

Article

Subscriber access provided by Georgetown University | Lauinger and Blommer Libraries

Enantioselective Synthesis of H-Phosphinic Acids Bearing Natural Amino Acids Residues

Qiuli Yao, and Chengye Yuan

J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/jo400798f • Publication Date (Web): 17 Jun 2013

Downloaded from http://pubs.acs.org on June 25, 2013

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

The Journal of Organic Chemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Enantioselective Synthesis of H-Phosphinic Acids Bearing Natural Amino Acids Residues

Qiuli Yao and Chengye Yuan^{*}

State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic

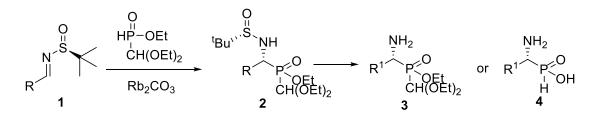
Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China

yuancy@mail.sioc.ac.cn

Abstract

The first systematic study on the asymmetric synthesis of *H*-phosphinic acids bearing natural protein amino acids residues was reported based on the asymmetric addition of ethyl diethoxymethylphosphinate to *N-tert*-butanesulfinyl imines. Good yields and moderate to high enantioselectivities were obtained. Reliable methods were developed for the elucidation of the stereochemistry of these phosphinic acids and derivatives thereof. The transformation of the side chains of these analogs was studied. Methods for the conversion of the α -aminophosphinates to oligopetides were reported.

Introduction


As a phosphoru analogue of natural α -aminocarboxylic acid, α -aminophosphonic acid is of great interest to chemists (Scheme 1). Many procedures have been developed for their preparation in both racemic and optically pure forms,¹ and their biological studies have revealed diverse activities.²

However, direct comparison of α -aminophosphonic acids with α -aminocarboxylic acids is not reasonable, since the former belongs to dibasic acids while the latter are monobasic acids in nature. From this structural point of view, α -amino-*H*-phosphinic belongs to dibasic acids while the latter are monobasic acids in nature. acids are much closer to natural α -aminocarboxylic acids (Scheme 1). It is well documented that optically active α -aminocarboxylic acids play an irreplaceable role in the biological metabolism. Consequently, it is reasonable to assume that better bioactivities can be expected for H-phosphinic analogs of α -amino acids than for corresponding phosphonic acids. Previous work by George et al demonstrates that N-methyl-N-amidinoaminomethylphosphinic acid is much more reactive as analog of creatine in the creatine kinase reaction than the corresponding phosphonic acid or its monoester.^{3a} Similar effects were found for inhibitors of nitric oxide synthase (NOS).^{3b} In fact, derivatives of *H*-phosphinic acids have already demonstrated varieties of activities,⁴ also, the precursor of α -amino phosphinates are excellent synthons for the preparation of various organophosphorus compounds.⁵ COOH R POH R POH α -amino acid α -aminophosphonic acid Scheme 1. a-Amino Acid and ts Phosphorus Analogs Unfortunately, probably due to the unique structure, it is difficult to synthesize chiral α -amino-H-phosphinic acids. Most of the available methods only lead to racemates.⁶ Thus, almost all current literature data recordings used racemic *H*-phosphinic acids directly in their biological studies. As far as we know, only five α -amino-H-phosphinic acids have been described in the literature for their asymmetric syntheses.⁷ This might be due to three reasons. Firstly, the high reactivity of P-H group usually makes the preparation of H-phosphinic acid difficult. Secondly, the stereochemistry for organophosphorus compounds is complex because of the delocalization of P=O bond due to d-p π bond. To be specific, reliable methods to elucidate the stereochemistry of H-phosphinic acids or phosphinates are lacked. Finally, additional functionalization of amino acids emphasizes the difficulty toward the

asymmetric syntheses of *H*-phosphinic analogs of the natural α -amino acids. For these reasons, studies on the asymmetric synthesis and biological studies of this type of compounds are challenging.

Recently, a convenient procedure for the preparation of optically active α-aminophosphinates by using *N*-tertbutanesulfinyl
imines as chiral auxiliaries was described.⁸ Rb₂CO₃ was found to have suitable basicity in the asymmetric synthesis of
phosphinates. Also, a procedure describing a one-pot transformation of protected P–H group into P–O or P–N group by bromine,

which provides a convenient method to elucidate the absolute configuration and d.r. values of α -aminophosphinates, was developed.⁵ Herein, as a part of our systematic efforts in the study of *H*-phosphinic acids and their derivatives, we describe the first systematic stereoselective synthesis of *H*-phosphinic isosteres of α -amino acids (Scheme 2). Nucleophilic attack of ethyl diethoxymethylphosphinate on sulfinamide **1** bearing a side chain of a natural amino acid gave phosphinate **2**, which was then subsequently converted to α -amino-*H*-phosphinate **3** or α -amino-*H*-phosphinic acid **4**.

Scheme 2. Asymmetric Syntheses of α -Amino-H-phosphinic Acids

Results and Discussion

Amino acids can be catalogued as: (i) nonfunctionalized amino acids (alanine, glycine, phenylalanine, valine, and leucine); (ii) amino acids with additional functionalities, including hydroxyl (serine, tyrosine, and threonine), sulfanyl (methionine and cysteine), amino (tryptophan, arginine, and proline), and amide linkage (asparagines, pyroglutamic acid, and glutamine); (iii) dicarboxylic acids (aspartic acid and glutamic acid); and (iv) amino acids containing two amino groups (lysine). In order to achieve the asymmetric synthesis of their phosphinic analogs, protection of additional function group is neccessary.

Consequently, (S)-sulfinamide 1 was firstly prepared by condensation of (S)-2-methylpropane-2-sulfinamide and corresponding aldehyde by $Ti(OPr^{i})_{4}$ or $CuSO_{4}^{9}$, followed by a nucleophilic reaction with diethoxymethylphosphinate to give phosphinates 2 with Rb₂CO₃ as a base at room temperature (Table 1). For most of substrates 1 with side chains of natural amino acids, the reactions proceeded successfully and gave good to high yields. Except for 1k (entry 11), the product 2k underwent debromination and decomposed, so it was directly subjected to the next reaction without further purification. (*R*)-sulfinamide (-)-11 was used in this reaction as well (entry 13).

Table 1. Preparation of Phosphinates 2^a

ACS Paragon Plus Environment

N R			O Rb ₂ Co –OEt CH(OEt) ₂ DCM, r		$R \xrightarrow{P < O}{CH(OEt)_2}$
	Entry	2	R	Time (h)	Yield% ^b
-	1	2a	Me	30	84
	2	2b	PhtN(CH ₂) ₃	17	92
	3	2c	BnSCH ₂	10	91
	4	2d	FmSCH ₂	40	90
	5	2e	MeOCO(CH ₂) ₂	13	87
	6	2f	(S)-sec-Bu	36	80
	7	2g	i-Bu	24	90
	8	2h	PhtN(CH ₂) ₄	36	94
	9	2i	$MeS(CH_2)_2$	24	98
	10	2j	Bn	15	64
	11	2k	$Br(CH_2)_3$	36	<u>-</u> <i>c</i>
	12	21	BnOCH ₂	72	50
	13	(-)-2l	BnOCH_2^d	17	88
	14	2m	(R)-MeCH(OBn)	17	92
	15	2n	3'-indolyl-CH ₂	36	96
1	16	20	$4-MeOC_6H_4CH_2$	36	93
	17	2p	i-Pr	24	70
^{<i>a</i>} The reaction was carried out with 1	(5 mm	ol), eth	yl diethoxymethylp	hosphinate	(4 mmol) and Rb_2CO_3 (25 mmol) in 50 mL of
DCM at room temperature. ^b Separat	ed yield	d after	column chromatogr	aphy. ^c The	product was unstable, and debromination was
detected, so it was subjected to the	next rea	action v	without further puri	fication. ^d (R	?)-sulfinamide was used as substrate instead of
(S)-sulfinamide.					
The removal of the protecting gr	oups of	phosph	inate 2 was attempt	ed. The con	ditions of 4 M HCl in the solvent of methanol at
room temperature was found to be s	suitable	to rem	ove the <i>tert</i> -butylsu	lfinyl group	to give phosphinate 3 with good to excellent
yields (Table 2). This mild condition	1 does n	ot affec	et the phosphinate g	roup at all,	but side chains with a methyl ester group (2e,
entry 4) would undergo transesterific	ation to	give a	n ethyl ester group	when the re	eaction was performed with 1 M HCl in EtOH.
When prolonging the reaction of 2e w	vith 1 M	HCl in	EtOH, partial hydro	olysis was c	detected as well (entry 4). Phosphinate 2k with a
bromine-substituted side chain under	went cyc	clizatio	n to give phosphinat	e 3k under	the acidic condition (entry 10).
		ACS	Paragon Plus En	vironment	:

1						
2	T-1-1-2 D-		freeD		f 2 4 - Dhh	:
3	Table 2. Re	emoval c	ы <i>tert</i> -В	utylsulfinyl Group o	of 2 to Phosph	inate
4						
5	C)				
6 7	0				NH_2	
8	^t Bu ^{w, S}	INH ≣	_	4 M HCI/MeOH		
9	R	· P.	C	>		+
10			OEt (OEt) ₂		ĊH(Ŏ	Ét) ₂
11		2 2	$(OEI)_2$		3	<i>,</i> _
12		-				
13		Entry	3	R^1	Yield% ^b	
14		1	3b	PhtN(CH ₂) ₃	quant.	
15		2	3c	BnSCH ₂	90	
16						
17 18		3	3d	FmSCH ₂	83	
19		4	3e	EtOCO(CH ₂) ₂	65 ^{<i>c</i>,<i>d</i>}	
20		5	3f	(S)-sec-Bu	82	
21		6	3g	i-Bu	90	
22		7	3h	PhtN(CH ₂) ₄	94	
23 24		8	3i	$MeS(CH_2)_2$	99	
25		9	3j	Bn	quant.	
26		10	3k	_e	80 ^{<i>f</i>}	
27						
28		11	31	BnOCH ₂	quant.	
29		12	(-)-3l	BnOCH ₂	92	
30		13	3m	(R)-MeCH(OBn)	96	
31 32		14	3n	3'-indolyl-CH ₂	93	
33		15	3p	i-Pr	98	
0.1			-r			

ates 3^a

^aThe reaction was carried out with 2 (0.5 mmol) in 2.5 mL of 4 M HCl in MeOH at room temperature for 75 minutes. ^bSeparated yield after column chromatography. ^cThe reaction was carried out for 20 hours with 1 M HCl in EtOH. ^dWhen the reaction was carried out for 33 hours in 1 M HCl in EtOH, 16% 3e and 29% product with conversion of the ester group to carboxylic group ($R^1 =$

CH₂CH₂COOH) were given. ^eThe structure of product **3k** is

NH P OEt CH(OEt)₂ . f Separated yield for 2 steps from 1k. Next, the removal of the protecting groups leading to final product 4 was investigated. Our initial study showed that when phosphinate 2 was directly treated with 4 M HCl by heating to reflux for 15 hours, H-phosphinic acid 4 was obtained for specific substrates without any additional functional group (Table 3, entries 1, 4, 9, 10). However, this procedure often led to byproducts that may be caused by the sulfinamide group, especially for functionalized substrates. After an exploration of the reaction conditions, simply by the reaction of phosphinate 3 in 4 M aqueous HCl by heating to reflux for 1.5 hours, the formation of

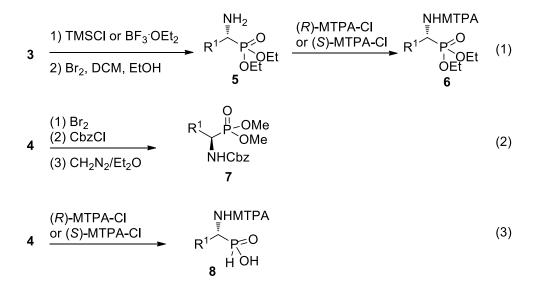
byproducts was excluded (Table 3, entries 2, 3, 5-8).

Table 3. Preparation of Phosphinic Acids 4

	2 or 3		→ R ¹ P ^O H	ł
Entry	Substrate	4	4	Yield%
1	2a	- 4a	Me	$\frac{1101070}{80^a}$
2	3c	4c	BnSCH ₂	95 ^b
3	3f	4f	(S)-sec-Bu	97^b
4	2g	4g	i-Bu	33 ^{<i>a</i>}
5	3h	4h	PhtN(CH ₂) ₄	49^b
6	3i	4i	MeS(CH ₂) ₂	84^b
7	3j	4j	Bn	86 ^b
8	3k	4k	- ^c	63 ^{<i>b</i>}
9	20	40	4-MeOC ₆ H ₄ CH ₂	60^a
10	2p	4p	i-Pr	40^a

^aProcedure A: 2 (0.2 mmol) in 4 M aqueous HCl (4 mL) was heated to reflux for 15 hours, then treated with 20 mL of propylene

oxide. ^bProcedure B: 3 (0.5 mmol) in 4 M aqueous HCl (2.5 mL) was heated to reflux for 1.5 hours, then treated with 20 mL of


∼NH P<0 ⊢OH H

propylene oxide. ^cThe structure of product **4k** is

Finally, the stereochemistry of these addition reactions was studied. ³¹P NMR analysis indicates that phosphinate **2** has two isomers as major products and additional two as minor products. However, it is difficult to separate these isomers by chromatography for most substrates except **2c** and **2m**, and the chirality at the phosphorus center increased the difficulty. Thus to discriminate the absolute configuration of each isomer is almost impossible. Nevertheless, *N-tert*-butanesulfinyl imines do not have asymmetric inductive effect to the phosphinates group,⁸ so just confirming the stereochemistry of the α -substituent is adequate and realizable. For phosphinate **2** and **3**, although its dr value can be detected by ³¹P NMR spectrum, we can not know the relative value between the isomer of (R_c) and (S_c), which actually reflects the enantioselectivities of these reactions.

Thus, methods to determine of the constituents of the α -carbon were studied (Scheme 3). To achieve this, phosphinate 3 was

 transferred to the diethyl phosphonate **5** by our previously developed one-pot procedure (Scheme 3, Eq. 1),⁵ then analysis of the NMR spectra of the Mosher's derivative **6** reflected its dr value. Also, oxidation and subsequent transformation of phosphinic acid **4** give phosphonate **7** (Eq. 2). Further determination of the er value of compound **4** can be achieved by analysis of the HPLC spectrum of compound **7**. Direct conversion of **4** to its Mosher's derivative **8** provides another procedure to determine the er value of **4** (Eq. 3) in the condition that diastereoisomers of **8** are distinguishable in their NMR or HPLC spectra. By the above procedures, the relative ratio of (R_c) and (S_c) isomers of **3** and **4** was determined (Table 4).

Scheme 3. Methods to Determine the Ratio of $(R_c)/(S_c)$

Table 4. The Ratio of $(R_c)/(S_c)$ for **3** or **4**

3	Procedure A	6	
4	Procedure B	7	

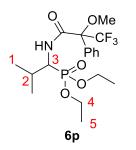
Procedure C

Entry	Substrate	\mathbf{R}^1	Procedure ^a	Ratio of $(R_c)/(S_c)$
1	4a	Me	В	90:10
2	3b	PhtN(CH ₂) ₃	А	90:10
3	3c	BnSCH ₂	-	Single isomer separated
4	3e	EtOCO(CH ₂) ₂	А	88:12

ACS Paragon Plus Environment

5	46	(Ω) and $\mathbf{D}_{\mathbf{Y}}$	р	07.2
5	4f	(S)-sec-Bu	В	97:3
6	4g	i-Bu	В	88:12
7	4h	PhtN(CH ₂) ₄	В	89:11
8	4i	MeS(CH ₂) ₂	С	81:19
9	4j	Bn	В	90:10
10) 4 k	-	В	79:21
11	3	BnOCH ₂	А	66:34
12	2 (-)-3	I BnOCH ₂	А	69:31
13	3 3 m	(R)-MeCH(OBn)	-	Single isomer separated
14	4 3n	3'-indolyl-CH ₂ ^c	A^b	95:5
15	5 40	4-MeOC ₆ H ₄ CH ₂	В	88:12
10	5 3 p	i-Pr	А	>95:5
17	7 4 p	i-Pr	В	>99:1

^{*a*}Procedure A: Ratio of $(R_c)/(S_c)$ was measured by NMR spectra of **6**; Procedure B: Ratio of $(R_c)/(S_c)$ was determined by chiral HPLC analysis of **7**; Procedure C: Ratio of $(R_c)/(S_c)$ was estimated by NMR spectra and HPLC spectrum of **8**. ^{*b*}The indolyl group of


3n was dibrominated.

For sterically hindered substrates such as 4f (entry 5), 3n (entry 14), and 3p (entry 16, 17), excellent enantioselectivities were obtained, while less sterically hindered substrates (entry 1, 2, 4, 6–9, 15) provide good enantioselectivities. For 3l or (-)-3l with a side chain of benzyloxy methyl group, relative low dr values resulted for both (*S*) and (*R*)-sulfinamide (entry 11, 12), indicating that the asymmetric inductive effect of these two isomers was similar. Similar ratios were measured by both procedure A (entry 16) and procedure B (entry 17), indicating that both these two methods are liable to elucidate the enantioseletivity of these reactions. The major isomer of 2c and 2m were separated in yields of 48% and 45% respectively. Subsequently they were subjected to the reaction providing single isomer of 3c and 3m respectively (entry 3, 13).

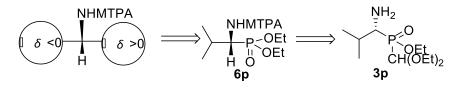
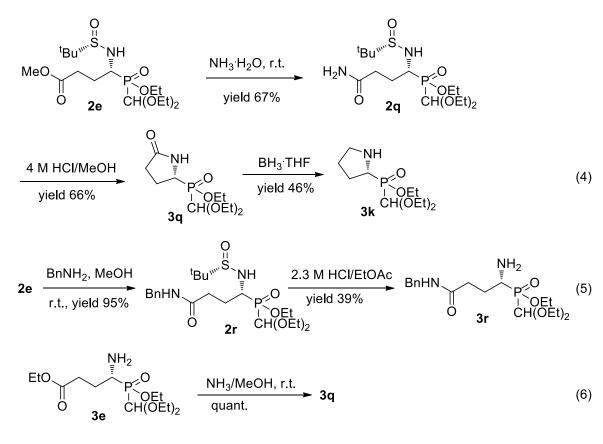
Next, the absolute configuration of the α -carbon atom was investigated by analyses of ¹H NMR spectra of Mosher's derivatives **6p**, which are single isomers, and it can be confirmed to be *R* (Table 5, Figure 1). Similar analyses of the derivatives of the Mosher's derivatives of the major isomer of **3m** go to the same conclusion.¹⁰ These results indicate that the major isomer of **3** or **4** has the absolute configuration of *R* at the α -carbon atom.

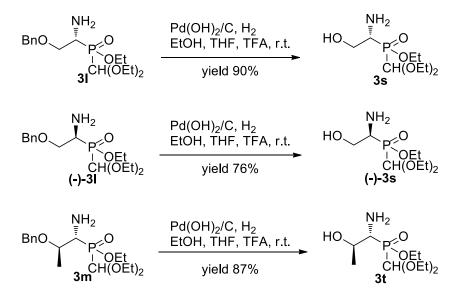
Table 5. ¹H NMR Data of (S) and (R)-Mosher's Derivative 6p

ACS Paragon Plus Environment

	$\delta_{1 m (CH3)2}$	$\delta_{2\mathrm{CH}}$	$\delta_{3 m CH}$	$\delta_{4{ m CH2}*2}$	$\delta_{5{ m CH3}*2}$
(R)-MTPA	1.06	2.31	4.35	4.06	1.26
(S)-MTPA	0.93	2.25	4.35	4.14	1.33
$ riangle\delta_{(S)\text{-}(R)}$	-0.13	-0.06	0	0.08	0.07
$ riangle\delta_{(S)-(R)}$	< 0	< 0	= 0	> 0	> 0

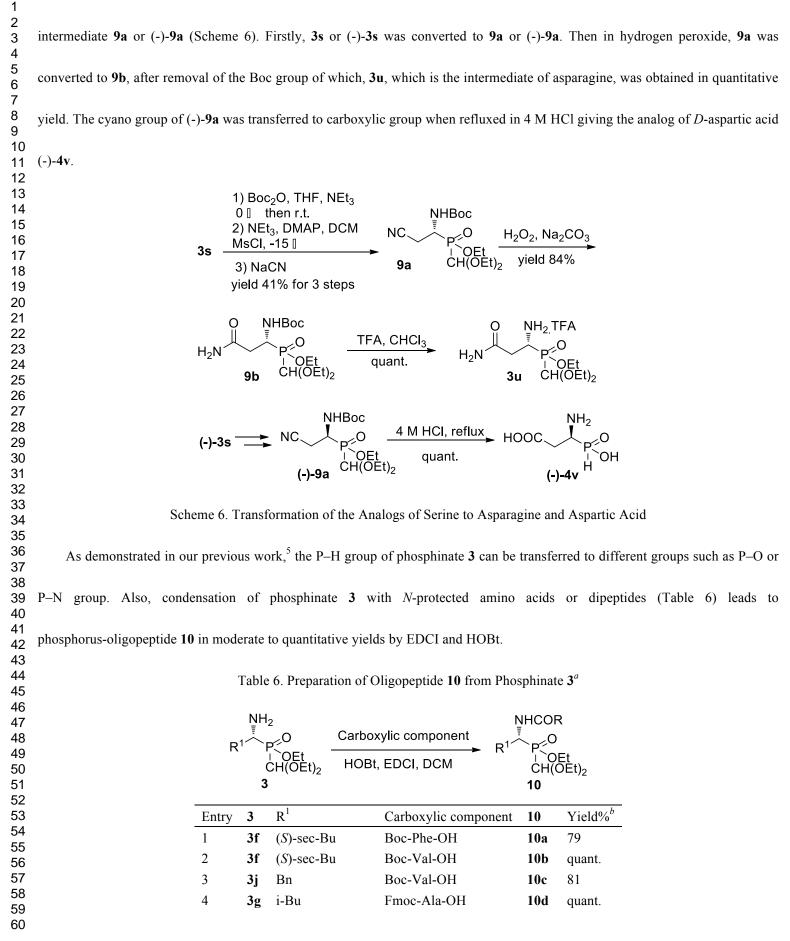
(


Figure 1. Absolute Configuration of 3p Elucidated by Mosher's Method

Further conversion of the side chains of the compounds **3** was studied. Transformation of the ester group of **2e** to amide group proceeded successfully in aqueous ammonia or BnNH₂leading to **2q** (Eq. 4) or **2r** (Eq. 5), respectively. Quite interestingly, when **2q** was reacted with 4 M HCl in MeOH, intramolecular amidation took place and **3q** was obtained in 66% yield. As we know, **3q** is the intermediate toward the analog of *L*-pyroglutamic acid. Also, **3q** can be transferred to **3k**, the intermediate of the analog of *L*-pyroglutamic acid. Also, **3q** can be transferred to **3k**, the intermediate of the analog of *L*-pyroglutamic acid. Also, **3q** can be transferred to **3k**, the intermediate of the analog of *L*-pyroglutamic acid. Also, **3q** can be transferred to **3k**, the intermediate of the analog of *L*-pyroglutamic acid. Also, **3q** can be transferred to **3k**, the intermediate of the analog of *L*-pyroglutamic acid. Also, **3q** can be transferred to **3k**, the intermediate of the analog of *L*-pyroglutamic acid. Also, **3q** can be transferred to **3k**, the intermediate of the analog of *L*-pyroglutamic acid. Also, **3q** can be transferred to **3k**, the intermediate of the analog of *L*-pyroglutamic acid. Also, **3q** can be transferred to **3k**, the intermediate of the analog of *L*-pyroglutamic acid. Also, **3q** can be transferred to **3k**, the intermediate of the analog of *L*-pyroglutamic acid. Also, **3q** can be transferred to **3k**, the intermediate of the analog of *L*-pyroglutamic acid.

Scheme 4. Transformation of Ester Group to Amide Group


Trying to remove the benzyl group of **31**, (-)-**31** or **3m** by Pd/C and hydrogen failed. However, under the conditions of Pd(OH)₂/C and hydrogen this group could be deprotected successfully to give corresponding alcohols (Scheme 5).

Scheme 5. Removal of Benzyl Group

The β-hydroxyl group of phosphinate 3s or (-)-3s can be transferred into amide group or carboxylic group via a cyano

ACS Paragon Plus Environment

ACS Paragon Plus Environment

5	3h	PhtN(CH ₂) ₄	Cbz-Gly-OH	10e	93
6	3f	(S)-sec-Bu	Boc-Phe-Val-OH	10f	76
7	3g	i-Bu	Boc-Phe-Val-OH	10g	49
8	3j	Bn	Boc-Phe-Val-OH	10h	35
9	3p	i-Pr	Boc-Phe-Val-OH	10i	67
10	3p	i-Pr	Boc-Phe-OH	10j	98
11	3g	i-Bu	Boc-Phe-OH	10k	82
12	3r	BnNHCO(CH ₂) ₂	Boc-Phe-OH	101	44
13	3f	(S)-sec-Bu	Boc-Trp-OH	10m	78

^aThe reaction was carried out with 0.55 mmol carboxylic compound, 0.6 mmol HOBt, 0.6 mmol EDCI and 0.5 mmol **3** in 5.5 mL of DCM at 0 °C and then room temperature. ^bSeparated yield after column chromatography.

These phosphorus-oligopeptides could be functioned as peptidomimetics for natural peptides. Previous studies have revealed their diverse bioactivity.⁴ Initiate study on the bioactivity of these compounds indicates that compound **10a** may have inhibitive effect towards cell division cycle 25 homolog B (S. pombe) (CDC25B) which has oncogenic properties¹¹.

Conclusions

The first systematic enantioselective preparation of *H*-phosphinic analogs of α -amino acids has been studied based on the asymmetric addition of phosphinates to *N-tert*-butanesulfinyl imines. Good yields and moderate to excellent enantioselectivities have been obtained for 17 substrates with side chains of natural α -amino acids. The transformation of the analog of glutamic acid to glutamine and pyroglutamic acid, and transformation of the analog of serine to asparagine and aspartic acid-analogs are studied as well. This study provides guidelines for the investigation of the stereochemistry of organophosphorus compounds in future studies. Furthermore, phosphorus-contain peptides are prepared from α -amino phosphinates, and their potent biological activities as peptidomimetics could be expected in the future.

Experimental Section

General Methods: Reactions were performed under nitrogen unless otherwise stated. Materials were obtained from commercial suppliers and used without further purification unless otherwise indicated. Preparative thin-layer chromatography (TLC) was performed with plates precoated with silica gel G.F. Flash chromatography was performed using silica gel (300–400 mesh). HRMS

were detected by FT-ICR MS.
Procedure for preparation of 1: ⁷
Procedure A: To a solution of (S)-2-methylpropane-2-sulfinamide (1820 mg, 15 mmol) in 30 mL of DCM, CuSO ₄ (4849 mg, 30
mmol) and 20 mmol aldehyde were added at room temperature. After completion of the reaction monitored by TLC, the solution
was filtered by celite, washed by EtOAc, and then purified by silica gel column chromatography with petroleum ether/ethyl acetate
(1:15 to 1:7) to give 1a, 1e, 1j or 1p. Data for compounds $1a$, $1^{12} 1j$, 9^{9b} and $1p^{9b}$ were in accordance with reported data. Compounds 1
are mainly in E form, but at times Z form can be detected by NMR. Most of them were unstable at room temperature. So they
should be used as soon as they were purified.
Procedure B: To (S)-2-methylpropane-2-sulfinamide (623 mg, 5 mmol), Ti(OPr ⁱ) ₄ (2840 mg, 10 mmol), 6 mmol aldehyde and 1.5
mL of THF were added at room temperature. After completion of the reaction monitored by TLC, the solution was quenched by 1
mL of water with stirring, 100 mL of ethyl acetate added and then filtered by celite. The solid was washed by 30 mL of ethyl
acetate. The combined ethyl acetate phases were dried over anhydrous Mg_2SO_4 and then purified by silica gel column
chromatography with petroleum ether/ethyl acetate (1:15 to 1:7) to give 1b, 1c, 1d, 1f, 1g, 1h, 1i, 1k, 1l, (-)-1l, 1m, 1n, and 1o.
Data for compounds $1g^{13}$ and (-)- 11^{14} were in accordance with reported data.
Compound 1b . Yield 86%, 1.38 g; white solid; m.p. 77 °C; [α] ²¹ _D 158.6 (<i>c</i> 1.0, CHCl ₃); IR (film) 2957, 2925, 1712, 1396, 1083,
720 cm ⁻¹ ; ¹ H NMR (CDCl ₃ , 400 MHz) δ 8.09 (t, J = 3.6 Hz, 1H), 7.85 (dd, J ₁ = 2.8 Hz, J ₂ = 5.2 Hz, 2H), 7.72 (dd, J ₁ = 3.2 Hz, J_2 = 5.2 Hz, 2H), 7.72 (dd, J_1 = 3.2 Hz, J_2 = 5.2 Hz, 2H), 7.72 (dd, J_1 = 3.2 Hz, J_2 = 5.2 Hz, 2H), 7.72 (dd, J_1 = 3.2 Hz, J_2 = 5.2 Hz, 2H), 7.72 (dd, J_1 = 3.2 Hz, J_2 = 5.2 Hz, 2H), 7.72 (dd, J_1 = 3.2 Hz, J_2 = 5.2 Hz, 2H), 7.72 (dd, J_1 = 3.2 Hz, J_2 = 5.2 Hz, 2H), 7.72 (dd, J_1
5.2 Hz, 2H), 3.79 (t, $J = 6.8$ Hz, 2H), 2.60 (m, 2H), 2.05 (m, 2H), 1.19 (s, 9H); ¹³ C NMR (CDCl ₃ , 100 MHz) δ 168.4, 167.9, 134.0,
132.1, 123.3, 56.7, 37.4, 33.5, 24.2, 22.3; MS (ESI) m/z (%) 343.1 [M + Na] ⁺ ; HRMS (ESI) Calcd for C ₁₆ H ₂₀ N ₂ O ₃ SNa 343.1087,
found 343.1101; Elemental analysis (%) calcd for C ₁₆ H ₂₀ N ₂ O ₃ S: C 59.98, H 6.29, N 8.74. Found: C 59.96, H 6.36, N 8.54.
Compound 1c . Yield 63%, 0.85 g; colorless oil; $[\alpha]_{D}^{22}$ 265.7 (<i>c</i> 1.0, CHCl ₃); IR (film) 3028, 2977, 2959, 2924, 1611, 1454, 1087,
701 cm ⁻¹ ; ¹ H NMR (CDCl ₃ , 400 MHz) δ 7.98 (t, J = 5.2 Hz, 1H), 7.35–7.24 (m, 5H), 3.70 (s, 2H), 3.35 (t, J = 5.6 Hz, 2H), 1.23 (s, 2H), 5.6 Hz, 2H), 1.23 (s, 2H), 5.6 Hz,
9H); ¹³ C NMR (CDCl ₃ , 100 MHz) δ 164.1, 137.3, 129.2, 128.7, 127.4, 57.0, 35.6, 34.4, 22.4; MS (ESI) <i>m/z</i> (%) 270.1 [M + H] ⁺ ;

0 1 2	mmol) and 20 mmol aldehyde were added at room temperature. After completion of the reaction monitored by TLC, the solution
3 4	was filtered by celite, washed by EtOAc, and then purified by silica gel column chromatography with petroleum ether/ethyl acetate
5 6 7	(1:15 to 1:7) to give 1a, 1e, 1j or 1p. Data for compounds $1a$, ¹² $1j$, ^{9b} and $1p$ ^{9b} were in accordance with reported data. Compounds 1
8 9 0	are mainly in E form, but at times Z form can be detected by NMR. Most of them were unstable at room temperature. So they
1 2	should be used as soon as they were purified.
3 4 5	Procedure B: To (S)-2-methylpropane-2-sulfinamide (623 mg, 5 mmol), Ti(OPr ⁱ) ₄ (2840 mg, 10 mmol), 6 mmol aldehyde and 1.5
6 7 8	mL of THF were added at room temperature. After completion of the reaction monitored by TLC, the solution was quenched by 1
9	mL of water with stirring, 100 mL of ethyl acetate added and then filtered by celite. The solid was washed by 30 mL of ethyl
1 2 3	acetate. The combined ethyl acetate phases were dried over anhydrous Mg_2SO_4 and then purified by silica gel column
4 5 6	chromatography with petroleum ether/ethyl acetate (1:15 to 1:7) to give 1b, 1c, 1d, 1f, 1g, 1h, 1i, 1k, 1l, (-)-1l, 1m, 1n, and 1o.
7 8	Data for compounds $1g^{13}$ and (-)- 11^{14} were in accordance with reported data.
9 0 1	Compound 1b . Yield 86%, 1.38 g; white solid; m.p. 77 °C; [α] ²¹ _D 158.6 (<i>c</i> 1.0, CHCl ₃); IR (film) 2957, 2925, 1712, 1396, 1083,
2 3 4	720 cm ⁻¹ ; ¹ H NMR (CDCl ₃ , 400 MHz) δ 8.09 (t, J = 3.6 Hz, 1H), 7.85 (dd, J ₁ = 2.8 Hz, J ₂ = 5.2 Hz, 2H), 7.72 (dd, J ₁ = 3.2 Hz, J ₂ = 5.2 Hz, 2H), 7.72 (dd, J_1 = 3.2 Hz, J_2 = 5.2 Hz, 2H), 7.72 (dd, J_1 = 3.2 Hz, J_2 = 5.2 Hz, 2H), 7.72 (dd, J_1 = 3.2 Hz, J_2 = 5.2 Hz, 2H), 7.72 (dd, J_1 = 3.2 Hz, 2H),
5	5.2 Hz, 2H), 3.79 (t, $J = 6.8$ Hz, 2H), 2.60 (m, 2H), 2.05 (m, 2H), 1.19 (s, 9H); ¹³ C NMR (CDCl ₃ , 100 MHz) δ 168.4, 167.9, 134.0,
7 8 9	132.1, 123.3, 56.7, 37.4, 33.5, 24.2, 22.3; MS (ESI) m/z (%) 343.1 [M + Na] ⁺ ; HRMS (ESI) Calcd for C ₁₆ H ₂₀ N ₂ O ₃ SNa 343.1087,
0 1 2	found 343.1101; Elemental analysis (%) calcd for C ₁₆ H ₂₀ N ₂ O ₃ S: C 59.98, H 6.29, N 8.74. Found: C 59.96, H 6.36, N 8.54.
3 4	Compound 1c . Yield 63%, 0.85 g; colorless oil; $[\alpha]_{D}^{22}$ 265.7 (<i>c</i> 1.0, CHCl ₃); IR (film) 3028, 2977, 2959, 2924, 1611, 1454, 1087,
5 6 7	701 cm ⁻¹ ; ¹ H NMR (CDCl ₃ , 400 MHz) δ 7.98 (t, J = 5.2 Hz, 1H), 7.35–7.24 (m, 5H), 3.70 (s, 2H), 3.35 (t, J = 5.6 Hz, 2H), 1.23 (s,
8 9	9H); ¹³ C NMR (CDCl ₃ , 100 MHz) δ 164.1, 137.3, 129.2, 128.7, 127.4, 57.0, 35.6, 34.4, 22.4; MS (ESI) m/z (%) 270.1 [M + H] ⁺ ;

2	HRMS (ESI) Calcd for C ₁₃ H ₁₉ NNaOS ₂ 292.0800, found 292.0801.
3 4	$\frac{1}{12} \frac{1}{12} \frac$
5 6 7	Compound 1d. Yield 71%, 1.27 g; yellow solid; m.p. 72-73 °C
8 9	1610, 1450, 1086, 743 cm ⁻¹ ; ¹ H NMR (CDCl ₃ , 400 MHz) δ 7.96 (
10 11 12	1H), 7.60 (d, $J = 7.6$ Hz, 1H), 7.38 (t, $J = 7.2$ Hz, 2H), 7.30 (t,
13 14 15	3.39-3.34 (m, 1H), 3.13-2.98 (m, 1H), 3.03-2.98 (m, 1H), 1.20 (s
16 17	127.1, 124.8, 120.0, 57.0, 46.6, 36.1, 35.6, 22.4; MS (ESI) <i>m/z</i> (%)
18 19 20	C 67.19, H 6.48, N 3.92. Found: C 66.79, H 6.55, N 3.73.
21 22	Compound 1e . Yield 44%, 1.44 g; colorless oil; $E/Z \approx 5.2:1$; $[\alpha]_D^{26}$
23 24 25	1438, 1365, 1213, 1169, 1085, 998, 583 cm ⁻¹ ; ¹ H NMR (CDCl ₃ , 4
26 27 28	2.68 (m, 2H), 1.17 (s, 9H); 13 C NMR (CDCl ₃ , 100 MHz) δ 172.7, 1
29 30	H] ⁺ ; HRMS (EI) Calcd for $C_9H_{17}NO_3S$ 219.0929, found 219.0933.
31 32 33	Compound 1f . Yield 38%, 0.36 g; colorless oil; $[\alpha]_{D}^{27}$ 208.7 (c 1.4
34 35 36	1016, 725, 586 cm ⁻¹ ; ¹ H NMR (CDCl ₃ , 300 MHz) δ 7.97 (d, J =
37 38	9H), 1.14 (d, $J = 6.9$ Hz, 3H), 0.95 (t, $J = 7.8$ Hz, 3H); ¹³ C NMR (
39 40 41	(ESI) m/z (%) 190.1 [M + H] ⁺ ; HRMS (ESI) Calcd for C ₉ H ₂₀ NOS
42 43 44	Compound 1h . Yield 72%, 1.21 g; colorless oil; $[\alpha]_{D}^{28}$ 154.5 (c 1.
45 46	1364, 1081, 1047, 721 cm ⁻¹ ; ¹ H NMR (CDCl ₃ , 400 MHz) δ 8.06 (
47 48 49	(dd, $J_1 = 3.2$ Hz, $J_2 = 5.6$ Hz, 2H), 3.73 (t, $J = 6.8$ Hz, 2H), 2.59
50 51 52	(CDCl ₃ , 100 MHz) δ 168.8, 168.3, 134.0, 132.1, 123.2, 56.5, 37
53 54	HRMS (ESI) Calcd for $C_{17}H_{22}N_2O_3SNa~357.1243$, found 357.1255
55 56 57	Compound 1i . Yield 80%, 0.83 g; colorless oil; $[\alpha]_{D}^{25}$ 69.4 (<i>c</i> 2.0
58 59	1087, 1018, 687, 582 cm ⁻¹ ; ¹ H NMR (CDCl ₃ , 400 MHz) δ 8.09 (t,

Compound 1d . Yield 71%, 1.27 g; yellow solid; m.p. 72–73 °C; [α] ²² _D 191.4 (<i>c</i> 1.0, CHCl ₃); IR (film) 3064, 2959, 2923, 2863,
1610, 1450, 1086, 743 cm ⁻¹ ; ¹ H NMR (CDCl ₃ , 400 MHz) δ 7.96 (t, J = 5.6 Hz, 1H), 7.74 (d, J = 7.6 Hz, 2H), 7.66 (d, J = 7.6 Hz, 2H), 7.66 (d, J
1H), 7.60 (d, J = 7.6 Hz, 1H), 7.38 (t, J = 7.2 Hz, 2H), 7.30 (t, J = 7.6 Hz, 2H), 4.11 (t, J = 6.4 Hz, 1H), 3.48–3.34 (m, 1H),
3.39–3.34 (m, 1H), 3.13–2.98 (m, 1H), 3.03–2.98 (m, 1H), 1.20 (s, 9H); ¹³ C NMR (CDCl ₃ , 100 MHz) δ 164.0, 145.6, 141.1, 127.7,
127.1, 124.8, 120.0, 57.0, 46.6, 36.1, 35.6, 22.4; MS (ESI) m/z (%) 358.1 [M + H] ⁺ ; Elemental analysis (%) calcd for C ₂₀ H ₂₃ NOS ₂ :
C 67.19, H 6.48, N 3.92. Found: C 66.79, H 6.55, N 3.73.
Compound 1e . Yield 44%, 1.44 g; colorless oil; <i>E/Z</i> ≈5.2:1; [α] ²⁶ _D 187.8 (<i>c</i> 1.1, CHCl ₃); IR (film) 2954, 2870, 1739, 1625, 1475,
1438, 1365, 1213, 1169, 1085, 998, 583 cm ⁻¹ ; ¹ H NMR (CDCl ₃ , 400 MHz) δ 8.13 (t, J = 2.8 Hz, 1H), 3.68 (s, 3H), 2.84 (m, 2H),
2.68 (m, 2H), 1.17 (s, 9H); ¹³ C NMR (CDCl ₃ , 100 MHz) δ 172.7, 167.2, 56.8, 51.8, 31.0, 29.1, 22.2; MS (ESI) <i>m/z</i> (%) 220.1 [M +
H] ⁺ ; HRMS (EI) Calcd for C ₉ H ₁₇ NO ₃ S 219.0929, found 219.0933.
Compound 1f . Yield 38%, 0.36 g; colorless oil; $[\alpha]_{D}^{27}$ 208.7 (<i>c</i> 1.0, CHCl ₃); IR (film) 2964, 2929, 2875, 1620, 1458, 1363, 1087,
1016, 725, 586 cm ⁻¹ ; ¹ H NMR (CDCl ₃ , 300 MHz) δ 7.97 (d, $J = 5.1$ Hz, 1H), 2.55 (m, 1H), 1.66 (m, 1H), 1.50 (m, 1H), 1.20 (s,
9H), 1.14 (d, $J = 6.9$ Hz, 3H), 0.95 (t, $J = 7.8$ Hz, 3H); ¹³ C NMR (CDCl ₃ , 100 MHz) δ 173.3, 56.4, 41.6, 26.7, 22.3, 16.4, 11.5; MS
(ESI) m/z (%) 190.1 [M + H] ⁺ ; HRMS (ESI) Calcd for C ₉ H ₂₀ NOS 190.1266, found 190.1265.
Compound 1h . Yield 72%, 1.21 g; colorless oil; $[\alpha]_{D}^{28}$ 154.5 (<i>c</i> 1.4, CHCl ₃); IR (film) 3466, 2947, 1771, 1712, 1622, 1467, 1397,
1364, 1081, 1047, 721 cm ⁻¹ ; ¹ H NMR (CDCl ₃ , 400 MHz) δ 8.06 (t, J = 4.8 Hz, 1H), 7.84 (dd, J_1 = 3.2 Hz, J_2 = 5.6 Hz, 2H), 7.72

 $(dd, J_1 = 3.2 Hz, J_2 = 5.6 Hz, 2H), 3.73 (t, J = 6.8 Hz, 2H), 2.59 (m, 2H), 1.77 (m, 2H), 1.71 (m, 2H), 1.18 (s, 9H); {}^{13}C NMR$ $(\text{CDCl}_3, 100 \text{ MHz}) \delta 168.8, 168.3, 134.0, 132.1, 123.2, 56.5, 37.5, 35.4, 28.1, 22.6, 22.3; \text{ MS} (\text{ESI}) m/z$ (%) 335.2 [M + H]⁺;

Compound 1i. Yield 80%, 0.83 g; colorless oil; [α]²⁵_p 69.4 (*c* 2.0, CHCl₃); IR (film) 2960, 2917, 2867, 1623, 1428, 1363, 1184, 1087, 1018, 687, 582 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 8.09 (t, J = 2.8 Hz, 1H), 2.84–2.80 (m, 4H), 2.13 (s, 3H), 1.21 (s, 9H); 60

1	
2 3 4	¹³ C NMR (CDCl ₃ , 100 MHz) δ 167.4, 56.7, 35.6, 29.5, 22.3, 15.5; MS (ESI) <i>m/z</i> (%) 208.1 [M + H] ⁺ ; HRMS (ESI) Calcd for
5 6 7	C ₈ H ₁₇ NOS ₂ Na 230.0644, found 230.0646.
8 9	Compound 1k . Yield 70%, 0.89 g; colorless oil; [α] ²⁸ _D 187.3 (<i>c</i> 1.0, CHCl ₃); IR (film) 3480, 2964, 2926, 1629, 1455, 1363, 1247,
10 11 12	1081, 583 cm ⁻¹ ; ¹ H NMR (CDCl ₃ , 400 MHz) δ 8.11 (t, J = 4.0 Hz, 1H), 3.50 (m, 2H), 2.72 (m, 2H), 2.23 (m, 2H), 1.20 (s, 9H); ¹³ C
13 14 15	NMR (CDCl ₃ , 100 MHz) δ 167.8, 56.7, 34.4, 32.6, 28.1, 22.4; MS (ESI) m/z (%) 254.0 [M + H] ⁺ ; HRMS (EI) Calcd for
16 17	C ₈ H ₁₆ NOSBr 253.0136, found 253.0137.
18 19 20	Compound 11 . Yield 56%, 0.71 g; colorless oil; $[\alpha]_{D}^{23}$ 220.6 (<i>c</i> 0.8, CHCl ₃); IR (film) 3063, 3031, 2960, 2926, 2866, 1632, 1274,
21 22 23	1455, 1363, 1085, 739, 699 cm ⁻¹ ; ¹ H NMR (CDCl ₃ , 400 MHz) δ 8.13 (t, J = 3.2 Hz, 1H), 7.37–7.31 (m, 5H), 4.64 (s, 2H), 4.41 (t, J
24 25	= 2.4 Hz, 2H), 1.22 (s, 9H); ¹³ C NMR (CDCl ₃ , 100 MHz) δ 166.8, 137.2, 128.6, 128.1, 127.9, 73.3, 71.3, 57.0, 22.4; MS (ESI) m/z
26 27 28	(%) 254.1 $[M + H]^+$; HRMS (EI) Calcd for C ₁₃ H ₁₉ NO ₂ S 253.1137, found 253.1140.
29 30 31	Compound 1m . Yield 79%, 1.06 g; colorless oil; $[\alpha]_{D}^{27}$ 327.4 (<i>c</i> 1.0, CHCl ₃); IR (film) 3031, 2929, 2868, 1624, 1455, 1365, 1088,
32 33	699 cm ⁻¹ ; ¹ H NMR (CDCl ₃ , 400 MHz) δ 8.06 (d, J = 4.4 Hz, 1H), 7.36–7.26 (m, 5H), 4.65 (d, J = 11.6 Hz, 1H), 4.53 (d, J = 11.6
34 35 36	Hz, 1H), 4.34 (m, 1H), 1.39 (d, $J = 6.8$ Hz, 3H), 1.21 (s, 9H); ¹³ C NMR (CDCl ₃ , 100 MHz) δ 170.6, 137.6, 128.5, 127.9, 127.8,
37 38 39	76.3, 71.7, 57.0, 22.4, 18.7; MS (ESI) m/z (%) 268.1 [M + H] ⁺ ; HRMS (ESI) Calcd for C ₁₄ H ₂₁ NO ₂ SNa 290.1185, found 290.1197.
40 41	Compound 1n . Yield 48%, 0.63 g; yellow oil; $[\alpha]_{D}^{26}$ 205.3 (<i>c</i> 1.0, CHCl ₃); IR (film) 3290, 3059, 2960, 1620, 1457, 1064, 742 cm ⁻¹ ;
42 43 44	¹ H NMR (CDCl ₃ , 400 MHz) δ 8.32 (br, 1H), 8.16 (t, J = 5.2 Hz, 1H), 7.58 (d, J = 8.0 Hz, 1H), 7.36 (d, J = 8.0 Hz, 1H), 7.20 (dt, J_1
45 46 47	= 1.2 Hz, J_2 = 8.0 Hz, 1H), 7.12 (dt, J_1 = 0.8 Hz, J_2 = 8.0 Hz, 1H), 7.05 (d, J = 2.0 Hz, 1H), 3.95 (d, J = 5.2 Hz, 2H), 1.19 (s, 9H);
48 49	¹³ C NMR (CDCl ₃ , 100 MHz) δ 167.7, 136.3, 127.2, 122.7, 122.4, 119.7, 118.7, 111.3, 109.0, 56.8, 32.5, 22.4; MS (ESI) m/z (%)
50 51 52	263.0 $[M + H]^+$; HRMS (ESI) Calcd for C ₁₄ H ₁₉ N ₂ OS 263.1213, found 263.1220.
53 54 55	Compound 10 . Yield 66%, 0.84 g; yellow oil; $[\alpha]_{D}^{24}$ 267.0 (<i>c</i> 2.0, CHCl ₃); IR (film) 2958, 2835, 1620, 1512, 1248, 1177, 1086, 831,
56 57	667 cm ⁻¹ ; ¹ H NMR (CDCl ₃ , 400 MHz) δ 8.10 (t, J = 4.8 Hz, 1H), 7.14 (d, J = 8.4 Hz, 2H), 6.86 (d, J = 8.8 Hz, 2H), 3.79 (s, 3H),
58 59 60	3.76 (m, 2H), 1.18 (s, 9H); 13 C NMR (CDCl ₃ , 100 MHz) δ 167.7, 158.7, 130.3, 126.7, 114.3, 56.8, 55.3, 41.8, 22.4; MS (ESI) m/z
	ACC Devenen Blue Environment

(%) 254.1 $[M + H]^+$; HRMS (ESI) Calcd for C₁₃H₂₀NO₂S 254.1209, found 254.1209.

Procedure for preparation of 2.

To Rb₂CO₃ (5770 mg, 25 mmol), ethyl diethoxymethylphosphinate (3920 mg, 20 mmol), and 50 mL of DCM were added at room temperature. After 15 minutes, compound 1 (5 mmol) was added to the solution. After completion of the reaction monitored by TLC, the reaction was quenched by 30 mL of water and then extracted with ethyl acetate (50 mL×3), and washed with 30 mL of brine. The combined organic phases were dried over anhydrous Na_2SO_4 and then purified by silica gel column chromatography with petroleum ether/ethyl acetate (2:3 to 1:5) to give 2. **Compound 2a**. Yield 84%, 1.44 g; colorless oil; [α]²⁵_D 64.1 (*c* 2.0, CHCl₃); IR (film) 3465, 3184, 2978, 2931, 1740, 1653, 1476, 1391, 1365, 1296, 1216, 1061, 959, 557 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 4.97 (m, 1H), 4.27 (m, 2H), 4.12 (m, 1H), 3.93–3.73 (m, 5H), 1.50–1.41 (m, 3H), 1.39–1.34 (m, 3H), 1.29–1.27 (m, 6H), 1.23 (s, 9H); 13 C NMR (CDCl₃, 100 MHz) δ for the major isomer: 100.3 (d, J = 140.3 Hz), 66.1 (d, J = 9.3 Hz), 65.4 (d, J = 8.8 Hz), 62.3 (d, J = 7.4 Hz), 55.8 (d, J = 0.9 Hz), 46.8 (d, J = 140.3 95.4 Hz), 22.3 (s), 16.5 (d, J = 5.1 Hz), 15.1 (d, J = 7.5 Hz), 14.5 (d, J = 0.9 Hz); ³¹P NMR (CDCl₃, 162 MHz) δ 39.11, 38.89, 38.72, 38.24; MS (ESI) m/z (%) 344.2 [M + H]⁺, 366.3 [M + Na]⁺; HRMS (MALDI) Calcd for C₁₃H₃₁NO₅PS 344.1655, found 344.1648. **Compound 2b.** Yield 92%, 1.46 g; colorless oil; $[\alpha]_{2^{6}}^{2^{6}}$ 33.6 (*c* 1.0, CHCl₃); IR (film) 3471, 3198, 2977, 1713, 1396, 1060, 722 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 7.83 (m, 2H), 7.72 (m, 2H), 5.07 (m, 1H), 4.26 (m, 2H), 3.95–3.75 (m, 4H), 3.70 (m, 4H), 2.0 (m, 2H), 1.83–1.64 (m, 2H), 1.26–1.22 (m, 18H); ¹³C NMR (CDCl₃, 100 MHz) δ for the major isomer: 168.3 (s), 133.9 (s), 132.1 (s), 123.2 (s), 99.6 (d, J = 139.3 Hz), 66.1 (d, J = 10.2 Hz) and 65.2 (d, J = 9.5 Hz), 62.7 (d, J = 6.6 Hz), 56.8 (s), 52.0 (d, J = 89.0 Hz), 37.6 (s), 27.2 (s), 25.0 (d, J = 9.5 Hz), 22.7 (s), 16.7 (d, J = 5.1 Hz), 15.3 (m); ³¹P NMR (CDCl₃, 121 MHz) δ 40.11, 39.59, 39.07,

38.70; MS (ESI) m/z (%) 517.4 [M + H]⁺; HRMS (ESI) Calcd for C₂₃H₃₇N₂O₇PSNa 539.1951, found 539.1972; Elemental analysis

(%) calcd for $C_{23}H_{37}N_2O_7PS$: C 53.48, H 7.22, N 5.42. Found: C 53.67, H 7.45, N 5.37.

Compound 2c. Yield 91%, 2.12 g; colorless oil; data for the major isomer (yield approximately 48%): $[\alpha]_{D}^{23}$ -14.2 (*c* 1.0, CHCl₃); 60

IR (film) 3187, 2977, 2927, 2360, 1495, 1221, 1061, 1031, 702 cm ⁻¹ ; ¹ H NMR (CDCl ₃ , 400 MHz) δ 7.33–7.21 (m, 5H), 5.06 (d, J
= 9.6 Hz, 1H), 4.27 (m, 2H), 3.94–3.76 (m, 5H), 3.74 (s, 2H), 3.69 (m, 1H), 3.06 (m, 1H), 2.74 (m, 1H), 1.34 (t, <i>J</i> = 7.2 Hz, 3H),
$1.29-1.21$ (m, 15H); ¹³ C NMR (CDCl ₃ , 100 MHz) δ 138.0 (s), 129.0 (s), 128.6 (s), 127.2 (s), 99.7 (d, $J = 140.7$ Hz), 66.2 (d, $J = 140.7$ Hz), 76.2
10.9 Hz) and 65.2 (d, <i>J</i> = 8.8 Hz), 62.9 (d, <i>J</i> = 6.5 Hz), 57.3 (s), 52.2 (d, <i>J</i> = 86.1 Hz), 36.8 (s), 33.0 (d, <i>J</i> = 4.4 Hz), 22.8 (s), 16.7 (d
$J = 4.3$ Hz), 15.4 (d, $J = 6.6$ Hz); ³¹ P NMR (CDCl ₃ , 162 MHz) δ 36.59; MS (ESI) m/z (%) 466.1 [M + H] ⁺ ; HRMS (ESI) Calcd for
C ₂₀ H ₃₆ NO ₅ PS ₂ Na 488.1665, found 488.1667; Elemental analysis (%) calcd for C ₂₀ H ₃₆ NO ₅ PS ₂ : C 51.59, H 7.79, N 3.01. Found: C
51.25, H 7.89, N 3.03.
Compound 2d . Yield 90%, 2.49 g; light yellow oil; $[\alpha]_D^{23}$ 3.1 (<i>c</i> 1.0, CHCl ₃); IR (film) 3190, 2977, 2927, 2863, 1476, 1448, 1218,
1060, 1033, 743 cm ⁻¹ ; ¹ H NMR (CDCl ₃ , 400 MHz) δ 7.73 (m, 2H), 7.67 (m, 2H), 7.37 (t, J = 7.2 Hz, 2H), 7.30 (m, 2H), 5.11–4.75
(m, 1H), 4.27 (m, 2H), 4.12 (t, J = 5.6 Hz, 1H), 3.96–3.53 (m, 6H), 3.22–2.78 (m, 4H), 1.34 (t, J = 6.8 Hz, 3H), 1.29–1.24 (m, 6H),
1.22–1.21 (m, 9H); ¹³ C NMR (CDCl ₃ , 100 MHz) δ 145.9 (m), 141.2 (m), 127.6 (s), 127.0 (s), 124.9 (m), 119.9 (m), 100.3 (m), 66.3
(m) and 65.3 (m), 62.9 (m), 57.4 (m), 52.3 (m), 46.8 (m), 37.0 (m), 34.5 (m), 22.7 (m), 16.7 (m), 15.4 (m); ³¹ P NMR (CDCl ₃ , 162
MHz) δ 37.22, 37.16, 36.95, 36.69; MS (ESI) m/z (%) 554.3 [M + H] ⁺ ; HRMS (ESI) Calcd for C ₂₇ H ₄₀ NO ₅ PS ₂ Na 576.1978, found
576.1979.
Compound 2e . Yield 87%, 1.81 g; colorless oil; $[\alpha]_{D}^{27}$ 37.5 (<i>c</i> 1.0, CHCl ₃); IR (film) 3459, 3203, 2978, 1737, 1440, 1390, 1366,
1302, 1213, 1163, 1061, 959, 838, 593 cm ⁻¹ ; ¹ H NMR (CDCl ₃ , 400 MHz) δ 5.10 (m, 1H), 4.29 (m, 2H), 4.0–3.72 (m, 6H), 3.68 (s, 130) (m, 14) (m,
3H), 2.78–2.45 (m, 2H), 2.29 (m, 1H), 1.98 (m, 1H), 1.37 (t, $J = 6.8$ Hz, 3H), 1.30–1.25 (m, 15H); ¹³ C NMR (CDCl ₃ , 100 MHz) δ
for the major isomer: 173.0 (s), 99.7 (d, $J = 140.0 \text{ Hz}$), 66.5 (d, $J = 9.5 \text{ Hz}$) and 65.2 (d, $J = 9.5 \text{ Hz}$), 62.7 (d, $J = 7.3 \text{ Hz}$), 56.7 (s),
51.5 (s), 51.4 (d, $J = 89.7$ Hz), 30.2 (d, $J = 8.8$ Hz), 25.3 (d, $J = 2.9$ Hz), 22.6 (s) 16.5 (d, $J = 5.1$ Hz), 15.2 (m); ³¹ P NMR (CDCl ₃ ,
121 MHz) δ 39.94, 39.41, 38.89, 38.64; ESI (<i>m/z</i>) 416.5 [M + H] ⁺ ; HRMS (ESI) Calcd for C ₁₆ H ₃₄ NO ₇ PSNa 438.1686, found
438.1707; Elemental analysis (%) calcd for C ₁₆ H ₃₄ NO ₇ PS: C 46.25; H 8.25; N 3.37. Found: C 46.04; H 8.37; N 3.22.
Compound 2f . Yield 59%, 1.14 g; colorless oil; $[\alpha]_{D}^{27}$ 76.5 (<i>c</i> 1.1, CHCl ₃); IR (film) 3479, 3334, 2974, 2931, 2876, 1644, 1462,

2 3 4	1390, 1365, 1216, 1061, 958, 870, 559, 497 cm ⁻¹ ; ¹ H NMR (CDCl ₃ , 400 MHz) δ 5.16 (d, J = 7.2 Hz, 1H), 4.28 (m, 2H), 3.96–3.65
5 6 7	(m, 6H), 2.11 (m, 1H), 1.70 (m, 1H), 1.35 (m, 3H), 1.31–1.25 (m, 15H), 1.21 (m, 1H), 1.01 (m, 3H), 0.92 (m, 3H); ¹³ C NMR
8 9	$(CDCl_3, 100 \text{ MHz}) \delta 99.0 \text{ (d}, J = 137.8 \text{ Hz}), 65.9 \text{ (d}, J = 11 \text{ Hz}) \text{ and } 64.8 \text{ (d}, J = 8.0 \text{ Hz}), 62.4 \text{ (d}, J = 7.3 \text{ Hz}), 57.2 \text{ (d}, J = 86.0 \text{ Hz}), 62.4 \text{ (d}, J = 7.3 \text{ Hz}), 57.2 \text{ (d}, J = 86.0 \text{ Hz}), 62.4 \text{ (d}, J = 7.3 \text{ Hz}), 57.2 \text{ (d}, J = 86.0 \text{ Hz}), 62.4 \text{ (d}, J = 7.3 \text{ Hz}), 57.2 \text{ (d}, J = 86.0 \text{ Hz}), 62.4 \text{ (d}, J = 7.3 \text{ Hz}), 57.2 \text{ (d}, J = 86.0 \text{ Hz}), 63.4 \text{ (d}, J = 7.3 \text{ Hz}), 57.2 \text{ (d}, J = 86.0 \text{ Hz}), 63.4 \text{ (d}, J = 7.3 \text{ Hz}), 57.2 \text{ (d}, J = 86.0 \text{ Hz}), 63.4 \text{ (d}, J = 7.3 \text{ Hz}), 57.2 \text{ (d}, J = 86.0 \text{ Hz}), 63.4 \text{ (d}, J = 7.3 \text{ Hz}), 57.2 \text{ (d}, J = 86.0 \text{ Hz}), 63.4 \text{ (d}, J = 7.3 \text{ Hz}), 57.2 \text{ (d}, J = 86.0 \text{ Hz}), 63.4 \text{ (d}, J = 7.3 \text{ Hz}), 57.2 \text{ (d}, J = 86.0 \text{ Hz}), 63.4 \text{ (d}, J = 7.3 \text{ Hz}), 57.2 \text{ (d}, J = 86.0 \text{ Hz}), 63.4 \text{ (d}, J = 7.3 \text{ Hz}), 57.2 \text{ (d}, J = 86.0 \text{ Hz}), 63.4 \text{ (d}, J = 7.3 \text{ Hz}), 57.2 \text{ (d}, J = 86.0 \text{ Hz}), 63.4 \text{ (d}, J = 7.3 \text{ Hz}), 57.4 \text{ (d}, J = 86.0 \text{ Hz}), 63.4 \text{ (d}, J = 7.3 \text{ Hz}), 57.4 \text{ (d}, J = 86.0 \text{ Hz}), 63.4 \text{ (d}, J = 7.3 \text{ Hz}), 57.4 \text{ (d}, J = 86.0 \text{ Hz}), 63.4 \text{ (d}, J = 7.3 \text{ Hz}), 57.4 \text{ (d}, J = 86.0 \text{ Hz}), 63.4 \text{ (d}, J = 7.3 \text{ Hz}), 57.4 \text{ (d}, J = 86.0 \text{ Hz}), 63.4 \text{ (d}, J = 7.3 \text{ Hz}), 57.4 \text{ (d}, J = 86.0 \text{ Hz}), 63.4 \text{ (d}, J = 86$
10 11 12	57.0 (s), 35.9 (d, <i>J</i> = 2.1 Hz), 24.3 (d, <i>J</i> = 1.4 Hz), 22.9 (s), 16.7 (d, <i>J</i> = 18.9 Hz), 16.6 (d, <i>J</i> = 5.1 Hz), 15.4 (d, <i>J</i> = 3.7 Hz), 11.9 (s);
13 14 15	³¹ P NMR (CDCl ₃ , 162 MHz) δ 40.23, 39.10, 39.06, 37.90; ESI (<i>m</i> / <i>z</i>) 386.3 [M + H] ⁺ ; HRMS (MALDI) Calcd for C ₁₆ H ₃₇ NO ₅ PS
16 17	386.2125, found 386.2123.
18 19 20	Compound 2g . Yield 90%, 1.73 g; colorless oil; [α] ²⁵ _D 33.8 (<i>c</i> 1.2 , CHCl ₃); IR (film) 3466, 3188, 2957, 2870, 1500, 1387, 1366,
21 22 23	1294, 1215, 1062, 958, 795, 561 cm ⁻¹ ; ¹ H NMR (CDCl ₃ , 300 MHz) δ 5.06 (d, J = 7.5 Hz, 1H), 4.18 (m, 2H), 3.87–3.58 (m, 6H),
24 25 26	1.78 (m, 1H), 1.52 (m, 2H), 1.28–1.08 (m, 18H), 0.84 (dd, J_1 = 4.5 Hz, J_2 = 19.5 Hz, 6H); ¹³ C NMR (CDCl ₃ , 100 MHz) δ 99.4 (d, J_2 = 19.5 Hz, 6H); ¹³ C NMR (CDCl ₃ , 100 MHz) δ 99.4 (d, J_2 = 19.5 Hz, 6H); ¹³ C NMR (CDCl ₃ , 100 MHz) δ 99.4 (d, J_2 = 19.5 Hz, 6H); ¹³ C NMR (CDCl ₃ , 100 MHz) δ 99.4 (d, J_2 = 19.5 Hz, 6H); ¹³ C NMR (CDCl ₃ , 100 MHz) δ 99.4 (d, J_2 = 19.5 Hz, 6H); ¹³ C NMR (CDCl ₃ , 100 MHz) δ 99.4 (d, J_2 = 19.5 Hz, 6H); ¹³ C NMR (CDCl ₃ , 100 MHz) δ 99.4 (d, J_3 = 19.5 Hz, 6H); ¹³ C NMR (CDCl ₃ , 100 MHz) δ 99.4 (d, J_3 = 19.5 Hz, 6H); ¹³ C NMR (CDCl ₃ , 100 MHz) δ 99.4 (d, J_3 = 19.5 Hz, 6H); ¹³ C NMR (CDCl ₃ , 100 MHz) δ 99.4 (d, J_3 = 19.5 Hz, 6H); ¹³ C NMR (CDCl ₃ , 100 MHz) δ 99.4 (d, J_4 = 19.5 Hz, 6H); ¹³ C NMR (CDCl ₃ , 100 MHz) δ 99.4 (d, J_4 = 19.5 Hz, 6H); ¹³ C NMR (CDCl ₃ , 100 MHz) δ 99.4 (d, J_4 = 19.5 Hz, 6H); ¹³ C NMR (CDCl ₃ , 100 MHz) δ 99.4 (d, J_4 = 19.5 Hz, 6H); ¹³ C NMR (CDCl ₃ , 100 MHz) δ 99.4 (d, J_4 = 19.5 Hz, 6H); ¹³ C NMR (CDCl ₃ , 100 MHz) δ 99.4 (d, J_4 = 19.5 Hz, 6H); ¹³ C NMR (CDCl ₃ , 100 MHz) δ 99.4 (d, J_4 = 19.5 Hz, 6H); ¹³ C NMR (CDCl ₃ , 100 MHz) δ 99.4 (d, J_4 = 19.5 Hz, 6H); ¹³ C NMR (CDCl ₃ , 100 MHz) δ 99.4 (d, J_4 = 19.5 Hz, 6H); ¹³ C NMR (CDCl ₃ , 100 MHz) δ 99.4 (d, J_4 = 19.5 Hz, 6H); ¹³ C NMR (CDCl ₃ , 100 MHz) δ 99.4 (d, J_4 = 19.5 Hz, 6H); ¹³ C NMR (CDCl ₃ , 100 MHz) δ 99.4 (d, J_4 = 19.5 Hz, 6H); ¹³ C NMR (CDCl ₃ , 100 MHz) δ 99.4 (d, J_4 = 19.5 Hz, 6H); ¹³ C NMR (CDCl ₃ , 100 MHz) δ 99.4 (d, J_4 = 19.5 Hz, 6H); ¹³ C NMR (CDCl ₃ , 100 MHz) δ 99.4 (d, J_4 = 19.5 Hz, 6H); ¹³ C NMR (CDCl ₃ , 100 MHz) δ 99.4 (d, J_4 = 19.5 Hz, 6H); ¹³ C NMR (CDCl ₃ , 100 MZ) δ 99.4 (d, J_4 = 19.5 Hz, 6H); ¹³ C NMR (CDCl ₃ , 100 MZ) δ 99.4 (d, J_4 = 19.5 Hz, 6H); ¹³ C NMR (CDCl ₃ , 100 MZ) δ 99.4 (d, J_4 = 19.5 Hz, 6H); ¹³ C NMR (CDCl ₃ , 100 MZ) δ δ = 19.5 Hz, 6H); ¹³ C NMR (CDCl ₃ , 100 MZ)
27 28	= 137.1 Hz), 65.9 (d, J = 9.4 Hz) and 64.9 (d, J = 8.8 Hz), 62.5 (d, J = 7.3 Hz), 56.9 (s), 50.7 (d, J = 89.7 Hz), 38.3 (d, J = 2.2 Hz),
29 30 31	23.8 (d, $J = 10.2$ Hz), 23.4 (s), 22.7 (s), 20.5 (s), 16.6 (d, $J = 5.1$ Hz), 15.3 (d, $J = 6.6$ Hz); ³¹ P NMR (CDCl ₃ , 162 MHz) δ 39.92,
32 33 34	39.24, 38.70, 38.66; ESI (m/z) 386.3 [M + H] ⁺ ; HRMS (ESI) Calcd for C ₁₆ H ₃₇ NO ₅ PS 386.2125, found 386.2109.
35 36	Compound 2h . Yield 94%, 2.49 g; colorless oil; $[\alpha]_{D}^{28}$ 20.8 (<i>c</i> 1.0, CHCl ₃); IR (film) 3466, 3195, 2977, 2932, 1771, 1713, 1438,
37 38 39	1396, 1366, 1216, 1060, 958, 872, 722 cm ⁻¹ ; ¹ H NMR (CDCl ₃ , 400 MHz) δ 7.76 (m, 2H), 7.64 (m, 2H), 5.03 (m, 1H), 4.19 (m, 2H),
40 41 42	3.80 (m, 4H), 3.67–3.53 (m, 4H), 1.88 (m, 1H), 1.61 (m, 4H), 1.35 (m, 1H), 1.27 (t, <i>J</i> = 6.8 Hz, 3H), 1.23–1.11 (m, 15H); ¹³ C NMR
43 44	$(CDCl_3, 100 \text{ MHz}) \delta 168.3 \text{ (s)}, 133.9 \text{ (s)}, 132.1 \text{ (s)}, 123.2 \text{ (s)}, 99.6 \text{ (d}, J = 138.6 \text{ Hz}), 66.1 \text{ (d}, J = 10.2 \text{ Hz}) \text{ and } 65.2 \text{ (d}, J = 8.7 \text{ Hz}), 66.1 \text{ (d}, J = 10.2 \text{ Hz}) \text{ and } 65.2 \text{ (d}, J = 8.7 \text{ Hz}), 66.1 \text{ (d}, J = 10.2 \text{ Hz}) \text{ and } 65.2 \text{ (d}, J = 8.7 \text{ Hz}), 66.1 \text{ (d}, J = 10.2 \text{ Hz}) \text{ and } 65.2 \text{ (d}, J = 8.7 \text{ Hz}), 66.1 \text{ (d}, J = 10.2 \text{ Hz}) \text{ (d}, J = 10.2 \text{ Hz}), 66.1 \text{ (d}, J = 10.2 \text{ Hz}) \text{ (d}, J = 10.2 \text{ Hz}), 66.1 \text{ (d}, J = 10.2 \text{ Hz}) \text{ (d}, J = 10.2 \text{ Hz}) \text{ (d}, J = 10.2 \text{ Hz}), 66.1 \text{ (d}, J = 10.2 \text{ Hz}) \text{ (d}, J = 10.2 \text{ Hz}), 66.1 \text{ (d}, J = 10.2 \text{ Hz}) \text{ (d}, J = 10.2 \text{ Hz}), 66.1 \text{ (d}, J = 10.2 \text{ Hz}) \text{ (d}, J = 10.2 \text{ Hz}), 66.1 \text{ (d}, J = 10.2 \text{ Hz}) \text{ (d}, J = 10.2 \text{ Hz}), 66.1 \text{ (d}, J = 10.2 \text{ Hz}) \text{ (d}, J = 10.2 \text{ Hz}), 66.1 \text{ (d}, J = 10.2 \text{ Hz}) \text{ (d}, J = 10.2 \text{ Hz}), 66.1 \text{ (d}, J = 10.2 \text{ Hz}) \text{ (d}, J = 10.2 \text{ Hz}), 66.1 \text{ (d}, J = 10.2 \text{ Hz}) \text{ (d}, J = 10.2 \text{ Hz}), 66.1 \text{ (d}, J = 10.2 \text{ Hz}) \text{ (d}, J = 10.2 \text{ Hz}), 66.1 \text{ (d}, J = 10.2 \text{ Hz}) \text{ (d}, J = 10.2 \text{ Hz}), 66.1 \text{ (d}, J = 10.2 \text{ Hz}) \text{ (d}, J = 10.2 \text{ Hz}), 66.1 \text{ (d}, J = 10.2 \text{ Hz}) \text{ (d}, J = 10.2 \text{ Hz}), 66.1 \text{ (d}, J = 10.2 \text{ Hz}) \text{ (d}, J = 10.2 \text{ Hz}), 66.1 \text{ (d}, J = 10.2 \text{ Hz}) \text{ (d}, J = 10.2 \text{ Hz}), 66.1 \text{ (d}, J = 10.2 \text{ Hz}) \text{ (d}, J = 10.2 \text{ Hz}), 66.1 \text{ (d}, J = 10.2 \text{ Hz}) \text{ (d}, J = 10.2 \text{ Hz}), 66.1 \text{ (d}, J = 10.2 \text{ Hz}) \text{ (d}, J = 10.2 \text{ Hz}), 66.1 \text{ (d}, J = 10.2 \text{ Hz}) \text{ (d}, J = 10.2 \text{ Hz}), 66.1 \text{ (d}, J = 10.2 \text{ Hz}) \text{ (d}, J = 10.2 \text{ Hz}), 66.1 \text{ (d}, J = 10.2 \text{ Hz}), 66.1 \text{ (d}, J = 10.2 \text{ Hz}), 66.1 \text{ (d}, J = 10.2 \text{ Hz}) \text{ (d}, J = 10.2 \text{ Hz}), 66.1 \text{ (d}, J =$
45 46 47	62.6 (d, J = 7.3 Hz), 56.8 (s), 52.3 (d, J = 89.0 Hz), 37.6 (s), 29.3 (s), 28.2 (s), 23.3 (d, J = 9.5 Hz), 22.6 (s), 16.6 (d, J = 4.3 Hz),
48 49 50	15.4 (m); ³¹ P NMR (CDCl ₃ , 162 MHz) δ 39.27, 38.92, 38.39, 38.0; ESI (<i>m/z</i>) 531.5 [M + H] ⁺ ; HRMS (ESI) Calcd for
51 52	C ₂₄ H ₃₉ N ₂ O ₇ PSNa 553.2108, found 553.2104.
53 54 55	Compound 2i . Yield 98%, 1.49 g; colorless oil; $[\alpha]_D^{25}$ 23.5 (<i>c</i> 2.0, CHCl ₃); IR (film) 3448, 3192, 2978, 2919, 1475, 1443, 1390,
56 57 58	1296, 1216, 1163, 1060, 960, 562 cm ⁻¹ ; ¹ H NMR (CDCl ₃ , 400 MHz) δ 5.10 (d, J = 9.6 Hz, 1H), 4.28 (m, 2H), 3.95–3.72 (m, 6H),
58 59 60	2.72 (m, 2H), 2.09 (m, 1H), 2.09 (s, 3H), 1.91 (m, 1H), 1.36 (t, <i>J</i> = 6.8 Hz, 3H), 1.29 (m, 6H), 1.25 (s, 9H); ¹³ C NMR (CDCl ₃ , 100

1	
2 3 4	MHz) δ 99.7 (d, $J = 139.2$ Hz), 66.1 (d, $J = 9.5$ Hz) and 65.1 (d, $J = 8.7$ Hz), 62.7 (d, $J = 7.2$ Hz), 56.8 (s), 51.0 (d, $J = 89.7$ Hz),
5 6 7	30.2 (d, $J = 10.9$ Hz), 29.6 (d, $J = 2.1$ Hz), 22.7 (s), 16.7 (d, $J = 5.1$ Hz), 15.3 (d, $J = 3.7$ Hz), 15.0 (s); ³¹ P NMR (CDCl ₃ , 162 MHz)
8 9	δ 39.12, 38.80, 38.29, 37.95; ESI (<i>m/z</i>) 404.3 [M + H] ⁺ ; Elemental analysis (%) calcd for C ₁₅ H ₃₄ NO ₅ PS ₂ : C 44.65; H 8.49; N 3.47.
10 11 12	Found: C 44.21; H 8.72; N 3.34.
13 14 15	Compound 2j . Yield 64%, 1.34 g; colorless oil; $[\alpha]_D^{26}$ 3.9 (<i>c</i> 1.0 , CHCl ₃); IR (film) 3446, 3184, 3063, 2978, 2929, 1475, 1214,
16 17 18	1166, 1060, 959, 598 cm ⁻¹ ; ¹ H NMR (CDCl ₃ , 400 MHz) δ 7.44–7.19 (m, 5H), 5.03 (m, 1H), 4.28 (m, 2H), 4.10–3.64 (m, 6H), 3.09
19 20	(m, 2H), 1.39–0.92 (m, 18H); ¹³ C NMR (CDCl ₃ , 100 MHz) δ 137.4 (d, J = 11.7 Hz), 129.5 (m), 128.4 (m), 126.7 (m), 99.7 (d, J =
21 22 23	137.8 Hz), 66.2 (m) and 65.2 (d, $J = 8.7$ Hz), 62.9 (m), 56.7 (m), 53.9 (m), 36.0 (d, $J = 4.4$ Hz), 22.4 (m), 16.7 (m), 15.3 (m); ³¹ P
24 25 26	NMR (CDCl ₃ , 162 MHz) δ 66.34, 65.24, 64.93, 64.84; ESI (<i>m</i> / <i>z</i>) 420.3 [M+H] ⁺ ; Elemental analysis (%) calcd for C ₁₉ H ₃₄ NO ₅ PS:
27 28	C 54.40; H 8.17; N 3.34. Found C 54.51; H 8.26; N 2.94.
29 30 31	Compound 21 . Yield 50%, 1.12 g; colorless oil; $[\alpha]_{D}^{21}$ 36.4 (<i>c</i> 1.0 , CHCl ₃); IR (film) 3177, 2978, 2929, 2869, 1476, 1455, 1364,
32 33 34	1217, 1108, 1060, 958, 738, 700 cm ⁻¹ ; ¹ H NMR (CDCl ₃ , 400 MHz) δ 7.40–7.28 (m, 5H), 5.0 (m, 1H), 4.54 (m, 2H), 4.39–3.94 (m,
35 36	4H), 3.93–3.72 (m, 5H), 3.60 (m, 1H), 1.35–1.21 (m, 18H); ¹³ C NMR (CDCl ₃ , 100 MHz) δ for the major isomer: 137.6 (s), 128.4
37 38 39	(s), 128.0 (s), 127.8 (s), 99.8 (d, <i>J</i> = 145.2 Hz), 73.5 (s), 69.0 (s), 66.0 (d, <i>J</i> = 10.9 Hz) and 65.5 (d, <i>J</i> = 8.7 Hz), 62.6 (d, <i>J</i> = 7.3 Hz),
40 41 42	56.6 (s), 52.3 (d, $J = 88.2$ Hz), 22.5 (s), 16.6 (m), 15.4 (m); ³¹ P NMR (CDCl ₃ , 121 MHz) δ 38.26, 38.21, 37.89, 37.33; ESI (<i>m/z</i>)
43 44 45	450.3 $[M + H]^+$; HRMS (ESI) calcd for C ₂₀ H ₃₇ NO ₆ PS 450.2074, found 450.2072.
46 47	Compound (-)- 21 . Yield 88%, 1.98 g; colorless oil; $[\alpha]_{D}^{27}$ -34.4 (<i>c</i> 1.0 , CHCl ₃); IR (film) 3486, 3182, 2978, 2870, 1641, 1476, 1455,
48 49 50	1364, 1301, 1218, 1106, 1058, 959, 739, 700, 560 cm ⁻¹ ; ¹ H NMR (CDCl ₃ , 400 MHz) δ 7.38–7.28 (m, 5H), 5.0 (m, 1H), 4.54 (m,
51 52 53	2H), 4.22 (m, 2H), 4.15–3.71 (m, 7H), 3.60 (m, 1H), 1.35–1.21 (m, 18H); ¹³ C NMR (CDCl ₃ , 100 MHz) δ for the major isomer:
54 55	137.6 (s), 128.3 (s), 127.9 (s), 127.8 (s), 99.7 (d, $J = 145.1$ Hz), 73.4 (s), 68.9 (s), 65.9 (d, $J = 10.2$ Hz) and 65.4 (d, $J = 8.8$ Hz),
56 57 58	62.5 (d, $J = 7.3$ Hz), 56.5 (s), 52.3 (d, $J = 88.3$ Hz), 22.4 (s), 16.5 (m), 15.3 (m); ³¹ P NMR (CDCl ₃ , 162 MHz) δ 37.03, 36.68, 36.13;
59 60	ESI (m/z) 450.5 $[M + H]^+$; HRMS (ESI) calcd for C ₂₀ H ₃₆ NO ₆ PSNa 472.1893, found 472.1896.

2 3 4	Compound 2m . Yield 92%, 2.13 g; colorless oil; $[\alpha]_{D}^{26}$ 29.1 (<i>c</i> 1.0 , CHCl ₃); IR (film) 3478, 2977, 2929, 1455, 1390, 1217, 1060
5 6 7	cm ⁻¹ ; ¹ H NMR (CDCl ₃ , 400 MHz) δ 7.40–7.26 (m, 5H), 5.27–4.67 (m, 1H), 4.62 (m, 1H), 4.48 (m, 1H), 4.31 (m, 1H), 4.26–2.84
8 9	(m, 8H), 1.53–1.12 (m, 21H); ¹³ C NMR (CDCl ₃ , 100 MHz) δ 138.0 (m), 128.1 (m), 127.7 (m), 127.3 (m), 100.6 (m), 77.1 (m), 72.1
10 11 12	(m), 67.3 (m), 64.8 (m), 62.3 (m), 57.1 (m), 22.7 (m), 16.8 (m), 16.3 (m), 15.2 (m); 31 P NMR (CDCl ₃ , 162 MHz) δ 38.37, 37.12,
13 14 15	36.53, 35.58; ESI (m/z) 464.4 $[M + H]^+$; HRMS (MALDI) calcd for C ₂₁ H ₃₈ NO ₆ PSNa 486.2050, found 486.2035.
16 17	Compound 2n . Yield 93%, 2.13 g; sticky yellow oil; $[\alpha]_{D}^{26}$ 4.7 (<i>c</i> 1.0 , CHCl ₃); IR (film) 3244, 2978, 2929, 1456, 1206, 1058, 960,
18 19 20	742 cm ⁻¹ ; ¹ H NMR (CDCl ₃ , 400 MHz) δ 8.43 (s, 1H), 7.65 (m, 1H), 7.35 (d, J = 8.0 Hz , 1H), 7.17 (dt, J_1 = 0.4 Hz, J_2 = 7.2 Hz,
21 22 23	1H), 7.13–7.07 (m, 2H), 4.79 (d, J = 10.4 Hz, 1H), 4.28 (m, 2H), 4.15 (m, 1H), 3.95–3.65 (m, 4H), 3.43 (m, 2H), 3.14 (m, 1H),
24 25	1.38–1.24 (m, 6H), 1.18 (t, J = 7.2 Hz , 3H), 0.97 (s, 9H); ¹³ C NMR (CDCl ₃ , 100 MHz) δ for the major isomer: 136.3 (s), 127.6 (s),
26 27 28	123.6 (s), 122.0 (s), 119.5 (s), 118.9 (s), 111.2 (s), 111.0 (s), 100.2 (d, <i>J</i> = 137.9 Hz), 66.3 (d, <i>J</i> = 8.8 Hz) and 65.3 (d, <i>J</i> = 10.3 Hz),
29 30 31	62.8 (d, $J = 7.3$ Hz), 56.6 (s), 52.7 (d, $J = 88.2$ Hz), 26.1 (d, $J = 3.7$ Hz), 22.3 (s), 16.6 (d, $J = 5.1$ Hz), 15.3 (d, $J = 14.6$ Hz); ³¹ P
32 33	NMR (CDCl ₃ , 121 MHz) δ 39.54, 38.72; ESI (<i>m/z</i>) 459.2 [M + H] ⁺ ; HRMS (ESI) Calcd for C ₂₁ H ₃₅ N ₂ O ₅ PSNa 481.1897, found
34 35 36	481.1913; Elemental analysis (%) calcd for C ₂₁ H ₃₅ N ₂ O ₅ PS: C 55.00; H 7.69; N 6.11. Found C 54.68; H 7.92; N 5.93.
37 38 39	Compound 20 . Yield 96%, 2.16 g; colorless oil; [α] ²⁶ _D 1.4 (<i>c</i> 1.3 , CHCl ₃); IR (film) 3184, 2978, 2931, 1613, 1514, 1456, 1391,
40 41	1248, 1060, 960, 831 cm ⁻¹ ; ¹ H NMR (CDCl ₃ , 400 MHz) δ 7.14 (m, 2H), 6.83 (m, 2H), 5.01 (d, J = 10.4 Hz, 1H), 4.26 (m, 2H),
42 43 44	4.2–3.6 (m, 6H), 3.78 (s, 3H), 3.34–2.76 (m, 2H), 1.39–0.96 (m, 18H); ¹³ C NMR (CDCl ₃ , 100 MHz) δ for the major isomer: 158.5
45 46 47	(s), 130.7 (s), 129.2 (d, J = 11.6 Hz), 113.8 (s), 99.7 (d, J = 138.6 Hz), 66.2 (d, J = 10.3 Hz) and 65.1 (d, J = 8.7 Hz), 62.7 (d, J =
48 49	7.3 Hz), 56.6 (s), 55.3 (s), 54.1 (d, $J = 87.5$ Hz), 35.0 (d, $J = 3.6$ Hz), 22.3 (s), 16.6 (d, $J = 5.1$ Hz), 15.4 (d, $J = 5.9$ Hz); ³¹ P NMR
50 51 52	$(CDCl_3, 162 \text{ MHz}) \delta 36.52, 35.46, 35.25, 35.02; ESI (m/z) 450.4 [M + H]^+; HRMS (ESI) Calcd for C_{20}H_{36}NO_6PSNa 472.1893,$
53 54 55	found 472.1915; Elemental analysis (%) calcd for C ₂₀ H ₃₆ NO ₆ PS: C 53.44; H 8.07; N 3.12. Found C 53.12; H 8.18; N 2.97.
56 57	Compound 2p . Yield 70%, 1.30 g; colorless oil; $[\alpha]_{D}^{25}$ 44.5 (<i>c</i> 0.67, CHCl ₃); IR (film) 3480, 3000, 2931, 2875, 1653, 1475, 1390,
58 59 60	1366, 1213, 1059, 952, 599 cm ⁻¹ ; ¹ H NMR (CDCl ₃ , 300 MHz) δ 5.22–4.74 (m, 1H), 4.76–3.50 (m, 8H), 2.5–2.2 (m, 1H),
	ACS Paragon Plus Environment

1	
2 3 4	1.38–1.26 (m, 24H); ¹³ C NMR (CDCl ₃ , 75 MHz) δ 99.6 (m), 67.7–64.8 (m), 63.4–62.3 (m), 58.4–55.2 (m), 57.2 (s), 30.3–28.2 (m),
5 6 7	23.0–22.9 (m), 20.8 (m), 16.9 (m), 15.4 (m); ³¹ P NMR (CDCl ₃ , 162 MHz) δ 39.87, 38.95, 38.86, 37.70; ESI (<i>m/z</i>) 372.1 [M + H] ⁺ ;
7 8 9	HRMS (MALDI) Calcd for C ₁₅ H ₃₅ NO ₅ PS 372.1968, found 372.1954.
10 11 12	Compound 2q. 2q was prepared from 2e: To 2e (420 mg, 1mmol) was added 10 mL of aqueous ammonia and stirred overnight.
13 14 15	The reaction was extracted by chloroform (20 mL×5), washed with brine and then dried over anhydrous Na ₂ SO ₄ . The crude product
16 17	was purified by column chromatography giving 267 mg colorless oil in 67% yield. $[\alpha]_{D}^{25}$ 40.8 (<i>c</i> 1.0, CHCl ₃); IR (film) 3369, 3196,
18 19 20	2978, 1673, 1213, 1057, 594 cm ⁻¹ ; ¹ H NMR (CDCl ₃ , 400 MHz) δ 6.80 (br, 1H), 6.28 (br, 1H), 5.03 (m, 1H), 4.69–4.41 (m, 1H),
21 22	4.27 (m, 2H), 3.90 (m, 2H), 3.83–3.65 (m, 3H), 2.52 (m, 1H), 2.42 (m, 1H), 2.25 (m, 1H), 2.05 (m, 1H), 1.38–1.25 (m, 18H); ¹³ C
23 24 25	NMR (CDCl ₃ , 100 MHz) δ for the major isomer: 175.2 (s), 99.7 (d, $J = 139.3$ Hz), 66.3 (d, $J = 9.5$ Hz) and 65.7 (d, $J = 9.5$ Hz),
26 27 28	62.9 (d, $J = 7.3$ Hz), 55.8 (s), 51.6 (d, $J = 91.1$ Hz), 31.9 (d, $J = 8.0$ Hz), 26.1 (s), 22.6 (s), 16.6 (m), 15.3 (m); ³¹ P NMR (CDCl ₃ ,
29 30	162 MHz) δ 39.22, 38.60, 38.44, 38.15; ESI (<i>m/z</i>) 401.4 [M + H] ⁺ ; HRMS (ESI) Calcd for C ₁₅ H ₃₄ N ₂ O ₆ PS 401.1870, found
31 32 33	401.1878.
34 35 36	Compound 2r. 2r was prepared from 2e: To 2e (414 mg, 1mmol) in 5 mL of MeOH, 5 mL of BnNH ₂ was added and stirred for 2
37 38 39	days. The solution was concentrated and then purified by column chromatography with DCM: MeOH (NH ₃) (50:1), giving 467 mg
40 41	colorless oil in 95% yield. $[\alpha]_{D}^{25}$ 33.9 (c 1.0, CHCl ₃); IR (film) 3281, 2977, 1655, 1546, 1215, 1058, 699 cm ⁻¹ ; ¹ H NMR (CDCl ₃ ,
42 43 44	400 MHz) δ 7.33-7.23 (m, 5H), 6.89-6.70 (m, 1H), 5.03 (m, 1H), 4.41 (m, 2H), 4.23 (m, 2H), 4.11 (m, 1H), 3.87 (m, 2H),
45 46	$3.80-3.56$ (m, 3H), 2.52 (m, 1H), 2.42 (m, 1H), 2.26 (m, 1H), 2.09 (m, 1H), $1.35-1.22$ (m, 18H); 13 C NMR (CDCl ₃ , 100 MHz) δ
47 48 49	for the major isomer: 172.1 (s), 138.5 (s), 128.6 (s), 127.7 (s), 127.3 (s), 99.9 (d, $J = 140.0 \text{ Hz}$), 66.3 (d, $J = 9.5 \text{ Hz}$) and 65.7 (d, $J = 140.0 \text{ Hz}$), 66.3 (d, $J = 140$
50 51 52	9.5 Hz), 62.8 (d, J = 7.3 Hz), 56.8 (s), 51.4 (d, J = 91.2 Hz), 43.4 (s), 32.8 (d, J = 7.3 Hz), 26.8 (s), 22.6 (s), 16.6 (d, J = 5.1 Hz),
53 54	15.3 (d, $J = 5.8$ Hz); ³¹ P NMR (CDCl ₃ , 162 MHz) δ 38.97, 38.30, 38.25, 37.64; ESI (m/z) 491.5 [M + H] ⁺ ; HRMS (ESI) Calcd for
55 56 57	C ₂₂ H ₄₀ N ₂ O ₆ PS 491.2339, found 491.2347.
58 59 60	Procedure for preparation of 3.

To 0.5 mmol phosphinate 2, 2.5 mL of 4 M HCl in MeOH was added at room temperature. After 75 minutes, the reaction monitored by TLC was completed. The solution was concentrated under vacuum, and then dissolved in DCM. MeOH saturated with ammonia was added to neutralize the residual acid. The crude product was purified by silica gel column chromatography with DCM/MeOH (NH₃) (50:1) to give phosphinate 3. **Compound 3b**. Yield >99%, 206 mg; colorless oil; $[\alpha]_{D}^{30}$ 1.0 (*c* 0.97, CHCl₃); IR (film) 3595, 3462, 3384, 2977, 2932, 1771, 1716, 1440, 1397, 1370, 1213, 1034, 722 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 7.83 (m, 2H), 7.72 (m, 2H), 4.88 (d, J = 7.2 Hz, 1H), 4.21 (m, 2H), 3.87 (m, 2H), 3.71 (m, 4H), 3.10 (m, 1H), 2.06 (m, 1H), 1.91 (m, 1H), 1.82 (m, 1H), 1.53 (m, 1H), 1.42 (m, 2H), 1.33 (m, 1H), 1.42 (m, 2H), 1.33 (m, 1H), 1.42 (m, 2H), 1.42 (m, 2H), 1.42 (m, 2H), 1.42 (m, 2H), 1.44 (m 3H), 1.24 (m, 6H); ¹³C NMR (CDCl₃, 100 MHz) δ for the major isomer: 168.2 (s), 133.8 (s), 132.0 (s), 123.0 (s), 100.6 (d, J = 132.0 Hz), 65.4 (m), 61.7 (m), 48.6 (d, J = 91.1 Hz), 37.5 (s), 27.3 (d, J = 9.5 Hz), 25.2 (d, J = 11.7 Hz), 16.6 (m), 15.1 (m); ³¹P NMR (CDCl₃, 162 MHz) δ 41.44, 41.14; MS (ESI) m/z (%) 413.3 [M + H]⁺; HRMS (ESI) Calcd for C₁₉H₃₀N₂O₆P 413.1836, found 413.1852. Analysis of ³¹P NMR and HPLC spectra of (S)-Mosher's derivate **6b**: retention time=148.6 min, 170.6 min (89.9:10.1). **Compound 3c**. Yield 90%, 162 mg; colorless oil; [α]³⁰_D -50.3 (*c* 1.0, CHCl₃); IR (film) 3370, 3292, 1221, 1109, 1057, 1035, 701 cm^{-1} ; ¹H NMR (CDCl₃, 400 MHz) δ 7.34–7.22 (m, 5H), 4.87 (d, J = 7.2 Hz, 1H), 4.21 (m, 2H), 3.85 (m, 2H), 3.74 (s, 2H), 3.66 (m, 2H), 3.74 (s, 2H), 3.66 (m, 2H), 3.74 (s, 2H), 3.66 (m, 2H), 3.74 (s, 2H), 3.19 (m, 1H), 3.06 (m, 1H), 2.56 (m, 1H), 1.31 (t, J = 6.8 Hz, 3H), 1.23 (m, 6H); ¹³C NMR (CDCl₃, 100 MHz) δ 138.2 (s), 128.9 (s), 128.6 (s), 127.1 (s), 100.4 (d, J = 136.4 Hz), 65.7 (d, J = 8.0 Hz) and 65.4 (d, J = 8.7 Hz), 62.1 (d, J = 7.3 Hz), 48.8 (d, J = 136.4 Hz), 65.7 (d, J = 8.0 Hz) and 65.4 (d, J = 8.7 Hz), 62.1 (d, J = 7.3 Hz), 48.8 (d, J = 136.4 Hz), 65.7 (d, J = 8.0 Hz) and 65.4 (d, J = 8.7 Hz), 62.1 (d, J = 7.3 Hz), 48.8 (d, J = 136.4 Hz), 65.7 (d, J = 8.0 Hz) and 65.4 (d, J = 8.7 Hz), 62.1 (d, J = 7.3 Hz), 48.8 (d, J = 136.4 Hz), 65.7 (d, J = 8.0 Hz) and 65.4 (d, J = 8.7 Hz), 62.1 (d, J = 7.3 Hz), 48.8 (d, J = 136.4 Hz), 65.7 (d, J = 8.0 Hz) and 65.4 (d, J = 8.7 Hz), 62.1 (d, J = 7.3 Hz), 48.8 (d, J = 136.4 Hz), 65.7 (d, J = 8.0 Hz) and 65.4 (d, J = 8.7 Hz), 65.7 (d, J = 136.4 Hz), 65.7 (d, J = 8.0 Hz) and 65.4 (d, J = 8.7 Hz), 65.7 (d, J = 136.4 Hz), 65.7 (d, J = 8.0 Hz) and 65.4 (d, J = 8.7 Hz), 65.7 (d, J = 136.4 Hz), 65.7 (d, J = 8.0 Hz) and 65.4 (d, J = 8.7 Hz), 65.7 (d, J = 136.4 Hz), 65.7 = 93.3 Hz), 36.5 (s), 33.6 (d, J = 3.7 Hz), 16.7 (d, J = 4.3 Hz), 15.3 (d, J = 5.1 Hz); ³¹P NMR (CDCl₃, 162 MHz) δ 39.84; MS (ESI) m/z (%) 362.1 [M + H]⁺; HRMS (ESI) Calcd for C₁₆H₂₈NO₄PSNa 384.1369, found 384.1383; Elemental analysis (%) calcd for C₁₆H₂₈NO₄PS: C 53.17, H 7.81, N 3.88. Found C 52.88, H 7.79, N 3.95. **Compound 3d.** Yield 82%, 184 mg; colorless oil; $[\alpha]_{2^4}^{p_4}$ -16.5 (*c* 1, CHCl₃); IR (film) 3063, 3039, 2977, 2928, 1477, 1448, 1295, 1216, 1108, 1057, 1034, 955, 744, 540 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 7.74 (d, J = 7.6 Hz, 2H), 7.70 (d, J = 7.2 Hz, 1H), 7.66 (d, J = 7.2 Hz, 1H), 7.38 (t, J = 7.2 Hz, 2H), 7.31 (t, J = 7.6 Hz, 2H), 4.89 (t, J = 7.6 Hz, 1H), 4.22 (m, 2H), 4.13 (t, J = 6.0 Hz, 1H), 4.13 (t, J = 6.0 Hz, 1Hz, 1Hz,3.86 (m, 2H), 3.68 (m, 2H), 3.27–3.02 (m, 4H), 2.65 (m, 1H), 1.70 (s, 2H), 1.32 (m, 3H), 1.23 (m, 6H); ¹³C NMR (CDCl₃, 100

1	
2 3 4	MHz) δ for the major isomer: 145.9 (s), 141.1 (d, $J = 3.6$ Hz), 127.6 (s), 127.1 (s), 124.8 (d, $J = 18.3$ Hz), 119.9 (s), 100.5 (d, $J = 18.3$ Hz), 100.5
5 6 7	137.1 Hz), 65.8 (m), 62.3 (m), 48.6 (d, $J = 93.3$ Hz), 46.9 (s), 36.7 (s), 35.2 (s), 16.8 (d, $J = 5.1$ Hz), 15.3 (s); ³¹ P NMR (CDCl ₃ , 162) (CDCl ₃ ,
8 9	MHz) δ 40.28, 39.89; MS (ESI) <i>m/z</i> (%) 450.3 [M + H] ⁺ ; HRMS (ESI) Calcd for C ₂₃ H ₃₃ NO ₄ PS 450.1862, found 450.1845.
10 11 12	Compound 3e . Yield 65%, 106 mg; colorless oil; $[\alpha]_{D}^{24}$ -2.5 (<i>c</i> 1.0, CHCl ₃); IR (film) 3389, 2979, 2933, 2904, 1732, 1446, 1208,
13 14	1056, 1034, 956 cm ⁻¹ ; ¹ H NMR (CDCl ₃ , 400 MHz) δ 4.86 (d, J = 7.2 Hz, 1H), 4.23 (m, 2H), 4.13 (q, J = 7.2 Hz, 2H), 3.88 (m, 2H),
15 16 17	3.71 (m, 2H), 3.08 (m, 1H), 2.62 (m, 1H), 2.51 (m, 1H), 2.20 (m, 1H), 1.80 (m, 1H), 1.64 (br, 2H), 1.35 (t, <i>J</i> = 6.8 Hz, 3H), 1.26 (m,
18 19 20	9H); ¹³ C NMR (CDCl ₃ , 100 MHz) δ for the major isomer: 173.4 (s), 101.0 (d, $J = 131.2$ Hz), 65.8 (d, $J = 8.0$ Hz) and 65.6 (d, $J = 131.2$ Hz)
21 22	9.7 Hz), 61.9 (d, <i>J</i> = 7.3 Hz), 60.4 (s), 48.6 (d, <i>J</i> = 89.7 Hz), 31.0 (d, <i>J</i> = 11.7 Hz), 25.5 (d, <i>J</i> = 3.6 Hz), 16.7 (d, <i>J</i> = 5.1 Hz), 15.2 (d,
23 24 25	$J = 2.9$ Hz), 14.2 (s); ³¹ P NMR (CDCl ₃ , 121 MHz) δ 42.32, 42.03; MS (ESI) m/z (%) 326.2 [M + H] ⁺ ; HRMS (ESI) Calcd for
26 27 28	$C_{13}H_{29}NO_6P$ 326.1727, found 326.1717. Analysis of the ³¹ P NMR and ¹⁹ F NMR spectra of the (<i>S</i>)-Mosher's derivate 6e : dr = 88:12.
29 30	Compound 3f . Yield 82%, 115 mg; colorless oil; $[\alpha]_{D}^{24}$ 10.4 (<i>c</i> 1.0, CHCl ₃); IR (film) 3391, 2974, 2932, 2876, 1213, 1112, 1058,
31 32 33	953 cm ⁻¹ ; ¹ H NMR (CD ₃ OD, 400 MHz) δ 4.99 (d, J = 6.8 Hz, 1H), 4.24 (m, 2H), 4.92 (m, 2H), 3.74 (m, 2H), 3.13 (dd, J_1 = 4.0 Hz,
34 35 36	<i>J</i> ₂ = 6.8 Hz, 1H), 1.93 (m, 1H), 1.76 (m, 1H), 1.37 (t, <i>J</i> = 7.2 Hz, 3H), 1.28 (m, 7H), 1.07 (d, <i>J</i> = 36.4 Hz, 3H), 0.96 (t, <i>J</i> = 7.2 Hz, 3H), 0.96 (t, J = 7.2 Hz, 3H
37 38	3H); ¹³ C NMR (CD ₃ OD, 100 MHz) δ 100.7 (d, J = 181.2 Hz), 66.0 (d, J = 12.1 Hz) and 65.8 (d, J = 11.6 Hz), 62.0 (d, J = 10.2 Hz),
39 40 41	52.4 (d, $J = 121.5$ Hz), 35.6 (s), 24.1 (s), 15.6 (s), 15.5 (d, $J = 5.9$ Hz), 14.1 (d, $J = 20.0$ Hz), 10.8 (s); ³¹ P NMR (CD ₃ OD, 121 MHz)
42 43 44	δ 44.10, 43.80; MS (ESI) <i>m/z</i> (%) 282.2 [M + H] ⁺ ; HRMS (ESI) Calcd for C ₁₂ H ₂₉ NO ₄ P 282.1829, found 282.1829.
45 46	Compound 3g . Yield 90%, 126 mg; colorless oil; $[\alpha]_{D}^{26}$ -5.8 (<i>c</i> 1.0, CHCl ₃); IR (film) 3380, 2957, 2931, 1389, 1204, 1113, 1057,
47 48 49	825 cm ⁻¹ ; ¹ H NMR (CDCl ₃ , 400 MHz) δ 4.88 (d, J = 7.6 Hz, 1H), 4.23 (m, 2H), 3.89 (m, 2H), 3.71 (m, 2H), 3.16 (m, 1H), 1.96 (m, 1H), 1.96 (m, 2H), 3.16 (m, 2H),
50 51 52	1H), 1.56 (m, 1H), 1.46 (m, 1H), 1.35 (t, <i>J</i> = 7.2 Hz, 3H), 1.27 (t, <i>J</i> = 7.2 Hz, 6H), 0.97 (d, <i>J</i> = 6.8 Hz, 3H), 0.90 (d, <i>J</i> = 6.4 Hz, 3H);
53 54	¹³ C NMR (CDCl ₃ , 100 MHz) δ 100.7 (d, J = 131.3 Hz), 65.7 (d, J = 7.3 Hz) and 65.3 (d, J = 8.8 Hz), 61.8 (d, J = 7.3 Hz), 46.8 (d, J = 7.3 Hz), 46.8 (d, J = 7.3 Hz), 46.8 (d, J
55 56 57	J = 91.9 Hz), 38.5 (s), 23.9 (d, $J = 12.4$ Hz), 23.6 (s) and 20.8 (s), 16.7 (d, $J = 4.4$ Hz), 15.2 (d, $J = 5.8$ Hz); ³¹ P NMR (CDCl ₃ , 162
58 59 60	MHz) δ 42.05; MS (ESI) <i>m/z</i> (%) 282.3 [M + H] ⁺ ; HRMS (ESI) Calcd for C ₁₂ H ₂₉ NO ₄ P 282.1829, found 282.1831.
00	ACS Paragon Plus Environment

2 3 4	Compound 3h . Yield 79%, 168 mg; colorless oil; $[\alpha]_D^{26}$ -10.9 (<i>c</i> 1.8, CHCl ₃); IR (film) 3237, 2976, 2931, 2866, 1771, 1713, 1397,
5 6 7	1120, 1056, 722 cm ⁻¹ ; ¹ H NMR (CDCl ₃ , 400 MHz) δ 7.84 (dd, J_1 = 3.2 Hz, J_2 = 5.2 Hz, 2H), 7.71 (dd, J_1 = 2.8 Hz, J_2 = 5.2 Hz,
8 9	2H), 4.86 (d, <i>J</i> = 7.2 Hz, 1H), 4.21 (m, 2H), 3.87 (m, 2H), 3.71 (m, 4H), 3.04 (m, 1H), 1.89 (m, 1H), 1.78–1.68 (m, 3H), 1.47 (m,
10 11 12	2H), 1.33 (m, 3H), 1.26 (m, 6H); ¹³ C NMR (CDCl ₃ , 100 MHz) δ for the major isomer: 168.4 (s), 133.9 (s), 132.2 (s), 123.2 (s),
13 14 15	100.9 (d, <i>J</i> = 131.2 Hz), 65.7 (d, <i>J</i> = 8.1 Hz) and 65.6 (d, <i>J</i> = 8.8 Hz), 61.8 (m), 48.9 (d, <i>J</i> = 91.1 Hz), 37.8 (s), 29.6 (d, <i>J</i> = 6.6 Hz),
16 17 18	28.4 (s), 23.6 (d, $J = 11.6$ Hz), 16.7 (d, $J = 4.4$ Hz), 15.3 (m); ³¹ P NMR (CDCl ₃ , 162 MHz) δ 40.96, 40.26; MS (ESI) m/z (%) 427.5
19 20	$[M + H]^+$; HRMS (ESI) Calcd for C ₂₀ H ₃₂ N ₂ O ₆ P 427.1992, found 427.2012.
21 22 23	Compound 3i . Yield 79%, 118 mg; colorless oil; $[\alpha]_{D}^{26}$ -8.8 (<i>c</i> 1.0, CHCl ₃); IR (film) 3983, 2977, 2919, 1633, 1444, 1205, 1109,
24 25 26	1058, 957 cm ⁻¹ ; ¹ H NMR (CDCl ₃ , 400 MHz) δ 4.87 (m, 1H), 4.23 (m, 2H), 3.88 (m, 2H), 3.70 (m, 2H), 3.38 (m, 1H), 2.80 (m, 1H),
27 28 29	2.68 (m, 1H), 2.16 (m, 1H), 2.11 (s, 3H), 1.76 (m, 1H), 1.35 (m, 3H), 1.27 (t, $J = 7.2$ Hz, 6H); ¹³ C NMR (CDCl ₃ , 100 MHz) δ for
30 31	the major isomer: 101.0 (d, $J = 132.0$ Hz), 65.8 (d, $J = 8.0$ Hz) and 65.6 (d, $J = 8.8$ Hz), 61.9 (d, $J = 8.0$ Hz), 47.7 (d, $J = 90.4$ Hz),
32 33 34	30.8 (d, $J = 13.1$ Hz), 29.40 (s), 29.37 (s), 16.8 (d, $J = 5.1$ Hz), 15.2 (m); ³¹ P NMR (CDCl ₃ , 121 MHz) δ 42.78, 42.55; MS (ESI) m/z
35 36 27	(%) 300.3 $[M + H]^+$; HRMS (MALDI) Calcd for C ₁₁ H ₂₆ NO ₄ PSNa 322.1212, found 322.1212.
37 38 39	Compound 3j . Yield >99%, 158 mg; light yellow oil; $[\alpha]_{D}^{26}$ -9.6 (<i>c</i> 1.0, CHCl ₃); IR (film) 3378, 2977, 2929, 1454, 1217, 1111,
40 41 42	1057, 953, 700 cm ⁻¹ ; ¹ H NMR (CDCl ₃ , 400 MHz) δ 7.32 (m, 2H), 7.27–7.22 (m, 3H), 4.84 (m, 1H), 4.26 (m, 2H), 3.89 (m, 2H),
43 44	3.69 (m, 2H), 3.34 (m, 1H), 3.29 (m, 1H), 2.69 (m, 1H), 2.68 (m, 1H), 1.35 (t, $J = 6.8$ Hz, 3H), 1.27 (m, 6H); ¹³ C NMR (CDCl ₃ ,
45 46 47	100 MHz) δ for the major isomer: 138.2 (d, $J = 13.2$ Hz), 129.4 (s), 128.6 (s), 126.6 (s), 100.7 (d, $J = 136.3$ Hz), 66.1 (d, $J = 8.0$ Hz)
48 49 50	and 65.6 (d, $J = 9.4$ Hz), 62.1 (d, $J = 7.3$ Hz), 50.2 (d, $J = 98.4$ Hz), 36.6 (s), 16.8 (d, $J = 5.1$ Hz), 15.3 (d, $J = 2.9$ Hz); ³¹ P NMR
51 52 53	(CDCl ₃ , 162 MHz) δ 41.62, 41.22; MS (ESI) <i>m/z</i> (%) 316.3 [M + H] ⁺ ; HRMS (ESI) Calcd for C ₁₅ H ₂₇ NO ₄ P 316.1672, found
54 55	316.1673.
56 57 58	Compound 3k . Yield 80%, 106 mg; colorless oil; $[\alpha]_{D}^{25}$ -1.8 (<i>c</i> 1.0, CHCl ₃); IR (film) 3444, 2976, 2932, 2876, 1445, 1210, 1108,
59 60	1059, 958, 540 cm ⁻¹ ; ¹ H NMR (CDCl ₃ , 400 MHz) δ 4.87 (m, 1H), 4.24 (m, 2H), 3.88 (m, 2H), 3.72 (m, 2H), 3.43 (m, 1H), 3.03 (m,

2 3 4	1H), 2.91 (m, 1H), 2.10–2.01 (m, 3H), 1.85 (m, 1H), 1.73 (m, 1H), 1.34 (t, $J = 6.8$ Hz, 3H), 1.26 (t, $J = 7.2$ Hz, 6H); ¹³ C NMR
5 6 7	$(CDCl_3, 100 \text{ MHz}) \delta$ for the major isomer: 100.3 (d, $J = 140.1 \text{ Hz}$), 65.5 (m), 62.5 (d, $J = 7.3 \text{ Hz}$), 53.6 (d, $J = 101.3 \text{ Hz}$), 47.4 (d, J = 101.3 \text{ Hz}), 47.4 (d, J = 101.3 \text{ Hz})
8 9	= 7.3 Hz), 25.6 (s), 25.5 (m), 16.6 (d, J = 5.1 Hz), 15.2 (d, J = 5.8 Hz); ³¹ P NMR (CDCl ₃ , 121 MHz) δ 43.38, 42.90; MS (ESI) m/z
10 11 12	(%) 266.6 $[M + H]^+$; HRMS (ESI) Calcd for C ₁₁ H ₂₅ NO ₄ P 266.1516, found 266.1528.
13 14 15	Compound 31 . Yield >99%, 173 mg; light yellow oil; $[\alpha]_{D}^{26}$ 0.44 (<i>c</i> 1.0, CHCl ₃); IR (film) 3453, 2977, 2929, 2870, 1478, 1454,
16 17	1212, 1106, 1068, 1035, 956, 740, 700, 556 cm ⁻¹ ; ¹ H NMR (CDCl ₃ , 400 MHz) δ 7.34–7.27 (m, 5H), 4.83 (m, 1H), 4.55 (m, 2H),
18 19 20	4.21 (m, 2H), 3.80 (m, 4H), 3.62 (m, 2H), 3.40 (m, 1H), 1.30 (m, 3H), 1.22 (m, 6H); 13 C NMR (CDCl ₃ , 100 MHz) δ for the major
21 22 23	isomer: 137.8 (s), 128.4 (s), 127.9 (s), 127.8 (s), 101.0 (d, J = 137.1 Hz), 73.5 (s), 70.0 (d, J = 19.6 Hz), 65.8 (m), 62.2 (m), 49.8 (d, J = 19.6 Hz), 65.8 (m), 62.2 (m), 49.8 (d, J = 19.6 Hz), 65.8 (m), 62.2 (m), 49.8 (d, J = 19.6 Hz), 65.8 (m), 65.8 (m
24 25	$J = 91.1$ Hz), 16.7 (m), 15.2 (m); ³¹ P NMR (CDCl ₃ , 162 MHz) δ 40.18, 39.95; MS (ESI) m/z (%) 346.3 [M + H] ⁺ ; HRMS (MALDI)
26 27 28	Calcd for $C_{16}H_{29}NO_5P$ 346.1775, found 346.1773. Analysis of the ¹⁹ F NMR and ³¹ P NMR spectra of the (S)-Mosher's derivative 61 :
29 30 31	dr = 66.0:34.0.
32 33	Compound (-)- 31 . Yield >99%, 173 mg; light yellow oil; $[\alpha]_{D}^{27}$ 0.21 (<i>c</i> 1.0, CHCl ₃); IR (film) 3453, 3385, 2988, 2871, 1641, 1604,
34 35 36	1454, 1212, 1106, 1058, 1034, 740, 700 cm ⁻¹ ; ¹ H NMR (CDCl ₃ , 400 MHz) δ 7.33–7.28 (m, 5H), 4.83 (m, 1H), 4.54 (m, 2H), 4.21
37 38 39	(m, 2H), 3.80 (m, 4H), 3.60 (m, 2H), 3.40 (m, 1H), 1.29 (m, 3H), 1.21 (m, 6H); 13 C NMR (CDCl ₃ , 100 MHz) δ for the major
40 41	isomer: 137.8 (s), 128.3 (s), 127.8 (s), 127.7 (s), 100.9 (d, $J = 136.4$ Hz), 73.4 (s), 69.9 (d, $J = 2.9$ Hz), 65.6 (m), 61.9 (d, $J = 6.6$
42 43 44	Hz), 49.7 (d, $J = 91.9$ Hz), 16.6 (m), 15.1 (m); ³¹ P NMR (CDCl ₃ , 162 MHz) δ 40.05, 39.80 (1:0.8); MS (ESI) m/z (%) 346.3 [M +
45 46 47	H] ⁺ ; HRMS (MALDI) Calcd for $C_{16}H_{29}NO_5P$ 346.1778, found 346.1787. Analysis of the ¹⁹ F NMR and ³¹ P NMR spectra of the
48 49	(S)-Mosher's derivative (-)- 61 : dr = 68.7:31.2.
50 51 52	Compound 3m. Yield 96%, 172 mg; colorless oil; the major isomer had a yield of about 45%, and it could be separated as single
53 54 55	isomer with the following data: $[\alpha]_{p}^{23}$ -5.9 (c 1.0, CHCl ₃); IR (film) 3455, 3389, 3310, 2977, 2930, 2898, 1606, 1454, 1392, 1219,
56 57	1034, 557 cm ⁻¹ ; ¹ H NMR (CDCl ₃ , 400 MHz) δ 7.38–7.26 (m, 5H), 4.82 (d, J = 7.2 Hz, 1H), 4.64 (d, J = 10.8 Hz, 1H), 4.49 (d, J =
58 59 60	10.8 Hz, 1H), 4.16 (m, 1H), 4.08 (m, 2H), 3.85 (m, 2H), 3.64 (m, 2H), 3.15 (dd, $J_1 = 7.2$ Hz, $J_2 = 3.2$ Hz, 1H), 1.36 (dd, $J_1 = 6.0$ Hz,
	ACS Paragon Plus Environment

 $J_2 = 0.8$ Hz, 3H), 1.23 (dt, $J_1 = 2.8$ Hz, $J_2 = 7.2$ Hz, 6H), 1.20 (t, J = 7.2 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 138.4 (s), 128.3 (s), 128.0 (s), 127.6 (s), 100.8 (d, J = 137.8 Hz), 72.9 (s), 71.0 (s), 65.5 (d, J = 8.8 Hz) and 65.3 (d, J = 8.7 Hz), 61.8 (d, J = 6.6 Hz), 54.4 (d, J = 91.1 Hz), 16.5 (d, J = 5.1 Hz), 16.3 (d, J = 8.8 Hz), 15.3 (s); ³¹P NMR (CDCl₃, 162 MHz) δ 40.14; MS (ESI) m/z (%) 360.2 $[M + H]^+$; HRMS (MALDI) Calcd for C₁₇H₃₀NO₅PNa 382.1754, found 382.1746. Analysis of the ¹H NMR spectra of the (S)-Mosher's and (R)-Mosher's derivatives of 5m indicated the absolute configuration of (1R). But the configuration of the phosphorus atom could not be confirmed. **Compound 3n**. Yield 74%, 131 mg; light yellow oil; $[\alpha]_{p}^{2s}$ -13.7 (c 0.56, CHCl₃); IR (film) 3399, 3241, 2977, 1633, 1205, 1102, 1056, 1034, 742 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 8.45 (br, 1H), 7.64 (m, 1H), 7.37 (d, J = 8.0 Hz, 1H), 7.17 (m, 2H), 7.11 (m, 1H), 4.90–4.77 (m, 1H), 4.27 (m, 2H), 3.85 (m, 2H), 3.77–3.49 (m, 3H), 3.41 (m, 1H), 2.95 (m, 1H), 2.39 (br, 2H), 1.36 (m, 3H), 1.28-1.21 (m, 6H); ¹³C NMR (CDCl₃, 100 MHz) δ 136.5 (s), 133.9 (s), 127.5 (d, J = 37.9 Hz), 123.6 (s), 122.1 (s), 119.5 (s), 118.9 (s), 111.4 (s), 100.7 (d, J = 134.9 Hz), 65.9 (d, J = 8.0 Hz) and 65.5 (d, J = 8.8 Hz), 62.3 (d, J = 7.3 Hz), 49.1 (d, J = 94.8 Hz), 26.2 (s), 16.8 (m), 15.3 (m); ³¹P NMR (CDCl₃, 162 MHz) δ 41.23, 40.89; MS (ESI) m/z (%) 355.1 [M + H]⁺; HRMS (MALDI) Calcd for C₁₇H₂₇N₂O₄PNa 377.1601, found 377.1599. Analysis of the ¹⁹F NMR and ³¹P NMR spectra of the (S)-Mosher's derivative 6n indicated the dr value was 94.8:5.2.

Compound 3p. Yield 98%, 131 mg; colorless oil; $[\alpha]_{D}^{26}$ 3.9 (*c* 1.2, CHCl₃); IR (film) 3390, 2975, 2931, 1208, 1113, 1057, 952, 551 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 4.87 (m, 1H), 4.23 (m, 2H), 3.89 (m, 2H), 3.71 (m, 2H), 3.0 (m, 1H), 2.25 (m, 1H), 1.34 (t, *J* = 6.8 Hz, 3H), 1.26 (m, 6H), 1.08–1.0 (m, 6H); ¹³C NMR (CDCl₃, 100 MHz) δ 100.9 (d, *J* = 131.3 Hz), 65.6 (m), 61.6 (d, *J* = 7.3 Hz), 53.4 (d, *J* = 90.4 Hz), 27.7 (m), 20.8 (m), 17.0 (m), 15.3 (m); ³¹P NMR (CDCl₃, 162 MHz) δ 42.32, 41.82; MS (ESI) *m/z* (%) 268.3 [M + H]⁺; HRMS (ESI) Calcd for C₁₁H₂₇NO₄P 268.1672, found 268.1674. Analysis of the ¹H NMR, ¹⁹F NMR and ³¹P NMR spectra of the (*S*)-Mosher's derivative **6p** indicated the dr value was >95:5.

Compound 3q. 3q was prepared from 2q by the conditions of 4 M HCl/MeOH in a yield of 66% or from 3e as the following procedure: 3e (34 mg, 0.1 mmol) dissolved in 10 mL of MeOH which was previously saturated with NH₃ at room temperature. The

1
2
2
3
4
5
6
7
۰ ۵
0
9
10
11
12
13
1/
14
15
16
17
18
19
20
20 04
2 3 4 5 6 7 8 9 10 1 2 3 14 5 6 7 8 9 10 1 2 3 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 3 4 5 6 7 8 9 10 1 2 3 3 4 5 6 7 8 9 10 1 2 3 3 4 5 6 7 8 10 1 2 3 3 4 5 6 7 8 10 1 2 3 1 2 3 4 5 6 7 8 10 1 2 3 1 2 3 3 4 5 6 7 8 10 1 2 3 1 2 3 3 4 5 6 7 8 10 1 2 3 1 2 3 1 2 3 1 2 3 1 3 3 3 3 3 3 3
22
23
24
25
26
20
21
28
29
30
31
22
32
33
34
35
36
37
20
38
39
40
41
42
43
43 44
45
46
47
48
49
49 50
51
52
53
54
55
55
56
57 58
58
59
60

/	
2 3 4	reaction was stirred overnight. Then the solution was concentrated to give 30 mg colorless oil in quantitative yield. $[\alpha]_{D}^{28}$ 10.4 (<i>c</i> 1.0,
5	CHCl ₃); IR (film) 3434, 3234, 2979, 1699, 1209, 1106, 1056, 544 cm ⁻¹ ; ¹ H NMR (CDCl ₃ , 400 MHz) δ 6.12–6.05 (m, 1H), 4.81 (m,
, 3 9	1H), 4.23 (m, 2H), 3.98 (m, 1H), 3.87 (m, 2H), 3.71 (m, 2H), 2.55–2.30 (m, 4H), 1.35 (m, 3H), 1.28 (m, 6H); ¹³ C NMR (CDCl ₃ ,
10 11 12	100 MHz) δ for the major isomer: 177.9 (d, $J = 3.7$ Hz), 101.2 (d, $J = 140.0$ Hz), 66.2 (m), 62.6 (d, $J = 7.3$ Hz), 49.6 (d, $J = 100.6$
13 14	Hz), 29.2 (d, $J = 2.2$ Hz), 20.4 (d, $J = 3.7$ Hz), 16.7 (d, $J = 5.1$ Hz), 15.2 (d, $J = 4.4$ Hz); ³¹ P NMR (CDCl ₃ , 162 MHz) δ 38.28,
15 16 17	39.10; MS (ESI) m/z (%) 302.2 [M + Na] ⁺ ; HRMS (ESI) Calcd for C ₁₁ H ₂₂ NO ₅ PNa 302.1128, found 302.1134.
18 19 20	Compound 3r . 3r was prepared by the reaction of 2r with 2.3 M HCl in EtOAc instead of 4 M HCl in MeOH. Yield 39%, 73 mg;
21 22 23	colorless oil; $[\alpha]_{D}^{26}$ 2.6 (<i>c</i> 1.0, CHCl ₃); IR (film) 3282, 2977, 2930, 1657, 1548, 1206, 1056, 956, 699 cm ⁻¹ ; ¹ H NMR (CDCl ₃ , 400
24 25	MHz) δ 7.33–7.23 (m, 5H), 6.80 (br, 1H), 4.84 (m, 1H), 4.41 (d, <i>J</i> = 5.6 Hz, 2H), 4.18 (m, 2H), 3.85 (m, 2H), 3.68 (m, 2H), 3.08 (m,
26 27 28	1H), 2.53 (m, 1H), 2.44 (m, 1H), 2.19 (m, 1H), 1.85 (m, 1H), 1.32 (t, $J = 6.8$ Hz, 3H), 1.24 (t, $J = 6.8$ Hz, 6H); ¹³ C NMR (CDCl ₃ ,
29 30	100 MHz) δ 172.5 (d, J = 3.6 Hz), 138.5 (s), 128.6 (s), 127.7 (s), 127.3 (s), 100.8 (d, J = 133.4 Hz), 65.8 (m), 62.0 (m), 48.4 (d, J =
31 32 33	90.4 Hz), 43.5 (s), 33.2 (d, $J = 10.2$ Hz), 26.6 (d, $J = 3.0$ Hz), 16.7 (d, $J = 4.4$ Hz), 15.3 (d, $J = 3.7$ Hz); ³¹ P NMR (CDCl ₃ , 162 MHz)
34 35 36	δ 41.3; MS (ESI) <i>m/z</i> (%) 387.5 [M + H] ⁺ ; HRMS (ESI) Calcd for C ₁₈ H ₃₂ N ₂ O ₅ P 387.2043, found 387.2025.
37 38	Compound 3s . The product was obtained after the removal of the benzyl group of 3l according to the following procedure: 3l (37
39 40 41	mg, 0.1 mmol) was dissolved in 3.8 mL of EtOH and 1.2 mL of THF, Pd(OH) ₂ /C (37 mg, 20%, moisture) and TFA (41 μ L, 0.5
42 43 44	mmol) were added subsequently. The reaction was stirred under hydrogen at 27 °C overnight. After the completion of the reaction,
45 46	the mixture was filtered through celite and washed by ethyl acetate. The solution was concentrated, and then purified by silica gel
47 48 49	column chromatography with DCM/MeOH (NH ₃) (30:1) to give 23 mg colorless oil in a yield of 90%; $[\alpha]_D^{27}$ 2.2 (<i>c</i> 1.0, CHCl ₃); IR
50 51 52	(film) 3373, 2978, 2931, 1680, 1445, 1394, 1203, 1110, 1056, 958, 560 cm ⁻¹ ; ¹ H NMR (CDCl ₃ , 400 MHz) δ 4.84 (m, 1H), 4.24 (m,
53 54	2H), 3.88 (m, 4H), 3.72 (m, 2H), 3.25 (m, 1H), 2.36 (br, 3H), 1.36 (m, 3H), 1.27 (t, $J = 6.8$ Hz, 6H); ¹³ C NMR (CDCl ₃ , 100 MHz) δ
55 56 57	101.2 (d, $J = 137.1$ Hz), 66.2 (m), 62.3 (m), 61.9 (m), 50.9 (d, $J = 89.7$ Hz), 16.7 (s), 15.2 (s); ³¹ P NMR (CDCl ₃ , 162 MHz) δ 41.36,
58	

9 40.82; MS (ESI) m/z (%) 256.1 [M + H]⁺; HRMS (ESI) Calcd for C₉H₂₃NO₅P 256.1308, found 256.1309.

Compound (-)-**3s**. The product was obtained similar to that for **3s** as a colorless oil; Yield 76%, 19 mg; colorless oil; $[\alpha]_{2}^{17}$ -2.4 (c 1.0, CHCl₃); IR (film) 3370, 2977, 2931, 1393, 1203, 1107, 1056, 957 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 4.85 (m, 1H), 4.24 (m, 2H), 3.88 (m, 4H), 3.72 (m, 2H), 3.27 (m, 1H), 2.73 (br, 3H), 1.35 (t, *J* = 7.2 Hz, 3H), 1.27 (t, *J* = 7.2 Hz, 6H); ¹³C NMR (CDCl₃, 100 MHz) δ 101.2 (d, *J* = 137.1 Hz), 66.2 (m), 62.3 (m), 61.7 (m), 50.9 (d, *J* = 87.5 Hz), 16.7 (s), 15.2 (s); ³¹P NMR (CDCl₃, 162 MHz) δ 41.14, 40.71; the rest data are the same as compound **3s**. **Compound 3t**. The product was obtained after the removal of the benzyl group from the single isomer of **3m** similar to that of **3s**. Yield 87%, 23 mg; colorless oil; $[\alpha]_{2}^{19}$ 4.1 (*c* 0.44, CHCl₃); IR (film) 3378, 2976, 2931, 1446, 1393, 1204, 1104, 1058, 669 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 4.83 (d, *J* = 6.4 Hz, 1H), 4.32–4.18 (m, 3H), 3.89 (m, 2H), 4.16 (m, 1H), 3.72 (m, 2H), 3.06 (dd, *J*₁ = 4.8 Hz, *J*₂ = 8.0 Hz, 1H), 1.38–1.33 (m, 6H), 1.27 (t, *J* = 7.2 Hz, 6H); ¹³C NMR (CDCl₃, 100 MHz) δ 101.3 (d, *J* = 135.3 Hz), 66.3 (d, *J* = 8.6 Hz) and 66.0 (d, *J* = 8.6 Hz), 65.6 (d, *J* = 2.0 Hz), 62.3 (d, *J* = 7.5 Hz), 54.0 (d, *J* = 87.5 Hz), 19.8 (d, *J* = 9.1 Hz), 16.7 (d, *J* = 4.9 Hz), 15.2 (d, *J* = 2.9 Hz); ³¹P NMR (CDCl₃, 162 MHz) δ 40.61; MS (ESI) *m/z* (%) 270.1 [M + H]⁺; HRMS (ESI) Calcd for C₁₀H₂₅NO₅P 270.1465, found 270.1471.

Compound 9a. 9a was prepared from **3s** according to the following procedure: **3s** (93 mg, 0.36 mmol) dissolved in 2 mL of THF at 0 °C, then NEt₃ (0.1 mL, 0.72 mmol) was added. Boc₂O (0.17 mL, 0.72 mmol) in 0.8 mL of THF was added dropwise to the solution. After the reaction was stirred at 0 °C for 3 hours, it was warmed to room temperature and stirred overnight. Then the solution was concentrated to give the crude product, which was directly subjected to next reaction. The crude product was dissolved in 6 mL of DCM, cooled to -15 °C, and then NEt₃ (0.15 mL, 1.08 mmol) and DMAP (44 mg, 0.36 mmol) were added. Then MsCl (0.14 mL, 1.8 mmol) in 1 mL of DCM was added dropwise. After about 3 hours, the reaction was completed as indicated by TLC. Then 2 mL of diluted NaHCO₃ was added to quench the reaction. The aqueous phase was extracted with 10 mL×3 EtOAc. The combined organic phase were washed with brine and then dried over anhydrous Na₂SO₄. The crude product passed through a short silica gel column to remove byproducts, and gave 119 mg colorless oil in 76% yield. The product (119 mg, 0.268 mmol) was dissolved in 5 mL of DMF, and NaCN (131 mg, 2.68 mmol) was added. The reaction was warmed to 40 °C. After 2 hours, the

The Journal of Organic Chemistry

2	
3	
4	
4	
5	
6	
7	
0	
Ø	
9	
10	
11	
40	
12	
13	
14	
15	
10	
16	
17	
18	
10	
00	
20	
$\begin{array}{c} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 23 \\ 11 \\ 12 \\ 11 \\ 11 \\ 11 \\ 11$	
22	
22	
23	
24	
25	
26	
27	
21	
28	
29	
30	
00	
31	
32	
33	
34	
07	
35	
36	
37	
30	
00	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
50	
51	
52	
52 53	
53 54	
54	
55	
56	
57	
57	
58	
59	

solution turned yellow. The reaction was completed as indicated by TLC. 20 mL of EtOAc was added. The solution was washed by
sat. FeSO ₄ untilled the color of the organic phase remained. The organic phase was dried over anhydrous Na ₂ SO ₄ , and then purified
by silica gel column chromatography with petroleum ether/ethyl acetate (1:1 to 1:5) to give 49 mg light yellow oil in 54% yield. [α]
$_{\rm D}^{22}$ 3.2 (<i>c</i> 1.0, CHCl ₃); IR (film) 3244, 2979, 2933, 2248, 1717, 1522, 1367, 1167, 1059, 1033, 561 cm ⁻¹ ; ¹ H NMR (CDCl ₃ , 400
MHz) δ 5.56–5.27 (m, 1H), 4.80 (m, 1H), 4.43 (m, 1H), 4.27 (m, 2H), 3.87 (m, 2H), 3.71 (m, 2H), 2.92 (m, 2H), 1.46 (s, 9H), 1.37
(m, 3H), 1.28 (m, 6H); 13 C NMR (CDCl ₃ , 100 MHz) δ for the major isomer: 155.0 (d, J = 7.3 Hz), 116.7 (d, J = 11.0 Hz), 101.7 (d,
J = 146.6 Hz), 80.7 (s), 67.1 (d, J = 8.1 Hz) and 66.6 (d, J = 10.2 Hz), 63.3 (m), 44.4 (d, J = 97.7 Hz), 28.2 (s), 19.4 (d, J = 5.9 Hz),
16.6 (m), 15.2 (m); ${}^{31}P$ NMR (CDCl ₃ , 162 MHz) δ 35.20, 34.73; MS (ESI) m/z (%) 387.1 [M + Na] ⁺ ; HRMS (ESI) Calcd for
C ₁₅ H ₃₀ N ₂ O ₆ P 365.1836, found 365.1847.
Compound 9b. 9b was prepared from 9a according to the following procedure: To 9a (25 mg, 0.068 mmol), a mixture of 1.6 mL
of acetone, 0.13 mL of sat. Na ₂ CO ₃ , and 0.66 mL of H ₂ O ₂ was added. After the reaction was stirred at room temperature for 2 days,
the reaction was completed as indicated by TLC. The solution was concentrated, and the crude product was purified by silica gel

column chromatography with DCM/MeOH(NH₃) (40:1) to give 22 mg white sticky oil in 84% yield. [α]²¹_D 1.6 (*c* 1.0, CHCl₃); IR
(film) 3418, 3292, 3202, 2978, 1673, 1516, 1308, 1167, 1058, 545 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 6.84 (s, 1H), 5.86 (s, 1H),
5.79–5.70 (m, 1H), 4.81 (m, 1H), 4.52 (m, 1H), 4.24 (m, 2H), 3.86 (m, 2H), 3.70 (m, 2H), 2.74 (m, 2H), 1.44 (s, 9H), 1.34 (t, *J* =
6.8 Hz, 3H), 1.27 (m, 6H); ¹³C NMR (CDCl₃, 100 MHz) δ 172.5 (m), 155.6 (m), 100.8 (m), 80.3 (s), 66.7–66.2 (m), 62.9 (m), 45.0
(m), 35.7 (m), 20.2 (s), 16.6 (m), 15.2 (m); ³¹P NMR (CDCl₃, 162 MHz) δ 38.44, 37.97; MS (ESI) *m/z* (%) 405.1 [M + Na]⁺;
HRMS (ESI) Calcd for C₁₅H₃₂N₂O₇P 383.1942, found 383.1948.

Compound 3u. **3u** was prepared from **9b** as the following procedure: **9b** (7.8 mg, 0.02 mmol) dissolved in 0.4 mL of chloroform, and 0.2 mL of TFA was added. After the reaction was stirred at room temperature for 1 hour, the reaction was completed as indicated by TLC. The solution was concentrated to give 8 mg light yellow oil in quantitative yield. $[\alpha]_D^{23}$ 3.8 (*c* 0.5, MeOH); IR (film) 3350, 3187, 2983, 1677, 1421, 1204, 1057, 1028, 800, 722 cm⁻¹; ¹H NMR (CD₃OD, 400 MHz) δ 5.00–4.96 (m, 1H), 4.22 (m, 60

2H), 3.94 (m, 1H), 3.82 (m, 2H), 3.66 (m, 2H), 2.88 (m, 1H), 2.67 (m, 1H), 1.30 (q, J = 6.8 Hz, 3H), 1.18 (t, J = 6.8 Hz, 6H); ¹³C NMR (CD₃OD, 100 MHz) δ 173.7 (m), 102.4 (m), 68.6–68.0 (m), 65.7 (m), 45.6–44.2 (m), 32.8–32.3 (m), 17.0 (m), 15.6 (m); ¹⁹F NMR (CD₃OD, 376 MHz) δ -77.33; ³¹P NMR (MeOD-4, 162 MHz) δ 34.55, 33.92; MS (ESI) m/z (%) 282.9 [M + H]⁺; HRMS (ESI) Calcd for C₁₀H₂₄N₂O₅P 283.1417, found 283.1412. **Procedure for preparation of 4.** Procedure A: 4 mL of 4 M aqueous HCl was added to 0.2 mmol phosphinate 2 at room temperature. The reaction was heated to reflux. After 15 hours, it was cooled to room temperature. The solution was washed by DCM ($2 \text{ mL} \times 3$). The aqueous phase was concentrated under vacuum below the temperature of 40 °C. The residue was dissolved in 0.3 mL of EtOH, and then 20 mL of propylene oxide was added dropwise to the solution. White precipitate was formed. The mixture was stirred at room temperature overnight, and then filtered to give white solid. Dry over the vacuum give product 4a, 4g, 4o or 4p. Data for compound 4a and 4g were in accordance with reported literature.^[6] Procedure B: 2.5 mL of 4 M aqueous HCl was added to 0.5 mmol phosphinate 3 at room temperature. The reaction was heated to reflux for 1.5 hours, and then cooled to room temperature. The rest procedure was the same as Procedure A to give product 4c, 4f, **4h**, **4i**, **4j** or **4k**. Data for compound **4i** and **4j** were in accordance with reported literature.^[6] **Compound 4a.** Yield 80%, 17 mg; HPLC analysis of its dimethyl phosphonate derivate 2-7a: Chiralpak PC-2, n-hexane/2-propanol 50:50, λ =214 nm, flow rate=0.7 mLmin⁻¹, retention time=12.9 min, 10.8 min (89.8:10.2). **Compound 4c**. Single isomer prepared from the major isomer of **3c**. Yield 95%, 110 mg; white solid; m.p. 225–227 °C; $[\alpha]_{D}^{26}$ -96.0 (c 0.97, MeOH); IR (film) 3409, 3024, 2920, 1601, 1494, 1199, 963, 700 cm⁻¹; ¹H NMR (CD₃OD, 400 MHz) δ 7.29 (d, J = 6.8 Hz, 2H), 7.24 (t, J = 6.8 Hz, 2H), 7.16 (d, J = 7.2 Hz, 1H), 3.75 (s, 2H), 3.38 (m, 1H), 2.91 (m, 1H), 2.68 (m, 1H); ¹³C NMR (CD₃OD, 1)) 100 MHz) δ 138.8 (s), 130.2 (s), 129.8 (s), 128.5 (s), 49.0 (d, J = 127.6 Hz), 36.6 (s), 28.7 (s); ³¹P NMR (CD₃OD, 121 MHz) δ 21.10, 20.55, 20.01 (1:1:1); MS (ESI) m/z (%) 232.1 [M + H]⁺; HRMS (ESI) Calcd for C₉H₁₅NO₂PS 232.0556, found 232.0563. **Compound 4f.** Yield 97%, 73 mg; white solid; m.p. 229–231 °C; $[\alpha]_{27}^{27}$ -4.6 (*c* 1.0, H₂O); IR (film) 3414, 2966, 2388, 1639, 1608, ACS Paragon Plus Environment

1	
2 3 4	1536, 1458, 1170, 1044, 1020, 564, 452 cm ⁻¹ ; ¹ H NMR (CD ₃ OD, 400 MHz) δ 7.03 (d, J = 520.4 Hz, 1H), 2.74 (m, 1H), 1.88 (m,
5 6 7	1H), 1.62 (m, 1H), 1.21 (m, 1H), 1.05 (d, $J = 5.6$ Hz, 3H), 0.89 (m, 3H); ¹³ C NMR (CD ₃ OD, 100 MHz) δ 57.1 (d, $J = 102.9$ Hz),
8 9	35.4 (s), 26.6 (s), 16.2 (d, $J = 5.9$ Hz), 11.6 (s); ³¹ P NMR (CD ₃ OD, 121 MHz) δ 16.18; MS (ESI) m/z (%) 150.1 [M - H] ⁻ ; HRMS
10 11 12	(MALDI) Calcd for $C_5H_{14}NO_2PNa$ 174.0654, found 174.0654; HPLC analysis of its dimethylphosphonate derivative 7f : AD-H,
13 14	n-hexane/2-propanol 50:50, λ =214 nm, flow rate=0.7 mL min ⁻¹ , retention time=5.18 and 6.18 min (97.2:2.8).
15 16 17	Compound 4g. Yield 33%, 10 mg; HPLC analysis of its dimethylphosphonate derivative 7g: Chiralpak PC-2, n-hexane/2-propanol
18 19 20	50:50, λ =214 nm, flow rate=0.7 mL min ⁻¹ , retention time=9.6 and 7.2 min (87.7:12.3).
21 22	Compound 4h . Yield 49%, 72 mg; white solid; m.p. 206–208 °C; $[\alpha]_{D}^{28}$ -8.1 (<i>c</i> 0.83, H ₂ O); IR (film) 3448, 2940, 1773, 1706, 1542,
23 24 25	1400, 1173, 1044, 963, 894, 719 cm ⁻¹ ; ¹ H NMR (D ₂ O, 400 MHz) δ 7.70 (m, 4H), 6.92 (d, J = 532.8 Hz, 1H), 3.58 (m, 2H), 3.04 (m, 2H),
26 27 28	1H), 1.86 (m, 1H), 1.75–1.58 (m, 3H), 1.46 (m, 2H); ¹³ C NMR (D ₂ O, 100 MHz) δ 170.7 (s); 134.7 (s); 131.3 (s); 123.3 (s); 50.4 (d,
29 30 31	$J = 91.2$ Hz), 37.3 (s), 27.4 (s); 25.9 (s); 22.7 (d, $J = 8.7$ Hz); ³¹ P NMR (D ₂ O, 121 MHz) δ 21.08; ESI (<i>m/z</i>) 295.0 [M - H] ⁻ ; HRMS
32 33	(MALDI) Calcd for $C_{13}H_{17}N_2O_4PNa$ 319.0818, found 319.0815; HPLC analysis of its dimethylphosphonate derivative 7h :
34 35 36	Chiralpak PC-2, n-hexane/2-propanol 50:50, λ =214 nm, flow rate=0.7 mL min ⁻¹ , retention time=39.4 and 28.8 min (89.4:10.6).
37 38 39	Compound 4i . Yield 84%, 71 mg; Analysis of the ³¹ P NMR and ¹⁹ F NMR spectra of its Mosher's derivative 8i indicated a er value
40 41	of 81.3:18.7.
42 43 44	Compound 4j. Yield 86%, 80 mg; HPLC analysis of its dimethylphosphonate derivative 7j: Chiralpak PC-2, n-hexane/2-propanol
45 46 47	50:50, λ =214 nm, flow rate=0.7 mL min ⁻¹ , retention time=23.0 and 11.9 min (90.3:9.7).
48 49	Compound 4k . Yield 37%, 25 mg; white solid; m.p. 211 °C; $[\alpha]_D^{28}$ -6.7 (<i>c</i> 0.75, H ₂ O); IR (film) 3416, 2962, 2301, 1632, 1448,
50 51 52	1192, 1056, 966, 560 cm ⁻¹ ; ¹ H NMR (D ₂ O, 400 MHz) δ 6.98 (d, J = 537.6 Hz, 1H), 3.42 (m, 1H), 3.30 (t, J = 6.8 Hz, 2H), 2.19 (m,
53 54	1H), 2.07–1.90 (m, 3H); ¹³ C NMR (D ₂ O, 100 MHz) δ 57.5 (d, J = 91.2 Hz), 46.9 (d, J = 4.4 Hz), 24.0 (s), 23.8 (d, J = 7.3 Hz); ³¹ P
55 56 57	NMR (D ₂ O, 121 MHz) δ 19.69; ESI (<i>m/z</i>) 134.1 [M - H] ⁻ ; HRMS (ESI) Calcd for C ₄ H ₉ NO ₂ P [M - H] ⁻ 134.0373, found 134.0380;
58 59 60	HPLC analysis of its dimethylphosphonate derivative 7k: Chiralpak PA-2, n-hexane/2-propanol 50:50, λ =214 nm, flow rate=0.7
	ACS Paragon Plus Environment

mL min⁻¹, retention time=17.7 and 15.1 min (79.4:20.6).

Compound 4o. Yield 60%, 26 mg; white solid; m.p. 228–230 °C; $[\alpha]_D^{26}$ -28.6 (*c* 1.4, H₂O/NaOH); IR (film) 2934, 1613, 1514, 1250, 1173, 1032, 817, 726, 568, 515 cm⁻¹; ¹H NMR (D₂O, 300 MHz) δ 6.98 (m, 2H), 6.66 (m, 2H), 6.47 (d, *J* = 508.8 Hz, 1H), 3.49 (s, 3H), 2.89–2.4 (m, 2H), 2.20 (m, 1H); ¹³C NMR (D₂O, 100 MHz) δ 157.5 (s); 130.9 (d, *J* = 14.6 Hz); 130.5 (s); 114.1 (s); 55.3 (s), 52.4 (d, *J* = 99.2 Hz), 34.3 (s); ESI (*m/z*) 213.9 [M - H]⁻; HRMS (MALDI) Calcd for C₉H₁₃NO₃P [M - H]⁻ 214.0638, found 214.0643; HPLC analysis of its dimethylphosphonate derivative **7o**: Chiralpak PC-2, n-hexane/2-propanol 50:50, λ =214 nm, flow rate=0.7 mL min⁻¹, retention time=26.5 and 17.0 min (88.0:12.0).

Compound 4p. Yield 40%, 11 mg; white solid; m.p. 230–232 °C; $[\alpha]_{D}^{27}$ -2.44 (*c* 1.05, H₂O/NaOH); IR (film) 2962, 2359, 1640, 1548, 1468, 1177, 1042, 972, 548, 462 cm⁻¹; ¹H NMR (D₂O/NaOH, 300 MHz) δ 6.93 (d, *J* = 530.4 Hz, 1H), 2.75 (m, 1H), 2.10 (m, 1H), 0.96 (m, 6H); ¹³C NMR (D₂O/NaOH, 75 MHz) δ 56.4 (d, *J* = 91.6 Hz), 28.8 (s), 19.4 (d, *J* = 9.4 Hz) and 18.0 (d, *J* = 8.7 Hz); ³¹P NMR (D₂O/NaOH, 121 MHz) δ 19.58; ESI (*m/z*) 136.1 [M - H]⁻; HRMS (ESI) Calcd for C₄H₁₁NO₂P [M - H]⁻ 136.0533, found 136.0533; HPLC analysis of its dimethylphosphonate derivative **7p**: Chiralpak PC-2, n-hexane/2-propanol 50:50, λ =214 nm, flow rate=0.7 mL min⁻¹, retention time=8.9 and 7.5 min (99.6:0.4). Analysis of the NMR spectra of (*S*) and (*R*)-Mosher's derivatives of **5p** in which only one isomer was detected indicated similar dr value.

Compound (-)-4v. (-)-4v was prepared from (-)-9a according to the following procedure: (-)-9a (12 mg, 0.033 mmol) was dissolved in 0.66 ml of 4 M HCl, and the solution was heated to reflux for 2 hours. The reaction was concentrated to give 6 mg product in quantitative yield; $[\alpha]_{D}^{27}$ -0.39 (*c* 0.43, H₂O); IR (film) 3116, 3021, 1716, 1404, 1182, 1045, 668 cm⁻¹; ¹H NMR (D₂O, 400 MHz) δ 6.99 (d, *J* = 545.6 Hz, 1H), 3.47 (m, 1H), 2.91 (m 1H), 2.73 (m, 1H); ¹³C NMR (D₂O, 100 MHz) δ 173.6 (d, *J* = 11.7 Hz), 46.9 (d, *J* = 92.6 Hz), 30.5 (s); ³¹P NMR (D₂O, 162 MHz) δ 17.16; ESI (*m/z*) 152.0 [M - H]⁻; HRMS (ESI) Calcd for C₃H₇NO₄P [M - H]⁻ 152.0118, found 152.0125.

General procedure for the preparation of 10.

59 To 0.55 mmol carboxylic compound in 3 mL of DCM, HOBt (90 mg, 0.6 mmol) and EDCI (130 mg, 0.6 mmol) were added at 0 °C.

1	
2 3 4	After 15 minutes, 0.5 mmol 3 in 2.5 mL of DCM was added. After 3 hours, the reaction was warmed to room temperature and then
5 6 7	stirred overnight. After completion of the reaction monitored by TLC, the reaction was quenched by 5 mL of sat. NaHCO ₃ and then
8 9	extracted with EtOAc (20 mL \times 3). The combined organic phases were washed with 10 mL of brine, dried over anhydrous Na ₂ SO ₄
10 11 12	and then purified by silica gel column chromatography with petroleum ether/ethyl acetate (2:3 to 1:2) to give 10.
13 14	Compound 10a . Yield 79%, 209 mg; sticky colorless oil; [α] ²⁸ _D -28.7 (<i>c</i> 1.3, CHCl ₃); IR (film) 3278, 2976, 2932, 1681, 1519, 1498,
15 16 17	1366, 1170, 1058, 558 cm ⁻¹ ; ¹ H NMR (CDCl ₃ , 400 MHz) δ 7.23–7.13 (m, 5H), 6.46 (d, J = 10.4 Hz, 1H), 5.0 (d, J = 6.0 Hz, 1H),
18 19 20	4.44 (m, 2H), 4.30 (q, <i>J</i> = 7.2 Hz, 1H), 4.04 (m, 2H), 3.75 (m, 2H), 3.54 (m, 2H), 3.10 (m, 1H), 2.95 (m, 1H), 1.95 (m, 1H), 1.63 (m, 2H), 3.10 (m, 2H), 3.
21 22 23	1H), 1.33 (s, 9H), 1.16 (m, 9H), 1.01 (m, 1H), 0.89 (d, $J = 6.4$ Hz, 3H), 0.80 (t, $J = 7.2$ Hz, 3H); ¹³ C NMR (CDCl ₃ , 100 MHz) δ
24 25	171.0 (d, $J = 5.1$ Hz), 155.6 (s), 136.7 (s), 129.3 (s), 128.6 (s), 126.8 (s), 99.8 (d, $J = 140.0$ Hz), 80.2 (s), 66.2 (d, $J = 10.2$ Hz) and
26 27 28	64.9 (d, J = 8.0 Hz), 61.9 (d, J = 6.6 Hz), 55.7 (s), 49.9 (d, J = 94.1 Hz), 37.1 (s), 35.0 (s), 29.6 (s), 28.2 (s), 24.4 (s), 16.6 (m), 15.2 (s), 16.6 (m), 16.6 (m), 15.2 (s), 16.6 (m), 15.2 (s), 16.6 (m), 15.2 (s), 16.6 (m), 15.2 (s), 16.6 (m), 16.6 (m), 16.2 (s), 16.6 (m), 16.6 (m), 16.2 (s), 16.6 (m), 16.2 (s),
29 30	(m), 11.6 (s); ³¹ P NMR (CDCl ₃ , 162 MHz) δ 38.43; ESI (<i>m/z</i>) 551.6 [M + Na] ⁺ ; HRMS (MALDI) Calcd for C ₂₆ H ₄₅ N ₂ O ₇ PNa
31 32 33	551.2857, found 551.2837.
34 35 36	Compound 10b . Yield >99%, 240 mg; sticky colorless oil; $[\alpha]_{D}^{28}$ -31.3 (<i>c</i> 1.25, CHCl ₃); IR (film) 3278, 2974, 2933, 1716, 1673,
37 38 39	1521, 1366, 1209, 1173, 1060, 557 cm ⁻¹ ; ¹ H NMR (CDCl ₃ , 400 MHz) δ 6.57–6.30 (m, 1H), 4.96 (d, J = 8.0 Hz, 1H), 4.69 (d, J =
40 41	9.2 Hz, 1H), 4.56–4.42 (m, 1H), 4.21 (m, 2H), 3.92–3.82 (m, 3H), 3.69 (m, 2H), 2.20 (m, 1H), 2.06 (m, 1H), 1.76 (m, 1H), 1.45 (s,
42 43 44	9H), 1.34–1.22 (m, 9H), 1.14 (m, 1H), 1.04–0.88 (m, 12H); ¹³ C NMR (CDCl ₃ , 100 MHz) δ 171.5 (m), 155.8 (s), 100.0 (d, $J = 0.000$
45 46 47	140.0 Hz), 79.7 (s), 66.1 (m) and 64.7 (m), 61.8 (d, J = 5.1 Hz), 60.4 (s), 49.8 (d, J = 93.3 Hz), 35.0 (s), 29.9 (s), 28.1 (s), 24.3 (s),
48 49	19.3 (s), 17.7 (s), 16.5 (m), 15.1 (m), 11.5 (s); ³¹ P NMR (CDCl ₃ , 162 MHz) δ 38.67, 38.56; ESI (<i>m/z</i>) 481.7 [M + H] ⁺ ; HRMS
50 51 52	(MALDI) Calcd for C ₂₂ H ₄₅ N ₂ O ₇ PNa 503.2857, found 503.2837.
53 54	Compound 10c . Yield 81%, 208 mg; colorless oil; $[\alpha]_{D}^{26}$ -40.4 (<i>c</i> 1.14, CHCl ₃); IR (film) 3271, 2977, 2931, 1716, 1681, 1497,
55 56 57	1206, 1172, 1060, 1038, 751 cm ⁻¹ ; ¹ H NMR (CDCl ₃ , 400 MHz) δ 7.22–7.09 (m, 5H), 6.92–6.77 (m, 1H), 4.93 (m, 1H), 4.81 (m,
58 59 60	1H), 4.67–4.60 (m, 1H), 4.16 (m, 2H), 3.85–3.45 (m, 5H), 3.20 (m, 1H), 2.83 (m, 1H), 1.92 (m, 1H), 1.38–1.31 (m, 9H), 1.27–1.17
55	

(m, 9H), 0.72-0.57 (m, 6H); ¹³C NMR (CDCl₃, 100 MHz) δ 171.1 (m), 155.7 (m), 136.8 (d, *J* = 11.9 Hz), 129.4 (s), 128.3 (s), 126.7 (s), 101.2 (d, J = 143.7 Hz), 79.7 (s), 66.6 (m), 62.9 (m) and 60.4 (m), 46.7 (d, J = 97.7 Hz), 34.4 (s), 30.5 (s), 28.3 (s), 19.2 (s), 17.3 (s) and 16.6 (s), 15.2 (m); ³¹P NMR (CDCl₃, 162 MHz) δ 38.90, 38.64, 38.49, 38.11; ESI (*m*/*z*) 515.6 [M + H]⁺; HRMS (MALDI) Calcd for C₂₅H₄₃N₂O₇PNa 537.270, found 537.2708. **Compound 10d**. Yield 85%, 244 mg; white solid; m.p. 66 °C; [α]³⁰_D -31.9 (*c* 1.0, CHCl₃); IR (film) 3256, 3064, 2977, 1721, 1670, 1536, 1450, 1246, 1208, 1059, 1036, 741 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) 7.75 (d, J = 7.2 Hz, 2H), 7.59 (d, J = 7.6 Hz, 2H), 7.38 (t, J = 7.6 Hz, 2H), 7.30 (t, J = 7.6 Hz, 2H), 7.15 (br, 1H), 5.75 (br, 1H), 4.78 (d, J = 9.2 Hz, 1H), 4.64 (m, 1H), 4.35 (m, 3H), 4.19(m, 3H), 3.86 (m, 2H), 3.69 (m, 2H), 1.62 (m, 3H), 1.42 (d, J = 6.8 Hz, 3H), 1.26 (m, 9H), 0.91 (m, 6H); ¹³C NMR (CDCl₃, 126) MHz) δ 172.3 (s), 155.8 (s), 143.8 (s), 141.3 (s), 127.7 (s), 127.1 (s), 125.1 (s), 120.0 (s), 100.4 (d, J = 137.1 Hz), 67.0 (s), 66.4 (d, J = 137.1 Hz), 67.0 (s), 67.0 (s), 68.0 (s), 6 = 8.7 Hz and 64.9 (d, J = 8.8 Hz), 62.5 (d, J = 7.3 Hz), 50.5 (s), 47.1 (s), 44.1 (d, J = 94.8 Hz), 37.4 (s), 24.5 (d, J = 12.4 Hz), 23.5 (d, J = 12.4 Hz), 2(s), 21.1 (s), 19.4 (s), 16.7 (d, J = 5.1 Hz), 15.3 (d, J = 3.6 Hz); ³¹P NMR (CDCl₃, 162 MHz) δ 39.51, 39.22, 38.80, 38.46; ESI (m/z) 597.5 $[M + Na]^+$; HRMS (MALDI) Calcd for C₃₀H₄₃N₂O₇PNa 597.270, found 597.2670. **Compound 10e**. Yield 93%, 287 mg; colorless oil; $[\alpha]_{20}^{30}$ -22.9 (*c* 1.0, CHCl₃); IR (film) 3264, 2977, 2934, 1713, 1525, 1397, 1056, 721 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 7.80 (m, 2H), 7.67 (m, 2H), 7.35–7.30 (m, 5H), 6.92 (br, 1H), 5.89 (br, 1H), 5.11 (s, 2H), 4.76 (d, J = 8.8 Hz, 1H), 4.52 (m, 1H), 4.17 (m, 2H), 3.92 (m, 2H), 3.84 (m, 2H), 3.70-3.63 (m, 4H), 1.94 (m, 1H), 1.76-1.58 (m, 2H), 3.92 (m, 2H), 3.84 (m, 2H), 3.70-3.63 (m, 4H), 1.94 (m, 1H), 1.76-1.58 (m, 2H), 3.92 (m, 2H), 3.92 (m, 2H), 3.84 (m, 2H), 3.70-3.63 (m, 4H), 1.94 (m, 1H), 1.76-1.58 (m, 2H), 3.92 (m, 2H), 3.92 (m, 2H), 3.84 (m, 2H), 3.70-3.63 (m, 4H), 1.94 (m, 2H), 1.76-1.58 (m, 2H), 3.92 3H), 1.40 (m, 2H), 1.29–1.21 (m, 9H); ¹³C NMR (CDCl₃, 100 MHz) δ 169.0 (s), 168.5 (s), 156.5 (s), 136.3 (s), 133.9 (s), 132.0 (s), 128.5 (s), 128.2 (s), 128.1 (s), 123.2 (s), 100.5 (d, J= 140.0 Hz), 67.0 (s), 66.3 (d, J= 9.5 Hz) and 65.3 (d, J= 8.8 Hz), 62.6 (d, J= 140.0 Hz), 67.0 (s), 66.3 (d, J= 9.5 Hz) and 65.3 (d, J= 8.8 Hz), 62.6 (d, J= 140.0 Hz), 67.0 (s), 66.3 (d, J= 9.5 Hz) and 65.3 (d, J= 8.8 Hz), 62.6 (d, J= 140.0 Hz), 67.0 (s), 66.3 (d, J= 9.5 Hz) and 65.3 (d, J= 8.8 Hz), 62.6 (d, J= 140.0 Hz), 67.0 (s), 66.3 (d, J= 9.5 Hz) and 65.3 (d, J= 8.8 Hz), 62.6 (d, J= 140.0 Hz), 67.0 (s), 66.3 (d, J= 9.5 Hz) and 65.3 (d, J= 8.8 Hz), 62.6 (d, J= 140.0 Hz), 67.0 (s), 66.3 (d, J= 9.5 Hz) and 65.3 (d, J= 8.8 Hz), 62.6 (d, J= 140.0 Hz), 67.0 (s), 66.3 (d, J= 9.5 Hz) and 65.3 (d, J= 8.8 Hz), 62.6 (d, J= 140.0 Hz), 67.0 (s), 66.3 (d, J= 9.5 Hz) and 65.3 (d, J= 8.8 Hz), 62.6 (d, J= 140.0 Hz), 67.0 (s), 66.3 (d, J= 9.5 Hz) and 65.3 (d, J= 8.8 Hz), 62.6 (d, J= 140.0 Hz), 67.0 (s), 66.3 (d, J= 9.5 Hz) and 65.3 (d, J= 8.8 Hz), 62.6 (d, J= 140.0 Hz), 67.0 (s), 66.3 (d, J= 9.5 Hz) and 65.3 (d, J= 8.8 Hz), 62.6 (d, J= 140.0 Hz), 67.0 (s), 66.3 (d, J= 9.5 Hz) and 65.3 (d, J= 8.8 Hz), 67.0 (s), 68.0 Hz), 68.0 Hz 7.3 Hz), 45.7 (d, J = 95.6 Hz), 44.5 (s), 37.3 (s), 28.0 (s), 27.9 (s), 22.8 (d, J = 11.6 Hz), 16.7 (m), 15.2 (m); ³¹P NMR (CDCl₃, 162) MHz) δ 38.64, 38.48, 38.38; ESI (*m*/*z*) 618.6 [M + H]⁺; HRMS (MALDI) Calcd for C₃₀H₄₀N₃O₉PNa 640.2394, found 640.2387. **Compound 10f.** Yield 76%, 237 mg; white solid; m.p. 78–85 °C; $[\alpha]_{p}^{30}$ -16.4 (*c* 1.29, CHCl₃); IR (film) 3280, 2975, 2932, 1713, 1648, 1535, 1212, 1059, 755 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 7.65–7.41 (m, 1H), 7.24 (m, 5H), 6.88 (m, 1H), 5.91 (m, 1H),

4.74 (m, 1H), 4.59 (m, 2H), 4.44 (m, 1H), 4.21 (m, 2H), 3.88 (m, 2H), 3.71 (m, 2H), 3.07 (d, J = 5.6 Hz, 2H), 2.05 (m, 2H), 1.87 (m, 2H), 3.07 (m, 2H), 3.07

1	
2 3 4	1H), 1.39–1.36 (m, 9H), 1.30–1.21 (m, 9H), 1.18–0.83 (m, 13H); 13 C NMR (CDCl ₃ , 100 MHz) δ 171.8 (m), 171.3 (m), 155.7 (s),
5 6 7	137.0 (s), 129.2 (s), 128.4 (s), 126.6 (s), 100.5 (d, <i>J</i> = 137.1 Hz), 79.5 (s), 66.2 (d, <i>J</i> = 8.7 Hz), 64.9 (m) and 62.0 (m), 58.3 (s), 55.9
7 8 9	(s), 50.2 (d, $J = 89.7$ Hz), 37.4 (s), 35.1 (s), 30.9 (s), 28.2 (s), 24.3 (m), 19.3 (s), 17.9 (s), 16.5 (m), 15.2 (m), 11.8 (m); ³¹ P NMR
10 11 12	(CDCl ₃ , 162 MHz) δ 38.75; ESI (<i>m/z</i>) 650.8 [M + Na] ⁺ ; HRMS (ESI) Calcd for C ₃₁ H ₅₄ N ₃ O ₈ PNa 650.3541, found 650.3521;
13 14	Elemental analysis (%) calcd for C ₃₁ H ₅₄ N ₃ O ₈ P: C 59.31; H 8.67; N 6.69. Found: C 59.18; H 8.55; N 6.49.
15 16 17	Compound 10g . Yield 78%, 253 mg; white solid; m.p. 78 °C; [α] ³⁰ _D -18.7 (<i>c</i> 1.0, CHCl ₃); IR (film) 3268, 2975, 2931, 1716, 1648,
18 19 20	1537, 1211, 1058, 754 cm ⁻¹ ; ¹ H NMR (CDCl ₃ , 400 MHz) δ 7.63–7.41 (m, 1H), 7.23 (m, 5H), 6.90 (m, 1H), 5.62 (m, 1H), 4.82 (m,
21 22	1H), 4.63 (m, 1H), 4.54–4.40 (m, 2H), 4.21 (m, 2H), 3.87 (m, 2H), 3.70 (m, 2H), 3.05 (m, 2H), 2.13 (m, 1H), 1.61 (m, 2H), 1.38 (s,
23 24 25	9H), 1.32–1.24 (m, 9H), 0.90–0.76 (m, 13H); ¹³ C NMR (CDCl ₃ , 100 MHz) δ 171.5 (m), 170.7 (m), 155.3 (m), 136.8 (s), 129.3 (s),
26 27 28	128.5 (s), 126.7 (s), 100.3 (d, J= 137.1 Hz), 79.7 (s), 66.2 (d, J= 8.0 Hz), 64.7 (m) and 62.4 (m), 58.1 (s), 55.9 (s), 44.0 (d, J= 128.5 Hz), 64.7 (m) and 62.4 (m), 58.1 (s), 55.9 (s), 44.0 (d, J= 128.5 Hz), 64.7 (m) and 62.4 (m), 58.1 (s), 55.9 (s), 44.0 (d, J= 128.5 Hz), 64.7 (m) and 62.4 (m), 58.1 (s), 55.9 (s), 44.0 (d, J= 128.5 Hz), 64.7 (m) and 62.4 (m), 58.1 (s), 55.9 (s), 44.0 (d, J= 128.5 Hz), 64.7 (m) and 62.4 (m), 58.1 (s), 55.9 (s), 44.0 (d, J= 128.5 Hz), 64.7 (m) and 62.4 (m), 58.1 (s), 55.9 (s), 44.0 (d, J= 128.5 Hz), 64.7 (m) and 62.4 (m), 58.1 (s), 55.9 (s), 44.0 (d, J= 128.5 Hz), 58.1 (s), 58.1 (s), 55.9 (s), 58.1 (s), 5
29 30	105.0 Hz), 37.4 (m), 31.0 (m), 28.2 (s), 24.4 (m), 23.5 (s), 21.0 (s), 19.3 (s) and 17.7 (s), 16.6 (m), 15.2 (m); ³¹ P NMR (CDCl ₃ , 162
31 32 33	MHz) δ 39.65, 39.31, 38.90, 38.62; ESI (<i>m</i> / <i>z</i>) 650.8 [M + Na] ⁺ ; HRMS (MALDI) Calcd for C ₃₁ H ₅₄ N ₃ O ₈ PNa 650.3541, found
34 35	650.3522.
36 37 38	Compound 10h . Yield 35%, 116 mg; white solid; m.p. 99 °C; [α] ²⁷ _D -29.8 (<i>c</i> 1.0, CHCl ₃); IR (film) 3266, 2975, 1714, 1647, 1542,
39 40 41	1214, 1170, 1058, 668 cm ⁻¹ ; ¹ H NMR (CDCl ₃ , 400 MHz) δ 7.22–7.10 (m, 10H), 6.68 (br, 1H), 6.35 (br, 1H), 5.25–4.90 (m, 1H),
42 43	4.75 (m, 1H), 4.59 (m, 1H), 4.27 (m, 1H), 4.18 (m, 2H), 4.01 (m, 1H), 3.80–3.64 (m, 3H), 3.49 (m, 1H), 3.18 (m, 1H), 3.07–2.78
44 45 46	(m, 3H), 1.87 (m, 1H), 1.31 (s, 9H), 1.27–1.17 (m, 9H), 0.72–0.52 (m, 6H); ¹³ C NMR (CDCl ₃ , 100 MHz) δ 171.3 (m), 170.4 (m),
47 48 49	155.4 (m), 136.9 (m), 136.8 (s), 136.7 (s), 129.3 (s), 128.7 (s), 128.4 (s), 126.9 (m), 126.7 (s), 100.6 (d, <i>J</i> = 138.5 Hz), 80.2 (m),
50 51	66.5 (m), 65.2 (m) and 62.8 (m), 58.4 (m), 56.1 (m), 47.0 (d, J=94.0 Hz), 38.6 (m), 34.7 (m), 30.6 (m), 28.3 (s), 19.0 (m) and 17.5
52 53 54	(m), 16.6 (m), 15.3 (m); 31 P NMR (CDCl ₃ , 162 MHz) δ 38.33, 38.03, 37.74; ESI (<i>m/z</i>) 662.8 [M + H] ⁺ ; HRMS (MALDI) Calcd for
55 56 57	C ₃₄ H ₅₂ N ₃ O ₈ PNa 684.3384, found 684.3392.
57 58 59 60	Compound 10i . Yield 67%, 206 mg; White solid; m.p. 90 °C; $[\alpha]_{D}^{27}$ -5.5 (<i>c</i> 1.33, CHCl ₃); IR (film) 3279, 2976, 2931, 1714, 1649,

60	
58 59	Compound 101 . Yield 44%, 139 mg; white solid, m.p. 133–139 °C; $[\alpha]_{D}^{27}$ -21.5 (<i>c</i> 1.0, CHCl ₃); IR (film) 3285, 2977, 2930, 1660,
55 56 57	HRMS (ESI) Calcd for C ₂₆ H ₄₅ N ₂ O ₇ PNa 551.2857, found 551.2838.
53 54	(s), 20.9 (s), 16.7 (d, $J = 4.8$ Hz), 15.2 (d, $J = 5.8$ Hz); ³¹ P NMR (CDCl ₃ , 162 MHz) δ 39.14, 39.02; ESI (<i>m/z</i>) 529.8 [M + H] ⁺ ;
50 51 52	(d, J = 9.6 Hz), 64.8 (d, J = 7.7 Hz), 62.2 (d, J = 6.7 Hz), 55.6 (s), 44.0 (d, J = 95.5 Hz), 37.2 (s), 28.2 (s), 24.2 (d, J = 11.5 Hz), 23.5 Hz)
48 49	$(CDCl_3, 126 \text{ MHz}) \delta 170.8 \text{ (d}, J = 3.8 \text{ Hz}), 155.4 \text{ (s)}, 136.5 \text{ (s)}, 129.4 \text{ (s)}, 128.6 \text{ (s)}, 126.9 \text{ (s)}, 100.6 \text{ (d}, J = 141.5 \text{ Hz}), 80.2 \text{ (s)}, 66.2 \text{ (c})$
45 46 47	(m, 1H), 1.60 (m, 1H), 1.49 (m, 2H), 1.37 (s, 9H), 1.28–1.19 (m, 9H), 0.90 (d, $J = 6.0$ Hz, 3H), 0.87 (d, $J = 6.5$ Hz, 3H); ¹³ C NMR
42 43 44	= 9.5 Hz, 1H), 4.59 (q, J= 9.5 Hz, 1H), 4.37 (d, J= 6.5 Hz, 1H), 4.11 (m, 2H), 3.82 (m, 2H), 3.63 (m, 2H), 3.13–3.09 (m, 1H), 3.02
40 41	1209, 1366, 1209, 1172, 1058, 563 cm ⁻¹ ; ¹ H NMR (CDCl ₃ , 500 MHz) δ 7.27–7.18 (m, 5H), 6.41 (br, 1H), 4.90 (br, 1H), 4.67 (d, J
37 38 39	Compound 10k . Yield 82%, 217 mg; colorless oil; $[\alpha]_{D}^{26}$ -31.0 (<i>c</i> 1.0, CHCl ₃); IR (film) 3258, 2977, 1715, 1668, 1523, 1498, 1366,
34 35 36	537.2718.
32 33	(CDCl ₃ , 162 MHz) δ 38.61, 38.31, 38.25; ESI (<i>m/z</i>) 515.6 [M + H] ⁺ ; HRMS (ESI) Calcd for C ₂₅ H ₄₃ N ₂ O ₇ PNa 537.270, found
29 30 31	80.1 (m), 66.3 (m), 64.8 (m), 62.5 (m) and 62.0 (m), 55.8 (m), 49.6 (m), 37.2 (m), 28.2 (m), 20.6 (m), 16.6 (m), 15.2 (m); ³¹ P NMR
26 27 28	0.93–0.75 (m, 6H); 13 C NMR (CDCl ₃ , 100 MHz) δ 171.4 (m), 155.6 (m), 136.8 (s), 129.2 (m), 128.5 (m), 126.8 (m), 100.4 (m),
24 25	4.37 (m, 2H), 4.10 (m, 2H), 3.73 (m, 2H), 3.56 (m, 2H), 3.15–2.89 (m, 2H), 2.23 (m, 1H), 1.32–1.30 (m, 9H), 1.25–1.12 (m, 9H),
21 22 23	1366, 1210, 1171, 1058, 557 cm ⁻¹ ; ¹ H NMR (CDCl ₃ , 400 MHz) δ 7.18 (m, 5H), 6.62 (br, 1H), 5.22 (br, 1H), 4.63–4.48 (m, 1H),
18 19 20	Compound 10j . Yield 98%, 252 mg; colorless oil; $[\alpha]_{D}^{26}$ -21.1 (<i>c</i> 1.0, CHCl ₃); IR (film) 3271, 2977, 2931, 1714, 1668, 1522, 1498,
16 17	HRMS (MALDI) Calcd for C ₃₀ H ₅₂ N ₃ O ₈ PNa 636.3384, found 636.3399.
13 14 15	19.4 (m), 18.4 (m) and 17.7 (m), 16.6 (m), 15.2 (m); 31 P NMR (CDCl ₃ , 162 MHz) δ 38.90, 38.70, 38.64; ESI (<i>m/z</i>) 614.8 [M + H] ⁺ ;
10 11 12	100.7 (m), 79.5 (m), 66.9 (m), 66.2 (m), 62.7 (m), 58.3 (m), 56.0 (m), 50.0 (m), 37.5 (m), 31.2 (m), 30.6 (m), 28.2 (s), 20.8 (m) and
7 8 9	9H), 0.96–0.70 (m, 12H); ¹³ C NMR (CDCl ₃ , 100 MHz) δ 171.8 (m), 171.4 (m), 155.7 (m), 137.2 (m), 129.2 (s), 128.4 (s), 126.6 (s),
5 6	1H), 4.70-4.31 (m, 4H), 4.21 (m, 2H), 3.82-3.42 (m, 4H), 2.99 (m, 2H), 2.20 (m, 1H), 2.02 (m, 1H), 1.29 (s, 9H), 1.24-1.12 (m,
2 3 4	1535, 1391, 1366, 1211, 1173, 1058, 756 cm ⁻¹ ; ¹ H NMR (CDCl ₃ , 400 MHz) δ 7.44 (m, 1H), 7.15 (m, 5H), 6.74 (m, 1H), 5.93 (m,

2 3 4	1536, 1168, 1058, 1032, 699 cm ⁻¹ ; ¹ H NMR (CDCl ₃ , 500 MHz) δ 7.33–7.19 (m, 10H), 6.82–6.59 (m, 2H), 4.94 (m, 1H), 4.73–4.66
5 6	(m, 1H), 4.49 (m, 1H), 4.42 (d, J= 5.5 Hz, 2H), 4.33 (m, 1H), 4.14 (m, 2H), 3.82 (m, 2H), 3.64 (m, 2H), 3.18–3.14 (m, 1H), 2.98
7 8 9	(m, 1H), 2.27 (m, 3H), 1.92 (s, 1H), 1.36–1.34 (m, 9H), 1.28 (m, 3H), 1.25–1.21 (m, 6H); ¹³ C NMR (CDCl ₃ , 126 MHz) δ 172.0 (s),
10 11 12	171.8 (m), 155.5 (m), 138.5 (s), 136.4 (s), 129.3 (s), 128.7 (s), 128.6 (s), 127.8 (s), 127.3 (s), 127.0 (s), 100.2 (d, <i>J</i> = 142.5 Hz), 80.3
13 14 15	(s), 66.4 (m), 65.5 (m), 62.5 (m), 55.9 (s), 45.8 (d, <i>J</i> = 96.5 Hz), 43.5 (s), 37.5 (s), 32.8 (d, <i>J</i> = 12.5 Hz), 28.2 (s), 25.6 (d, <i>J</i> = 3.9 Hz),
16 17	16.6 (m), 15.2 (m); ³¹ P NMR (CDCl ₃ , 162 MHz) δ 37.70, 37.66, 37.41; ESI (<i>m/z</i>) 634.7 [M + H] ⁺ ; HRMS (ESI) Calcd for
18 19 20	C ₃₂ H ₄₈ N ₃ O ₈ PNa 656.3071, found 656.3070.
21 22 23	Compound 10m . Yield 78%, 221 mg; white solid, m.p. 68–70 °C; $[\alpha]_D^{26}$ -26.9 (<i>c</i> 1.0, CHCl ₃); IR (film) 3293, 2976, 2932, 1696,
24 25	1511, 1210, 1168, 1058, 742, 558 cm ⁻¹ ; ¹ H NMR (CDCl ₃ , 400 MHz) δ 8.95 (br, 1H), 7.63 (d, J = 7.6 Hz, 1H), 7.37 (d, J = 8.0 Hz,
26 27 28	1H), 7.18 (t, $J = 6.8$ Hz, 1H), 7.12–7.08 (m, 2H), 6.50 (dd, $J_1 = 10.4$ Hz, $J_2 = 1.6$ Hz, 1H), 5.07 (d, $J = 7.2$ Hz, 1H), 4.57–4.46 (m, 2H), 7.18 (t, $J = 6.8$ Hz, 1H), 7.12–7.08 (m, 2H), 6.50 (dd, $J_1 = 10.4$ Hz, $J_2 = 1.6$ Hz, 1H), 5.07 (d, $J = 7.2$ Hz, 1H), 4.57–4.46 (m, 2H), 7.18 (t, $J = 6.8$ Hz, 1H), 7.12–7.08 (m, 2H), 6.50 (dd, $J_1 = 10.4$ Hz, $J_2 = 1.6$ Hz, 1H), 5.07 (d, $J = 7.2$ Hz, 1H), 4.57–4.46 (m, 2H), 7.18 (t, $J = 6.8$ Hz, 1H), 7.12–7.08 (m, 2H), 6.50 (dd, $J_1 = 10.4$ Hz, $J_2 = 1.6$ Hz, 1H), 5.07 (d, $J = 7.2$ Hz, 1H), 4.57–4.46 (m, 2H), 7.18 (t, $J = 6.8$ Hz, 1H), 7.12–7.08 (m, 2H), 6.50 (dd, $J_1 = 10.4$ Hz, $J_2 = 1.6$ Hz, 1H), 5.07 (d, $J = 7.2$ Hz, 1H), 4.57–4.46 (m, 2H), 7.18 (t, $J = 6.8$ Hz, 1H), 7.12–7.08 (m, 2H), 6.50 (dd, J_1 = 10.4 Hz, $J_2 = 1.6$ Hz, 1H), 5.07 (d, $J = 7.2$ Hz, 1H), 4.57–4.46 (m, 2H), 7.18 (t, $J = 6.8$ Hz, 1H), 7.12–7.08 (m, 2H), 7.18 (t, $J = 6.8$ Hz, 1H), 7.18 (t, $J = 6.8$ Hz,
29 30 31	3H), 4.17–4.02 (m, 2H), 3.80 (m, 2H), 3.60 (m, 2H), 3.26 (m, 2H), 1.97 (m, 1H), 1.64 (m, 1H), 1.40 (s, 9H), 1.22 (m, 9H), 1.02 (m, 2H), 1.02 (
32 33 34	1H), 0.91 (d, $J = 6.8$ Hz, 3H), 0.84 (t, $J = 7.2$ Hz, 3H); ¹³ C NMR (CDCl ₃ , 100 MHz) δ 171.7 (d, $J = 5.1$ Hz), 155.8 (s), 136.4 (s),
35 36	127.4 (s), 123.5 (s), 122.0 (s), 119.5 (s), 118.6 (s), 111.4 (s), 110.0 (s), 99.8 (d, <i>J</i> = 140.7 Hz), 80.3 (s), 66.4 (d, <i>J</i> = 9.5 Hz), 65.0 (d,
37 38 39	J= 8.8 Hz), 62.1 (d, J= 7.3 Hz), 55.4 (s), 49.8 (d, J= 94.0 Hz), 35.0 (s), 28.2 (s), 24.5 (d, J= 2.2 Hz), 16.6 (d, J= 5.1 Hz), 16.5 (d,
40 41 42	= 11.0 Hz), 15.3 (d, J = 4.4 Hz), 11.6 (s); ³¹ P NMR (CDCl ₃ , 162 MHz) δ 39.20, 38.84, 38.75; ESI (m/z) 568.7 [M + H] ⁺ ; HRMS
43 44	(ESI) Calcd for C ₂₈ H ₄₆ N ₃ O ₇ PNa 590.2966, found 590.2953.
45 46	NMR data for 6p, and (-)-6p.
47 48 49	(R)-Mosher's derivative of 5p (6p). ¹ H NMR (CDCl ₃ , 400 MHz) δ 7.55 (m, 2H), 7.40 (m, 3H), 7.17 (d, J = 10.4 Hz, 1H),
50 51 52	4.35 (m, 1H), 4.11 (m, 2H), 4.01 (m, 2H), 3.38 (s, 3H), 2.31 (m, 1H), 1.30–1.20 (m, 6H), 1.06 (d, $J = 6.4$ Hz, 6H); ¹⁹ F NMR
53 54 55	$(CDCl_3, 282 \text{ MHz}) \delta$ -69.42; ³¹ P NMR $(CDCl_3, 121 \text{ MHz}) \delta$ 24.56; ESI (m/z) 426.3 $[M + H]^+$.
56 57	(S)-Mosher's derivative of 5p ((-)-6p). ¹ H NMR (CDCl ₃ , 400 MHz) δ 7.57 (m, 2H), 7.40 (m, 3H), 6.84 (d, J = 9.6 Hz, 1H),
58 59 60	4.35 (m, 1H), 4.18–4.10 (m, 4H), 3.52 (s, 3H), 2.25 (m, 1H), 1.33 (dt, $J_1 = 2.8$ Hz, $J_2 = 7.2$ Hz, 6H), 0.93 (dd, $J_1 = 6.8$ Hz, $J_2 = 21.2$

Hz, 6H); ¹⁹F NMR (CDCl₃, 282 MHz) δ -69.12; ³¹P NMR (CDCl₃, 121 MHz) δ 24.47; ESI (*m/z*) 426.3 [M + H]⁺.

NMR data for Mosher's derivative of the major isomer of 3m.

(R)-Mosher's derivative of the major isomer of 3m. ¹H NMR (CDCl₃, 400 MHz) δ 7.58 (m, 2H), 7.52 (m, 1H), 7.40 (m, 3H), 7.36 (m, 2H), 7.34-7.28 (m, 2H), 5.31 (s, 1H), 4.66 (d, J = 11.2 Hz, 1H) and 4.51 (d, J = 11.2 Hz, 1H), 4.54 (td, $J_1 = 10.4$ Hz, 1H) $J_2 = 1.6$ Hz, 1H), 4.48 (d, J = 10.0 Hz, 1H), 4.36 (m, 1H), 4.13–3.95 (m, 2H), 3.84–3.44 (m, 4H), 3.89 (d, J = 1.2 Hz, 3H), 1.26 (dd, J = 1.2 $J_1 = 1.6 \text{ Hz}, J_2 = 6.4 \text{ Hz}, 3\text{H}$, 1.16 (q, J = 7.2 Hz, 6H), 1.11 (t, J = 7.2 Hz, 3H); ¹⁹F NMR (CDCl₃, 376 MHz) δ -69.13; ³¹P NMR (CDCl₃, 162 MHz) δ 36.23.

(S)-Mosher's derivative of the major isomer of 3m. ¹H NMR (CDCl₃, 400 MHz) δ 7.60 (m, 2H), 7.40 (m, 3H), 7.31–7.24 (m, 5H), 5.30 (s, 1H), 4.61 (d, J = 10.4 Hz, 1H), 4.55 (td, $J_1 = 10.4$ Hz, $J_2 = 1.6$ Hz, 1H), 4.55 (d, J = 11.2 Hz, 1H) and 4.46 (d, J = 10.4 Hz, 1H), 4.55 (d, J = 10.4 Hz, 1H) and 4.46 (d, J = 10.4 Hz, 1H), 4.55 (d, J = 10.4 Hz, 1H) and 4.46 (d, J = 10.4 Hz, 1H) and 11.2 Hz, 1H), 4.32 (m, 1H), 4.21–4.03 (m, 2H), 3.92–3.49 (m, 4H), 1.21 (t, J = 7.2 Hz, 3H), 1.20 (g, J = 7.1 Hz, 6H), 1.08 (dd, $J_1 = 7.2$ Hz, 3H), 1.20 (g, J = 7.1 Hz, 6H), 1.08 (dd, $J_2 = 7.1$ Hz, 6H), 1.08 (dd, $J_3 = 7.1$ Hz, 6H), 1.08 (dd, $J_4 = 7.1$ Hz, 1.08 (dd, $J_4 =$ 1.6 Hz, $J_2 = 6.4$ Hz, 3H); ¹⁹F NMR (CDCl₃, 376 MHz) δ -68.75; ³¹P NMR (CDCl₃, 162 MHz) δ 35.98.

Acknowledgements

The project was supported by the National Science Foundation of China (Grant No. 21072212). We thank the National Center for Drug Screening for biological activities study.

Supporting Information Available

NMR spectra of new compounds 1-4, 9, 10, 6p, (-)-6p, Mosher's derivatives of the major isomer of 3m; HPLC data for 6 and 7.

This material is available free of charge via the Internet at http://pubs.acs.org.

References

(1) Selective reviews for the preparation of amino phosphonic acids: (a) Kukhar, V. P.; Soloshonok, V. A.; Solodenko, V. A.

Phosphorus Sulfur Relat. Elem. 1994, 92 (1-4), 239-264; (b) Ma, J. Chem. Soc. Rev. 2006, 35, 630-636; (c) Mario, O.; Haydee, R.;

Carlos, C.; Tetrahedron 2009, 65, 17–49; (d) Albrecht, Ł.; Albrecht, A.; Krawczyk, H.; Jørgensen, K. A. Chem-Eur. J. 2010, 16,

28-28; (e) Lefebvre, I. M.; Evans, S. A. J. Org. Chem. 1997, 62, 7532-7533.

The Journal of Organic Chemistry

2	
2	
3	
4	
4 5	
5	
Ē	
6 7 8	
7	
Q	
9	
7	~
1	0
1	1
2	
1	2
1	ર
2	2
1	4
1	5
	5
1	6
1	7
I	1
1	8
4	õ
I	Э
2	0
~	1
2	1
2	2
~	~
2	3
2	4
22	-
2	5
2	6
~	2
2	7
2	Ω
~	0
2	9
2	Λ
3	0
3 3	0
332	0
3 3 3	0 1 2
3 3 3 3	0 1 2 3
3333	0 1 2 3
3 3 3 3 3	0 1 2 3 4
3 3 3 3 3 3	0 1 2 3 4 5
3 3 3 3 3 3 3	0 1 2 3 4 5 0
3 3 3 3 3 3 3	0 1 2 3 4 5 6
333333333	01234567
33333333	01234567
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	0 1 2 3 4 5 6 7 8
333333333333	012345678901234567890123456789
3	9
3 4	9 0
3 4	9 0
3 4 4	9 0 1
3 4 4 4	9 0 1 2
3 4 4 4	9 0 1 2
3 4 4 4 4 4	9 0 1 2 3
3 4 4 4 4 4	9 0 1 2 3 4
3 4 4 4 4 4	9 0 1 2 3 4
3 4 4 4 4 4	9 0 1 2 3 4 5
3 4 4 4 4 4	9 0 1 2 3 4
344444444	90123456
3444444444	901234567
3444444444	901234567
34444444444	9012345678
344444444444	90123456789
344444444444	90123456789
344444444445	901234567890
344444444455	9012345678901
344444444455	9012345678901
34444444445555	90123456789012
344444444455555	901234567890123
344444444455555	901234567890123
3444444444555555	9012345678901234
344444444445555555555555555555555555555	90123456789012345
3444444444555555	90123456789012345

(2) Selective reviews for biological studies of phosphonic acids: (a) Orsini, F.; Sello, G.; Sisti, M. Curr. Med. Chem. 2010, 17 (3),

- 264-289; (b) Galezowska, J.; Gumienna-Kontecka, E. Coord. Chem. Rev. 2012, 256, 105-124.
- (3) (a) Gerald, L. R.; Arno, L. G.; George, L. K.; J. Am. Chem. Soc. 1971, 93, 5542-5551; (b) Marion, C.; Elizabeth, A. K.; Kathy,
- L. K.; Karen, M. A.; James, F. K. Bioo. Med. Chem. Lett. 1996, 6 (9), 999–1002.
- (4) Selective reviews for biological studies of phosphinic acids, see: (a) Berlicki, L.; Kafarski, P. Curr. Org. Chem. 2005, 9,
- ^b 1829–1850; (b) Yiotakis, A.; Georgiadis, D.; Matziari, M.; Makaritis, A.; Dive, V. Curr. Org. Chem. 2004, 8, 1135–1158; (c)
- Collinsova, M.; Jiracek, J. Curr. Med. Chem. 2000, 7 (6), 629–647.
- (5) Yao, Q.; Yuan, C. J. Org. Chem. 2012, 77, 10985–10990, and references cited therein.
- (6) Baylis, E. K.; Campbell, C. D.; Dingwall, J. G. J. Chem. Soc. Perkin Trans. I. 1989, 2845–2853.
- (7) To be specific, the following analogs were synthesized asymmetrically: (a) Analogs of Ala and Phe: Patrick, P. M.; Brian, T.; J.
- 4 Chem. Soc., Perkin Trans. 1. 1984, 1319–1329; (b) Analogs of Ala, Phe, Val and Leu: Hamilton, R.; Walker, B.; Walker, B. J.
- 6 Tetrahedron Lett. 1995, 36 (25), 4451–4454; (c) Analog of Met: Kirill, V. A.; Yurii, N. Z.; Nikolai, G. F.; Elena, N. K.; Radii, M.
- 8 K. Mendeleev Commun. 2003, 13 (3), 127–128.
- 0 (8) Zhang, D. H.; Yuan, C. Y. Chem.-Eur. J. 2008, 14, 6049-6052.
- ² (9) (a) David, F. A.; Reddy, G. V.; Liu, H. J. Am. Chem. Soc. 1995, 117, 3651–3653; (b) Liu, G.; Cogan, D. A.; Owens, T. D.;
- ³⁴ Tang, T. P.; Ellman, J. A. J. Org. Chem. **1999**, 64, 1278–1284.
- ³⁶ (10) See Experimental Section and Supporting Information for detailed NMR data.
- ³⁸ (11) Galaktionov, K.; Beach, D. Cell **1991**, 67 (6), 1181–1194.
- (12) Kells, K.W.; Chong, J. M. Org. Lett. 2003, 5 (22), 4215–4218.
- (13) Asada, M.; Obitsu, T.; Kinoshita, A.; Nagase, T.; Yoshida, T.; Yamaura, Y.; Takizawa, H.; Yoshikawa, K.; Sato, K.; Narita,
- M.; Nakai, H.; Toda, M.; Tobe, Y. *Bioo. Med. Chem.* **2010**, *18* (9), 3212–3223.
- ¹⁰ (14) Tang, T. P.; Volkman, S. K.; Ellman, J. A. J. Org. Chem. **2001**, 66, 8772–8778.

- 50 57
- 58 59
- 60