 1736, 1668, 1459, 1370, 1187, 1126, 1077, 1019, 976, 877, 761, 701; HRMS (ESI) m/z: calcd for C₁₆H₁₂N₄NaO₃: M+Na = 331.0807; found: 331.0814.

2-(2-azido-2-p-tolylethoxy)isoindoline-1,3-dione (**4b**, 57%, 55.1mg), M.P.=64-65 °C, white solid, ¹H NMR (400 MHz, CDCl₃): 7.73-7.75 (m, 2 H), 7.67-7.69 (m, 2 H), 7.38-7.40 (m, 2 H), 7.16-7.18 (m, 2 H), 5.47-5.50 (*dd*, 1 H, J = 8.0 Hz, 4.0 Hz), 3.88-3.93 (*dd*, 1 H, J = 12.0 Hz, 8.0 Hz), 3.56-3.61 (*dd*, 1 H, J = 14.0 Hz, 6.0 Hz), 2.32 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃): 163.5, 139.7, 134.5, 132.0, 128.8, 127.9, 123.5, 87.4, 54.2, 21.3; IR (cm⁻¹): 2926, 2103, 1735, 1368, 975, 876, 814, 702; HRMS (ESI) m/z: calcd for C₁₇H₁₄N₄NaO₃; M+Na = 345.0964; found: 345.0958.

2-(2-azido-2-(4-methoxyphenyl)ethoxy)isoindoline-1,3-dione (**4c**, 44%, 44.6mg), oil, ¹H NMR (400 MHz, CDCl₃): 7.68-7.76 (m, 4 H), 7.42-7.44 (m, 2 H), 6.87-6.89 (m, 2 H), 5.46-5.49 (m, 1 H), 3.89-3.94 (*dd*, 1 H, *J* = 12.0 Hz, 8.0 Hz), 3.79 (s, 3 H), 3.57-3.62 (*dd*, 1 H, *J* = 16.0 Hz, 4.0 Hz); ¹³C NMR (100 MHz, CDCl₃): 163.4, 160.6, 134.4, 129.4, 128.6, 126.8, 123.4, 113.9, 87.0, 55.1, 53.9; IR (cm⁻¹): 2936, 2106, 1735, 1611, 1514, 1369, 1252, 1026, 975, 703; HRMS (ESI) m/z: calcd for C₁₇H₁₄N₄NaO₄: M+Na = 361.0913; found:

The Journal of Organic Chemistry

361.0907.

2-(2-azido-2-(4-bromophenyl)ethoxy)isoindoline-1,3-dione (**4d**, 78%, 90.3mg), M.P.=91-92°C, pale yellow solid, ¹H NMR (400 MHz, CDCl₃): 7.69-7.77 (m, 4 H), 7.49-7.51 (m, 2 H), 7.41-7.43 (m, 2 H), 5.45-5.48 (m, 1 H), 3.85-3.90 (*dd*, 1 H, *J* = 14.0 Hz, 4.0 Hz), 3.58-3.62 (*dd*, 1 H, *J* = 12.0 Hz, 4.0 Hz); ¹³C NMR (100 MHz, CDCl₃): 163.3, 134.5, 132.1, 131.7, 129.5, 129.4, 128.5, 123.5, 86.8, 53.9; IR (cm⁻¹): 2930, 2105, 1735, 1369, 1285, 1073, 1013, 975, 790, 702; HRMS (ESI) m/z: calcd for C₁₆H₁₁N₄NaBrO₃: M+Na = 408.9912; found: 408.9907.

2-(2-azido-2-(4-chlorophenyl)ethoxy)isoindoline-1,3-dione (**4e**, 72%, 73.9mg), M.P.= 93-94 °C, pale yellow solid, ¹H NMR (400 MHz, CDCl₃): 7.76-7.78 (m, 2 H), 7.70-7.72 (m, 2 H), 7.45-7.49 (m, 2 H), 7.34-7.37 (m, 2 H), 5.47-5.50 (m, 1 H), 3.85-3.91 (*dd*, 1 H, J = 16.0 Hz, 8.0 Hz), 3.58-3.62 (*dd*, 1 H, J = 12.0 Hz, 4.0 Hz); ¹³C NMR (100 MHz, CDCl₃): 163.3, 134.5, 129.2, 128.8, 128.6, 123.5, 86.8, 53.9; IR (cm⁻¹): 2931, 2105, 1736, 1671, 1368, 828, 702; HRMS (ESI) m/z: calcd for C₁₆H₁₁N₄NaClO₃: M+Na = 365.0417; found: 365.0412.

2-(2-azido-2-(4-fluorophenyl)ethoxy)isoindoline-1,3-dione (**4f**, 52%, 50.9mg), M.P.=69-70°C, pale yellow solid, ¹H NMR (400 MHz, CDCl₃): 7.76-7.78 (m, 2 H), 7.70-7.72 (m, 2 H), 7.50-7.52 (m, 2 H), 7.04-7.10 (m, 2 H), 5.47-5.50 (*dd*, 1 H, J = 8.0 Hz, 4.0 Hz), 3.87-3.92 (*dd*, 1 H, J = 14.0 Hz, 6.0 Hz), 3.58-3.63 (*dd*, 1 H, J = 14.0 Hz, 6.0 Hz); ¹³C NMR (100 MHz, CDCl₃): 163.4, 134.5, 129.9, 129.8, 128.6, 123.5, 115.7, 115.5, 86.8, 54.0; IR (cm⁻¹): 2934, 2105, 1736, 1512, 836, 702; HRMS (ESI) m/z: calcd for C₁₆H₁₁N₄NaFO₃: M+Na = 349.0713; found: 349.0707.

2-(2-azido-2-(4-nitrophenyl)ethoxy)isoindoline-1,3-dione (**4g**, 91%, 96.4mg), M.P.=87-88°C, pale yellow solid, ¹H NMR (400 MHz, CDCl₃): 8.24-8.26 (m, 2 H), 7.73-7.80 (m, 6 H), 5.56-5.59 (*dd*, 1 H, J = 4.0 Hz, 4.0 Hz), 3.88-3.93 (*dd*, 1 H, J = 14.0 Hz, 6.0 Hz), 3.67-3.72 (*dd*, 1 H, J = 14.0 Hz, 6.0 Hz); ¹³C NMR (100 MHz, CDCl₃): 163.3, 148.5, 142.2, 134.8, 128.7, 123.7, 86.6, 53.9; IR (cm⁻¹): 2931, 2107, 1736, 1522, 1348, 853, 702; HRMS (ESI) m/z: calcd for C₁₆H₁₁N₅NaO₅: M+Na = 376.0658; found: 376.0652.

4-(1-azido-2-(1,3-dioxoisoindolin-2-yloxy)ethyl)phenyl acetate (**4h**, 56%, r.r. = 5:2, 61.5mg), ¹H NMR (400 MHz, CDCl₃): 8.29-8.31 (m, 0.4 H), 8.21-8.23 (m, 0.4 H), 7.90-7.95 (m, 0.5 H), 7.82-7.86 (m, 0.5 H), 7.74-7.76 (m, 2 H), 7.68-7.70 (m, 2 H), 7.54-7.56 (m, 2 H), 7.11-7.14 (m, 2 H), 6.12-6.16 (m, 0.4 H), 5.52-5.55 (m, 1.0 H), 4.28-4.34 (m, 0.4 H), 3.86-3.90 (m, 1.0 H), 3.77-3.80 (m, 0.4 H), 3.58-3.62 (m, 1.0 H), 2.29 (s, 1.2 H), 2.28 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃): 169.0, 168.9, 163.3, 159.1, 157.2, 151.5, 151.0, 135.8, 134.4, 134.1, 132.5, 127.9, 123.4, 122.1, 121.7, 86.8, 58.8, 54.1, 50.5, 20.9; IR (cm⁻¹): 2932, 2106,

1738, 1665, 1509, 1370, 1199, 976, 911, 702; HRMS (ESI) m/z: calcd for C₁₈H₁₄N₄NaO₅: M+Na = 389.0862; found: 389.0856.

2-(2-azido-2-(naphthalene-2-yl)ethoxy)isoindoline-1,3-dione (**4i**, 51%, 54.8mg), oil, ¹H NMR (400 MHz, CDCl₃): 7.93 (s, 1 H), 7.85-7.87 (m, 1 H), 7.78-7.83 (m, 2 H), 7.66-7.69 (m, 3 H), 7.59-7.61 (m, 2 H), 7.43-7.45 (m, 2 H), 5.68-5.71 (m, 1 H), 3.96-4.02 (*dd*, 1 H, J = 16.0 Hz, 8.0 Hz), 3.64-3.68 (*dd*, 1 H, J = 12.0 Hz, 4.0 Hz); ¹³C NMR (100 MHz, CDCl₃): 163.4, 134.3, 133.7, 132.7, 132.4, 128.5, 128.1, 127.8, 127.7, 126.7, 126.4, 124.5, 123.4, 87.6, 54.1; IR (cm⁻¹): 3058, 2930, 2103, 1734, 1368, 1186, 1126, 975, 751, 702; HRMS (ESI) m/z: calcd for C₂₀H₁₄N₄NaO₃: M+Na = 381.0964; found: 381.0958.

2-(2-azido-2-(3-methoxyphenyl)ethoxy)isoindoline-1,3-dione (**4j**, 60%, 60.8mg), oil, ¹H NMR (400 MHz, CDCl₃): 7.68-7.76 (m, 4 H), 7.24-7.28 (m, 1 H), 7.14-7.15 (m, 1 H), 7.04-7.06 (m, 1 H), 6.87-6.90 (m, 1 H), 5.51-5.54 (m, 1 H), 3.86-3.91 (*dd*, 1 H, J = 12.0 Hz, 8.0 Hz), 3.83 (s, 3 H), 3.57-3.61 (*dd*, 1 H, J = 12.0 Hz, 4.0 Hz); ¹³C NMR (100 MHz, CDCl₃): 163.3, 159.6, 136.5, 134.4, 129.5, 128.7, 123.4, 119.9, 115.6, 112.7, 87.4, 55.2, 54.3; IR (cm⁻¹): 2940, 2104, 1735, 1602, 1368, 1268, 876, 787, 702; HRMS (ESI) m/z: calcd for C₁₇H₁₄N₄NaO₄: M+Na = 361.0913; found: 361.0907.

2-(2-azido-2-(3-bromophenyl)ethoxy)isoindoline-1,3-dione (**4k**, 70%, 81.1mg), M.P.=65-66°C, pale yellow solid, ¹H NMR (400 MHz, CDCl₃): 7.77-7.79 (m, 2 H), 7.71-7.73 (m, 2 H), 7.67 (s, 1 H), 7.48-7.52 (m, 2 H), 7.25-7.29 (m, 1 H), 5.42-5.45 (*dd*, 1 H, *J* = 8.0 Hz, 4.0 Hz), 3.85-3.90 (*dd*, 1 H, *J* = 14.0 Hz, 6.0 Hz), 3.59-3.63 (*dd*, 1 H, *J* = 16.0 Hz, 4.0 Hz); ¹³C NMR (100 MHz, CDCl₃): 163.3, 137.4, 134.5, 130.1, 128.6, 126.3, 123.6, 122.5, 86.8, 54.1; IR (cm⁻¹): 3065, 2928, 2104, 1737, 1470, 1369, 1188, 1125, 976, 877, 787, 701; HRMS (ESI) m/z: calcd for C₁₆H₁₁N₄NaBrO₃: M+Na = 408.9912; found: 408.9907.

2-(2-azido-2-(2-chlorophenyl)ethoxy)isoindoline-1,3-dione (**4**I, 72%, 73.9mg), M.P.=60-61°C, pale yellow solid, ¹H NMR (400 MHz, CDCl₃): 7.97-7.99 (m, 1 H), 7.77-7.79 (m, 2 H), 7.70-7.73 (m, 2 H), 7.37-7.41 (m, 1 H), 7.29-7.33 (m, 2 H), 6.04-6.06 (m, 1 H), 3.80-3.85 (*dd*, 1 H, *J* = 14.0 Hz, 6.0 Hz), 3.66-3.70 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃): 163.2, 134.5, 132.9, 132.8, 130.3, 127.1, 123.5, 84.1, 53.4; IR (cm⁻¹): 2928, 2105, 1738, 1367, 975, 876, 759, 702; HRMS (ESI) m/z: calcd for C₁₆H₁₁N₄NaClO₃: M+Na = 365.0417; found: 365.0412.

2-(2-azido-2-phenylpropoxy)isoindoline-1,3-dione (**4m**, 55%, 53.1mg), oil, ¹H NMR (400 MHz, CDCl₃): 7.82-7.84 (m, 2 H), 7.74-7.77 (m, 2 H), 7.69-7.71 (m, 2 H), 7.37-7.42 (m, 3 H), 3.86-3.94 (m, 2 H), 1.82 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃): 165.1, 139.3, 134.6, 128.6, 128.2, 126.5, 123.5, 89.6, 58.6, 21.7; IR (cm⁻¹): 3061, 2934, 2104, 1736, 1187, 1115, 972, 767, 702; HRMS (ESI) m/z: calcd for C₁₇H₁₄N₄NaO₃:

The Journal of Organic Chemistry

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
10	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
21 22	
22	
23	
2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 3 4 5 6 7 8 9 10 11 2 3 3 4 5 6 7 8 9 10 11 2 3 3 4 5 6 7 8 9 10 11 2 3 3 4 5 6 7 8 9 0 1 2 2 3 4 5 2 6 7 8 9 0 1 2 2 3 4 5 6 7 8 9 0 1 3 2 3 3 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	
25	
26	
27	
28	
29	
30	
31	
20	
32	
33	
34	
35	
36	
37	
38	
39	
40	
40 41	
41	
42 43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52 53	
54	
55	
56	
57	
58	
59	
60	

M+Na = 345.0964; found: 345.0958.

2-(2-azido-2-(4-iodophenyl)propoxy)isoindoline-1,3-dione (**4n**, 50%, 67.2mg), oil, ¹H NMR (400 MHz, CDCl₃): 7.82-7.85 (m, 2 H), 7.73-7.77 (m, 4 H), 7.42-7.44 (m, 2 H), 3.84 (*dd*, J = 12.0 Hz, 32.0 Hz, 2 H), 1.75 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃): 165.0, 139.3, 137.3, 134.7, 128.9, 128.5, 123.6, 94.8, 89.2, 58.3, 21.7; IR (cm⁻¹): 2984, 2105, 1791, 1736, 1368, 1310, 1077, 927, 876, 705; HRMS (ESI) m/z: calcd for C₁₇H₁₃N₄NaIO₃: M+Na = 470.9930; found: 470.9925.

2-(1-azido-1-phenylpropan-2-yloxy)isoindoline-1,3-dione (**40**, 70%, 67.6mg), dr=66:34, ¹H NMR (400 MHz, CDCl₃): 7.70-7.72 (m, 2 H), 7.66-7.69 (m, 2 H), 7.52-7.54 (m, 1.3 H), 7.46-7.48 (m, 0.8 H), 7.34-7.39 (m, 3 H), 5.28-5.31 (*dd*, 1 H, *J* = 8.0 Hz, 4.0 Hz), 4.01-4.08 (m, 1 H), 1.43 (*d*, 2 H, *J* = 4.0 Hz), 1.10 (*d*, 1 H, *J* = 8.0 Hz); ¹³C NMR (100 MHz, CDCl₃): 163.3, 134.3, 128.7, 128.4, 128.1, 123.3, 91.6, 90.6, 59.8, 59.5, 16.3, 15.9; IR (cm⁻¹): 2932, 2107, 1736, 1668, 1374, 983, 876, 701; HRMS (ESI) m/z: calcd for C₁₇H₁₄N₄NaO₃: M+Na = 345.0964; found: 345.0958.

2-(1-azido-1,2,3,4-tetrahydronaphthalen-2-yloxy)isoindoline-1,3-dione (**4p**, 40%, 40.1mg), dr>98:2 M.P.=104-105 °C, white solid, ¹H NMR (400 MHz, CDCl₃): 7.85-7.87 (m, 2 H), 7.75-7.80 (m, 3 H), 7.25-7.32 (m, 2 H), 7.16-7.18 (m, 1 H), 5.07-5.08 (d, J = 3.6 Hz, 1 H), 4.36-4.37 (m, 1 H), 2.91-2.96 (m, 2 H), 2.55-2.59 (m, 1 H), 2.10-2.16 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃): 163.9, 137.3, 134.6, 132.1, 129.5, 126.5, 123.6, 84.2, 58.5, 24.6, 22.9; IR (cm⁻¹): 2932, 2099, 1734, 1370, 1258, 974, 876, 775, 752, 702; HRMS (ESI) m/z: calcd for C₁₈H₁₄N₄NaO₃: M+Na = 357.0964; found: 357.0958.

2-(2-azido-1,2-diphenylethoxy)isoindoline-1,3-dione (**4q**, 72%, 82.9mg), M.P.=111-113°C, white solid, dr=53:47, ¹H NMR (400 MHz, CDCl₃): 7.57-7.59 (m, 2 H), 7.53-7.55 (m, 2 H), 7.47-7.50 (m, 1 H), 7.19-7.39 (m, 5 H), 7.04-7.09 (m, 4 H), 5.57-5.60 (m, 1 H), 5.10-5.12 (m, 0.45 H), 4.99-5.01 (m, 0.51 H); ¹³C NMR (100 MHz, CDCl₃): 163.0, 134.1, 128.4, 127.7, 123.1, 123.0, 91.1, 89.5, 68.6, 67.6; IR (cm⁻¹): 2927, 2105, 1735, 979, 876, 760, 701; HRMS (ESI) m/z: calcd for $C_{22}H_{16}N_4NaO_3$: M+Na = 407.1120; found: 407.1115.

2-(3-azidobicyclo[2.2.1]heptan-2-yloxy)isoindoline-1,3-dione (**4r**, 30%, 26.8mg, major stereoisomer), M.P. = 75-76 °C, white solid, ¹H NMR (400 MHz, CDCl₃): 7.84-7.86 (m, 2 H), 7.75-7.77 (m, 2 H), 4.39-4.40 (t, ³*J* = 2.0 Hz, 1 H), 3.73-3.75 (t, ³*J* = 2.4 Hz, 1 H), 2.70 (m, 1 H), 2.33-2.35 (m, 1 H), 2.09-2.15 (m, 1 H), 1.71-1.76 (m, 1 H), 1.64-1.67 (m, 1 H), 1.38-1.56 (m, 3 H); ¹³C NMR (100 MHz, CDCl₃): 163.7, 134.6, 128.8, 123.6, 95.0, 68.5, 42.1, 40.1, 34.7, 26.3, 19.7; IR (cm⁻¹): 2962, 2096, 1736, 1372, 1019, 786, 703; HRMS (ESI) m/z: calcd for $C_{15}H_{14}N_{4}NaO_{3}$: M+Na = 321.0964; found: 321.0958. 2-(cyclohex-2-enyloxy)isoindoline-1,3-dione (**4s**, 69%, 50.3mg), m.p.= 62-63 °C, white solid, ¹H NMR (400 MHz, CDCl₃): 7.83-7.85 (m, 2 H), 7.74-7.77 (m, 2 H), 6.07-6.10 (m, 1 H), 5.92-5.95 (m, 1 H), 4.75-4.76 (m, 1 H), 2.12-2.20 (m, 1 H), 1.99-2.05 (m, 3 H), 1.79-1.87 (m, 1 H), 1.61-1.64 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃): 164.2, 134.9, 134.3, 128.9, 123.8, 123.4, 80.8, 27.2, 25.1, 18.1; IR (cm⁻¹): 2938, 2099, 1734, 1650, 1540, 1518, 790, 702;

2-(2-azido-2-(1H-imidazol-1-yl)ethoxy)isoindoline-1,3-dione (**4t**, 60%, 53.6mg), M.P.=142-143°C, white solid, ¹H NMR (400 MHz, *d*-DMSO): 8.63 (s, 1 H), 8.46-8.53 (m, 1 H), 8.08-8.16 (m, 3 H), 7.95-7.97 (m, 1 H), 7.62 (s, 1 H), 6.57-6.60 (m, 1 H), 4.66-4.71 (m, 1 H), 4.50-4.55 (m, 1 H); ¹³C NMR (100 MHz, *d*-DMSO): 168.7, 167.4, 166.7, 137.6, 134.0, 131.8, 129.9, 128.4, 123.6, 118.0, 87.3, 50.9, 21.2; IR (cm⁻¹): 3442, 2113, 1675, 1650, 1026, 1003, 824, 764; HRMS (ESI) m/z: calcd for $C_{13}H_{11}N_6O_3$: M+H = 299.0893; found: 299.0887.

2-(2-azido-3-phenoxypropoxy)isoindoline-1,3-dione (**4u**, 30%, 30.4mg), r.r.=1:1, ¹H NMR (400 MHz, CDCl₃): 7.71-7.84 (m, 4 H), 7.23-7.28 (m, 3 H), 7.02 (m, 1 H), 6.85-6.88 (m, 0.6 H), 6.73-6.77 (m, 0.4 H), 6.20-6.21 (m, 0.9 H), 5.67-5.72 (m, 0.5 H), 5.51-5.53 (m, 0.6 H), 4.96-4.98 (m, 0.3 H), 4.70-4.72 (m, 0.3 H); ¹³C NMR (100 MHz, CDCl₃): 163.6, 156.5, 150.5, 146.9, 134.4, 134.2, 129.6, 129.4, 128.8, 123.4, 122.5, 117.4, 117.0, 116.2, 114.5, 105.3, 104.3, 103.7, 84.6, 74.8, 70.1, 50.5; IR (cm⁻¹): 2935, 2106, 1734, 1493, 1224, 968, 878, 757, 700; HRMS (ESI) m/z: calcd for $C_{17}H_{14}N_4O_4Na$: M+Na = 361.0913; found: 361.0907.

Synthetic transformation of product 4a to 5a and 6a.

The reaction of 2-(2-azido-2-phenylethoxy)isoindoline-1,3-dione **4a** (308 mg, 1.0 mmol) and PPh₃(786 mg, 3.0 mmol) were placed in a Schlenk tube under air, followed by the addition of THF (2.0 mL) and water (2.0 mL). The reaction was conducted at room temperature for 12h. After that, 5.0 mL water was added and the reaction was extracted by ethyl acetate twice (10 mL each time). The crude product was purified by flash column chromatography on silica gel (eluent: petroleum ether / ethyl acetate = 3: 1) to afford the product **5a** (112.8 mg, solid).

2-(2-amino-2-phenylethoxy)isoindoline-1,3-dione (**5a**, 40%, 112.8 mg), M.P.=113-114 °C, pale yellow solid, ¹H NMR (400 MHz, CDCl₃): 7.79-7.80 (m, 2 H), 7.67-7.68 (m, 2 H), 7.28-7.40 (m, 5 H), 5.19 (s, 2 H, NH₂), 4.91-4.94 (*dd*, 1 H, J = 4.0 Hz, 4.0 Hz), 4.06-4.09 (*dd*, 1 H, J = 4.0 Hz, 4.0 Hz), 3.80-3.85 (*dd*, 1 H, J = 16.0 Hz, 4.0 Hz); ¹³C NMR (100 MHz, CDCl₃): 167.9, 138.3, 133.7, 131.7, 126.7, 123.0, 83.2, 41.6; IR (cm⁻¹): 3473, 3061, 3033, 2940, 1772, 1711, 1424, 1393, 1370, 1188, 1063, 1025, 923, 759, 716; HRMS (ESI) m/z: calcd for C₁₆H₁₅N₂O₃: M+H = 283.1083; found: 283.1097.

The Journal of Organic Chemistry

The reaction of 2-(2-azido-2-phenylethoxy)isoindoline-1,3-dione **4a** (308 mg, 1.0 mmol), ethynylbenzene (122.4 mg, 1.2 mmol), $CuSO_4 \cdot 5H_2O$ (25.0 mg, 0.1 mmol) and Cu powder (256 mg, 4.0 mmol) were placed in a flame-dried Schlenk tube under air, followed by the addition of DMSO (4.0 mL). The reaction was conducted at room temperature for 6 h in dark place. After that, 5.0 mL water was added and the reaction was extracted by ethyl acetate. The crude product was purified by flash column chromatography on silica gel (eluent: petroleum ether / ethyl acetate = 1: 1) to afford the product **6a** (164 mg, solid).

2-(2-phenyl-2-(4-phenyl-1H-1,2,3-triazol-1-yl)ethoxy)isoindoline-1,3-dione (**6a**, 40%, 164mg), M.P.= 193-194 °C, pale yellow solid, ¹H NMR (400 MHz, CDCl₃): 8.13 (s, 1 H), 7.83-7.84 (m, 2 H), 7.66-7.71 (m, 4 H), 7.47-7.49 (m, 2 H), 7.39-7.43 (m, 3 H), 7.36-7.37 (m, 3 H), 5.79-5.82 (m, 1 H), 5.02-5.07 (m, 1 H), 4.86-4.90 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃): 163.3, 147.7, 134.6, 134.1, 130.0, 128.8, 128.7, 128.5, 127.7, 125.7, 123.6, 121.1, 86.8, 53.6; IR (cm⁻¹): 2926, 1734, 1540, 1516, 763, 699; HRMS (ESI) m/z: calcd for $C_{24}H_{18}N_4O_3Na: M+Na = 433.1277$; found: 433.1271.

Typical procedure for the synthesis of product 7a

The reaction of N-Hydroxyphthalimide (**3**, 0.4 mmol, 65.2 mg) in DCE (3.0 mL) was added styrene (**1**, 0.2 mmol, 20.8 mg), PhI(OAc)₂ (128.8 mg, 0.4 mmol) and 4Å MS (40 mg). The reaction mixture was then stirred for 12 h at room temperature in air. The resulting mixture was quenched with water and extracted twice with EtOAc. The combined organic extracts were washed with brine, dried over Na₂SO₄ and concentrated. Purification of the crude product by flash column chromatography afforded the product **7a** (petroleum ether/ethyl acetate as eluent (3:1), 68%, 58.2 mg).

Compound **7a**, M.P.=180-181°C, white solid, ¹H NMR (400 MHz, CDCl₃): 7.66-7.79 (m, 8 H), 7.55-7.58 (m, 2 H), 7.34-7.36 (m, 3 H), 5.85-5.87 (m, 1 H), 4.91-4.95 (m, 1 H), 4.54-4.58 (m, 1 H); ¹³C NMR (100 MHz, CDCl₃): 163.3, 162.9, 134.4, 134.2, 128.6, 128.0, 123.4, 123.3, 85.6, 79.2; IR (cm⁻¹): 2924, 1788, 1733, 1653, 1540, 1462, 1394, 1375, 1187, 1131, 1076, 1021, 972, 878, 700; HRMS (ESI) m/z: calcd for $C_{24}H_{16}N_2O_6Na$: M+Na = 451.0906; found: 451.0901.

Typical procedure for the synthesis of compound 8a

A mixture of **7a** (58.2 mg, 0.136 mmol), Mo(CO)₆ (71.8 mg, 0.272 mmol), Et₃N (206 mg, 2.04mmol) in MeCN-H₂O (15:1, 3 mL) was stirred at 80°C for 18h. Afterwards, the mixture was concentrated, and the residue purified by chromatography on silica (ethyl acetate/hexane= 1:1) to give **8a** (12.2 mg, 65%). ¹ H NMR (400 M H_Z, CDCl₃): 7.24-7.28 (m, 5 H), 4.72-4.75 (dd, J = 8.0, 4.0 Hz, 1 H), 4.06 (s, 2 H), 3.55-3.67 (m, 2 H); ¹³C NMR (100 MHz, CDCl₃): 140.5, 128.4, 127.8, 126.0, 74.6, 67.9; the spectral data were

identical to the values of the previous reports: commercially available -CAS#16355-00-3.

Supporting Information Available: Representative experimental procedures, X-ray crystallographic data of

7a, and ¹H NMR and ¹³C NMR spectra of all compounds are available free of charge via the Internet at

http://pubs.acs.org.

Acknowledgment. We thank the National Science Foundation of China NSF 21402066, the Fundamental Research Funds for the Central Universities (JUSRP11419) and Natural Science Foundation of Jiangsu Province (BK20140139) for financial support. Financial support from MOE&SAFEA for the 111 project

(B13025) is also gratefully acknowledged.

REFERENCES

- (a) Kleemann, A.; Engel, J.; Kutscher, B.; Reichert, D.; Pharmaceutical Substances: Synthesis, Patents, Applications, 4th ed.; Thieme: Stuttgart, Germany, 2001. (b) Koch, M. A.; Schuffenhauer, A.; Scheck, M.; Wetzel, S.; Casaulta, M.; Odermatt, A.; Ertl, P.; Waldmann, H. Proc. Natl. Acad. Sci. USA 2005, 102, 17272. (c) Wang, T.; Jiao, N. Acc. Chem. Res. 2014, 47, 1137.
- (a) McNerny, D. Q.; Mullen, D. G.; Majoros, I. J.; Holl, M. M. B.; Baker, J. R. Jr. *Click Chemistry for Biotechnology and Materials Science*; Lahann, J.; Eds.; John Wiley & Sons: Chichester, **2009**; p-177. (b) Iha, R. K.; Wooley, K. L.; Nyström, A. M.; Burke, D. J.; Kade, M. J.; Hawker, C. J. *Chem. Rev.* **2009**, *109*, 5620. (c) Franc, G.; Kakkar, A. K. *Chem. Soc. Rev.* **2010**, *39*, 1536.
- (a) Sreekumar, R.; Padmakumarb, R.; Rugmini, P. Chem. Commun. 1997, 1133. (b) Lapointe, G.; Kapat, A.; Weidner, K.; Renaud, P. Pure Appl. Chem. 2012, 84, 1633. (c) Minozzi, M.; Nanni, D.; Spagnolo, P. Chem. Eur. J. 2009, 15, 7830. (d) Leggans, E. K.; Barker, T. J.; Duncan, K. K.; Boger, D. L. Org. Lett. 2012, 14, 1428. (e) Kapat, A.; Kçnig, A.; Montermini, F.; Renaud, P. J. Am. Chem. Soc. 2011, 133, 13890. (f) Waser, J.; Gaspar, B.; Nambu, H.; Carreira, E. M. J. Am. Chem. Soc. 2006, 128, 11693. (g) Waser, J.; Nambu, H.; Carreira, E. M. J. Am. Chem. Soc. 2005, 127, 8294. (h) Lapointe, G.; Schenk, K.; Renaud, P. Chem. Eur. J. 2011, 17, 3207. (i) Weidner, K.; Giroult, A.; Panchaud, P.; Renaud, P. J. Am. Chem. Soc. 2010, 132, 17511. (j) Zhang, B.; Studer, A. Org. Lett. 2014, 16, 1790. (k) Zhu, L.; Yu, H.; Xu, Z.; Jiang, X.; Lin, L.; Wang, R. Org. Lett. 2014, 16, 1562. (l) Sequeira, F. C.; Turnpenny, B. W.; Chemler, S. R. Angew. Chem. Int. Ed. 2010, 49, 6365. (m) Li, Z.; Zhang, C.; Zhu, L.; Liu, C.; Li, C. Org. Chem. Front. 2014, 1, 100. (n) Yin, H.; Wang, T.; Jiao, N. Org. Lett. 2012, 14, 4482. (q) Dagousset, G.; Carboni, A.; Magnier, E.; Masson, G. Org. Lett. 2014, 16, 4340.
- (a) Zhang, B.; Studer, A. Org. Lett. 2013, 15, 4548. (b) Chung, R.; Yu, E.; Incarvito, C. D.; Austin, D. J. Org. Lett. 2004, 6, 3881. (c) Chouthaiwale, P. V.; Karabal, P. U.; Suryavanshi, G.; Sudalai, A. Synthesis 2010, 3879. (d) Tiecco, M.; Testaferri, L.; Santi, C.; Tomassini, C.; Marini, F.; Bagnoli, L.; Temperini, A. Angew. Chem. Int. Ed. 2003, 42, 3131. (e) Xu, L.; Mou, X.-Q.; Chen, Z.-M.; Wang, S.-H. Chem. Commun. 2014, 50, 10676.
- For selected references, see: (a) Matcha, K.; Narayan, R.; Antonchick, A. P. Angew. Chem. Int. Ed. 2013, 52, 7985. (b) Adamo, I.; Benedetti, F.; Berti, F.; Campaner, P. Org. Lett. 2006, 8, 51. (c) Cren, S.; Schär, P.; Renaud, P.; Schenk, K. J. Org. Chem. 2009, 74, 2942. (d) Kapat, A.; König, A.; Montermini, F.; Renaud, P. J. Am. Chem. Soc. 2011, 133, 13890. (e) Angelini, T.; Bonollo, S.; Lanari, D.; Pizzo, F.; Vaccaro, L. Org. Lett. 2012, 14, 4610. (f) Panchaud, P.; Renaud, P. J. Org. Chem. 2004, 69, 3205.

2	
3	
4	
5 6 7 8 9 10	
6	
6	
7	
8	
õ	
9	
10	
11	
12	
12	
13	
14	
15	
16	
10	
17	
18	
12 13 14 15 16 17 18 19	
20	
20	
21	
22	
20 21 22 23 24 25 26	
23	
24	
25	
26	
20	
27	
28	
29	
20	
30	
31	
32	
33	
00	
34	
35	
36	
27	
37	
38	
39	
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
50 51	
52	
53	
54	
55	
56	
57	
58	

- 6. (a) Ishii, Y.; Nakayama, K.; Takeno, M.; Sakaguchi, S.; Iwahama, T.; Nishiyama, Y. J. Org. Chem. 1995, 60, 3934. (b) Yoshino, Y.; Hayashi, Y.; Iwahama, T.; Sakaguchi, S.; Ishii, Y. J. Org. Chem. 1997, 62, 6810. (c) Hirai, N.; Sawatari, N.; Nakamura, N.; Sakaguchi, S.; Ishii, Y. J. Org. Chem. 2003, 68, 6587. (d) Saha, B.; Koshino, N.; Espenson, J. H. J. Phys. Chem. A 2004, 108, 425. (e) Annunziatini, C.; Gerini, M. F.; Lanzalunga, O.; Lucarini, M. J. Org. Chem. 2004, 69, 3431. (f) Lin, R.; Chen, F.; Jiao, N. Org. Lett. 2012, 14, 4158. (g) Amaoka, Y.; Kamijo, S.; Hoshikawa, T.; Inoue, M. J. Org. Chem. 2012, 77, 9959. (h) Yan, Y.; Feng, P.; Zheng, Q.-Z.; Liang, Y.-F.; Lu, J.-F.; Cui, Y.; Jiao, N. Angew. Chem. Int. Ed. 2013, 52, 5827.
- (a) Hara, T.; Iwahama, T.; Sakaguchi, S.; Ishii, Y. J. Org. Chem. 2001, 66, 6425. (b) Nechab, M.; Einhorn, C.; Einhorn, J. Chem. Commun. 2004, 1500. (c) Lee, J. M.; Park, E. J.; Cho, S. H.; Chang, S. J. Am. Chem. Soc. 2008, 130, 7824. (d) Tan, B.; Toda, N.; Barbas III, C. F. Angew. Chem. Int. Ed. 2012, 51, 12538. (e) Yao, H.; Yamamoto, K. Chem. Asian J. 2012, 7, 1542. (f) Ghosh, R.; Olofsson, B. Org. Lett. 2014, 16, 1830. (g) Petrassi, H. M.; Sharpless, K. B.; Kelly, J. W. Org. Lett. 2001, 3, 139.
- CCDC 1026407 (7a) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data_request/cif.
- (a) Antonchick, A. P.; Burgmann, L. Angew. Chem. Int. Ed. 2013, 52, 3267. (b) Matcha, K.; Antonchick, A. P. Angew. Chem. Int. Ed. 2013, 52, 2082.