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Summary of main observation and conclusion  Divalent ytterbium iodide [LYb(µ-I)(THF)]2 (1; L = [MeC(NDIPP)CHC(Me)NCH2CH2NMe2]−, DIPP = 2,6-
(iPr)2C6H3) was synthesized and its reactivity was studied. Complex 1 was synthesized by salt metathesis of YbI2(THF)2 with the potassium salt of ligand (KL) 
in high yield. In the reactions with trimethylsilyl azide, azobenzene, sulfur and diphenyl disulfide, complex 1 acts as a 2e reductant. In the reaction with 
CO2, the central carbon atom of β-diketiminato backbone in 1 nucleophilically attacks the CO2 molecule to give a divalent ytterbium carboxylate. 

Background and Originality Content 
The chemistry of divalent rare-earth metal complexes is 

currently one of the most rapidly developing areas in 
organometallic chemistry, and their use as reducing agents in small 
molecule activation receives increasing attention.[1,2] A vast array of 
divalent rare-earth metal complexes have been found to possess 
high or versatile reactivity toward a series of small molecules, even 
including the unreactive molecule N2.[3-10] The ancillary ligands of 
these complexes were dominated by cyclopentadienyl ligand (Cp) 
or its substituted analogues at the beginning,[4] ligands other than 
Cp and its derivatives were introduced in the last two decades. 
Some bulky N-containing ligands, such as amidinates,[7] 
guanidinates,[8] and tris(pyrazoly)borates,[9] have received 
attention, due to their strong donating ability and easily adjustable 
electronic and steric properties. The β-diketiminato ligands as one 
kind of monoanionic N-containing ligands, have been widely used 
in the stabilization of metal complexes across the periodic table.[10] 
The chemistry of β-diketiminato ligands supported trivalent rare-
earth metal complexes is well known, in comparison, divalent rare-
earth metal complexes have been much less studied.[11] 
Heteroleptic β-diketiminato ytterbium(II) halides remained 
unknown until 2009 (Figure 1, (a) and (b)), owing to the strong 
tendency to undergo ligand redistribution reactions.[11c] In 2011, 
another bulky β-diketiminato ytterbium(II) iodide (Figure 1, (c)) was 
reported.[11d] The reductivity of these β-diketiminato ytterbium(II) 
iodides was not reported. Recently, we have developed a type of β-
diketiminato based multidentate ligands, which stabilize a series of 
highly reactive rare-earth metal complexes.[12] By employing a β-
diketiminato based tetradentate ligand, we successfully 
synthesized a ytterbium(II) iodido complex (Figure 1, (d)).[13] 

Despite this iodide can be used as the precursor for the synthesis 
of ytterbium(II) alkyl complex, its reductivity to small molecules is 
rather sluggish. Recently, we synthesized a ytterbium(II) iodide 
supported by β-diketiminato based tridentate ligand. This new 
ytterbium(II) complex is able to undergo redox reactions with 
trimethylsilyl azide, azobenzene, sulfur and diphenyl disulfide as 
well as nucleophilic reaction with CO2. Herein, we report these 
results. 
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Figure 1  Reported divalent ytterbium iodido complexes supported by β-
diketiminato type ligands 

Results and Discussion 
The reaction of YbI2(THF)2 with a potassium salt of ligand KL (L 

= [MeC(NDIPP)CHC(Me)NCH2CH2NMe2]−, DIPP = 2,6-(iPr)2C6H3) in 
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THF at room temperature provided a divalent ytterbium iodide 
[LYb(µ-I)(THF)]2 (1) as a deep brown solid in 84% yield (Scheme 1). 
The complex was characterized by NMR spectroscopy (1H, 13C{1H}), 
IR spectroscopy, elemental analysis, and single-crystal X-ray 
crystallography (Figure 2). The single-crystal X-ray crystallography 
indicated that complex 1 exits a dimmer, in which each ytterbium 
ion is coordinated by three nitrogen atoms of L, two bridging 
iodides and one oxygen of THF in a distorted octahedral geometry. 
The structure of 1 is similar to that of [L'Yb(µ-I)]2 (L' = 
[MeC(NDIPP)CHC(Me)NCH2CH2N(Me)CH2CH2NMe2]−),[13] where 
the THF in 1 is replaced by the terminal amino group of L'. Two Yb‒
I bond lengths in 1 are not equal, one is 3.184(1) Å while the other 
is 3.229(1) Å. 

Scheme 1  Synthesis of [LYb(µ-I)(THF)]2 (1) 
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Figure 2  Molecular structure of complex 1 with ellipsoids at 30% 
probability level. DIPP isopropyl groups and hydrogen atoms were omitted 
for clarity. Selected bond distances [Å] and angles [°]: Yb‒N1 2.463(4), Yb‒
N2 2.410(4), Yb‒N3 2.608(4), Yb‒O 2.492(3), Yb‒I 3.184-(1), Yb‒I(A) 
3.229(1), Yb‒I‒Yb(A) 97.78(1), I‒Yb‒I(A) 82.22(1). 

Complex 1 was treated with one equivalent of trimethylsilyl 
azide (Me3SiN3) in toluene at room temperature. The color of the 
reaction mixture changed immediately from deep brown to orange 
accompanied by an evolution of dinitrogen. After 30 minutes, the 
solvent was removed under vacuum, and the residue was extracted 
with hexane. From the hexane extraction, a trivalent ytterbium 
amido iodide LYbI(NHSiMe3) (2) was obtained in 42% yield (based 
on Yb) as an orange solid. The 1H NMR spectrum of the product 
which is not soluble in hexane was recorded in d8-THF, showing the 
complex is paramagnetic (the Yb(III) species). Due to the 
paramagnetic property of the complex, the 1H NMR signals are 
broad and not informative for the structure of the complex. The 
complex 2 was fully characterized by 1H NMR spectroscopy, IR 
spectroscopy, elemental analysis, and single-crystal X-ray 
crystallography. The 1H NMR spectroscopy of 2 exhibited the 
signals ranged from 35 to -38 ppm, in line with the paramagnetic 

property of the Yb(III) complex. Different from 1, complex 2 is a 
monomer (Figure 3). The ytterbium ion is coordinated by three 
nitrogen atoms of L, one nitrogen atom of the amido ligand, and 
one iodide in a distorted square pyramidal geometry. The Yb‒N1 
and Yb‒N2 bond lengths in 2 are significantly shorter than those in 
1, (2.278(5) and 2.297(5) Å vs 2.463(4) and 2.410(4) Å), in 
consistent with an oxidation state change from Yb(II) of 1 to Yb(III) 
of 2.[14] Organic azides usually act as two-electron oxidants in the 
reactions with low valent metal complexes by denitrogenative 
reaction, providing high valent metal imido complexes.[15] Pan and 
Wang reported the formation of a tetranuclear Sm(III) bridging 
imido complex [{Me2Si[NC(Ph)N(DIPP)]2}2Sm4(µ3-NSiMe3)4] via a 
reaction of a Sm(II) complex 
[{Me2Si[NC(Ph)N(DIPP)]2}SmI2Li2(THF)(Et2O)2] with Me3SiN3.[7b] We 
propose that the reaction of 1 with Me3SiN3 generates a trivalent 
ytterbium imido intermediate A (Scheme 3), which is unstable and 
subsequently undergoes a hydrogen abstraction reaction to 
provide the final product 2. To find out where the hydrogen comes 
from and identify the byproduct(s) of this reaction, the residue of 
the extraction which is not soluble in hexane was treated with D2O, 
and then characterized by the 1H and 2D NMR spectroscopy. The 
deuteration products, [MeC(N(D)DIPP)CHC(CH2D)NCH2CH2NMe2], 
[MeC(N(D)DIPP)CHC(CH2D)=O] and [MeC(N(H)DIPP)CDC(CH2 D)=O], 
were detected. Apparently, 
[MeC(N(D)DIPP)CHC(CH2D)NCH2CH2NMe2] is from the deuteration 
reaction of dianonic ligand 
[MeC(NDIPP)CHC(=CH2)NCH2CH2NMe2]2−, while 
[MeC(N(D)DIPP)CHC(CH2D)=O] and [MeC(N(H)DIPP)CDC(CH2D)=O] 
are caused by the further hydrolysis reaction of 
[MeC(N(D)DIPP)CHC(CH2D)NCH2CH2NMe2] with D2O. This result 
clearly indicated that the hydrogen comes from the other ligand in 
A, and the byproduct is reasonably formulated as 
[{MeC(NDIPP)CHC(=CH2)NCH2CH2NMe2}YbI(THF)] (Scheme 3). 

Scheme 2  Reactions of complex 1 with trimethylsilyl azide, azobenzene, 
elemental sulfur, and diphenyl disulfide 

1

Me3SiN3

r.t. 
toluene2

-N2
2 PhNNPh

r.t. 
benzene

2

3

1/8
 
S8

N

N

N

DIPP
S

Yb
I

N

N

N

DIPP
I

Yb

4

PhSSPh

N

N

N

DIPP

S
Yb

S N

N

N

DIPP

Yb

Ph

Ph

I

I

5

r.t. 
benzene

N N

N

DIPP

N

Yb I
N

Ph
Ph

N N

N

DIPP
Yb

N
HI

SiMe3

r.t. 
benzene42% yield 88% yield

87% yield 89% yield

 

This article is protected by copyright. All rights reserved.



 

 
Chin. J. Chem. 2019, 37, XXX－XXX © 2019 SIOC, CAS, Shanghai, & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.cjc.wiley-vch.de  

Running title Chin. J. Chem. 

 
Figure 3  Molecular structure of complex 2 with ellipsoids at 30% 
probability level. DIPP isopropyl groups and hydrogen atoms (except H4) 
were omitted for clarity. There are four crystallographically independent 
molecules in the unit cell. The bond lengths and angles listed are the 
average of four molecules. Selected bond distances [Å] and angles [°]: Yb‒
N1 2.278(5), Yb‒N2 2.297(5), Yb‒N3 2.421(5), Yb‒N4 2.118(5), Yb‒I 
2.943(1), Yb‒N4‒Si 139.6(3). 

Scheme 3  Proposed pathway for the formation of 2 
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In the reactions with low valent metal complexes, azobenzene 
(PhN=NPh) can be reduced to anionic Ph2N2−, dianionic Ph2N22−, or 
PhN2− species, and these processes are regarded to be relevant to 
the studies of N2 fixation.[16] Reaction of complex 1 with 
azobenzene in a 1 : 2 molar ratio in benzene at room temperature 
led to a dark blue solution, from which trivalent ytterbium complex 
LYbI(PhNNPh) (3) was obtained in 88% yield (Scheme 2). On the 
other hand, the reaction of complex 1 with azobenzene in a 1 : 1 
molar ratio gave an unidentified mixture. The 1H NMR 
spectroscopy of 3 showed a paramagnetic property. Single-crystal 
X-ray crystallography showed that a radical anion (PhNNPh−·) 
coordinates to the ytterbium ion in a ƞ2-N,N' fashion (Figure 4), the 
Yb‒N4 bond length (2.237(4) Å) is slightly shorter than the Yb‒N5 
bond length (2.287(4) Å). The Yb‒Nazobenzene bond length difference 
of 0.05 Å (Yb‒N4 vs Yb‒N5) is comparable with that found in a 
related samarium complex [(C5Me5)2Sm(N2Ph2)(THF)] (0.04 Å),[16a] 
on the other hand, is significant shorter than that reported in 
[(C5Me5){Ph3B(µ-ƞ1:ƞ6-Ph)}Sm(ƞ2-N2Ph2)] (0.28 Å).[16d] The N4‒N5 
bond length of 1.347(5) Å is close to that of 1.331(17) Å found in 
the KPhNNPh radical,[5c] which is intermediate between the N=N 
bond length (1.25 Å in azobenzene) and the N‒N single bond length 
(1.45 Å in hydrazine). Although a number of samarium(III) and 
thulium(III) complexes containing monoanionic reduced 
azobenzene have been reported, the structurally characterized 
ytterbium (III) analogues are very scarce.[17] 

 
Figure 4  Molecular structure of complex 3 with ellipsoids at 30% 
probability level. DIPP isopropyl groups and hydrogen atoms were omitted 
for clarity. Selected bond distances [Å] and angles [°]: Yb‒N1 2.289(4), Yb‒
N2 2.284(4), Yb‒N3 2.447(4), Yb‒N4 2.237(4), Yb‒N5 2.287(4), Yb‒I 
2.923(1), N4‒N5 1.347(5). 

Dc magnetic measurements for 3 were performed in the 
temperature range from 2 to 300 K under 1 kOe of dc field (Figure 
5), featuring typical paramagnetic behaviours for lanthanide ions. 
At 300 K, the χmT value of 3 is 2.46 emu K mol-1, in good agreement 
with the non-interacting theoretical values of 2.57 emu K mol-1 for 
Yb3+ ions (2F7/2, S = 1/2, L =3, J = 7/2, gJ = 8/7). On decreasing the 
temperature, a general decrease of the χmT product was observed 
because of the depopulation of sublevels of the ground J multiplet 
split by the crystal field and/or weak antiferromagnetic dipolar 
interactions. The field dependence of magnetization of 3 (Figure 6) 
shows a linear increase at 2 K and fails to reach saturation at 5 T. 
This result is associated with the possible contribution of Yb3+ 
magnetic anisotropy. In addition, the M versus H/T plots are non-
superposition, implying the presence of low-lying excited levels. 

 
Figure 5  Plot of χmT versus T of 3 from 2 to 300 K. 
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Figure 6  Plot of M versus H/T at the indicated temperatures. 

Reactions of 1 with elemental sulfur and diphenyl disulfide 
were also studied (Scheme 2). Treatment of 1 with elemental sulfur 
(S8) in a 8 : 1 molar ratio in benzene provided a sulfide bridged 
dinuclear Yb(III) complex [LYbI]2(µ-S) (4) in 87% yield. In 4, the Yb‒
S distance and Yb‒S‒Yb angle are 2.479(1) Å and 140.29(7)°, 
respectively (Figure 7). It has been reported that the reactions of 
divalent rare-earth metal complexes, such as (C5Me5)2Sm(THF)2,[18a] 
[{Me2Si(C5Me4)(NC4H4)}YbN(SiMe3)2],[18b] (TpiPr2)2Ln (Ln = Yb, Sm; 
TpiPr2 = hydro-tris(3,5-diisopropylpyrzolyl)borate),[9c] and 
[{HC(NDIPP)2}2Ln(THF)2] (Ln = Yb, Sm),[7f] with excess S8 give 
disulfide or polysulfide complexes. But complex 1 reacts with 
excess S8 to yield a complicated mixture. The reaction of 1 with an 
equivalent diphenyl disulfide (PhSSPh) in benzene resulted in a 
phenyl sulfide bridged Yb(III) dimer [LYbI(µ-SPh)]2 (5) in 89% yield. 
This product is different from the reactions of PhSSPh with 
[(C5Me5)2Yb(OEt2)] or [{HC(NDIPP)2}2Yb(THF)2], which give the 
monomers [(C5Me5)2Yb(SPh)(OEt2)][19] or 
[{HC(NDIPP)2}2Yb(SPh)(THF)][7h]. Complex 5 was also characterized 
by single-crystal X-ray crystallography (Figure 7). The Yb‒S distance 
in 5 (2.755(1) Å) is much longer than that in 4 (2.479(1) Å), this is 
reasonable as PhS− is monoanionic while S2− is dianionic. The Yb‒
S‒Yb in 5 is much smaller than that in 4, 115.88(4)° vs 140.29(7)°. 

 

 
Figure 7  Molecular structure of complexes 4 (top) and 5 (bottom) with 
ellipsoids at 30% probability level. DIPP isopropyl groups and hydrogen 
atoms were omitted for clarity. Selected bond distances [Å] and angles [°]: 
4: Yb1‒N1 2.250(4), Yb1‒N2 2.278(4), Yb1‒N3 2.407(4), Yb1‒I1 2.956(1), 
Yb1‒S 2.479(1), Yb2-N4 2.259(4), Yb2‒N5 2.281(4), Yb2‒N6 2.429(4), Yb2‒
I2 2.953(1), Yb1‒S‒Yb2 140.29(7), S‒Yb1‒I1 109.51(4), S‒Yb2‒I2 110.96(4). 
5: Yb‒N1 2.296(3), Yb‒N2 2.275(3), Yb‒N3 2.458(3), Yb‒I 2.949(1), Yb‒S 
2.755(1), Yb‒S‒Yb(A) 115.88(4), S‒Yb‒S(A) 64.12(4). 

In contrast to the redox reactions with trimethylsilyl azide, 
azobenzene, sulfur and diphenyl disulfide, complex 1 undergoes   
a nucleophilic reaction with CO2 to give a new divalent ytterbium 
complex 6 (Scheme 4). When a C6D6 solution of 1 was exposed to 
CO2 (1 atm) at room temperature, the colour of the solution 
changed from deep brown to deep red immediately. Monitoring of 
the reaction by 1H NMR spectroscopy revealed that complex 1 was 
completely converted into complex 6. The reaction was scaled up 
in toluene, which afforded 6 in 91% isolated yield. A Similar 
nucleophilic addition was demonstrated by Piers when a trivalent 
scandium cation [{tBuC(NDIPP)CHC(tBu)NDIPP]ScMe]+ was treated 
with excess CO2,[20] however such reaction was not reported for the 
related divalent rare-earth metal complexes. It should be noted 
that some divalent ytterbium complexes undergo reduction 
reaction with CO2.[5c,5g] Complex 6 was characterized by elemental 
analysis, IR spectroscopy, 1H and 13C{1H} NMR spectroscopy. The 1H 
NMR spectrum of 6 in C6D6 displays four multiplets at δ = 3.24, 2.93, 
2.39, and 1.72 ppm, attributable to the four hydrogen atoms of the 
‒NCH2CH2N‒ fragment of the ligand, which reveals that the amino 
sidearm is coordinated to the ytterbium ion. In addition, the 
CH(C=N)2CO2 protons give rise to a singlet at δ = 5.05 ppm in the 1H 
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NMR spectrum, whilst the carboxylate carbon CH(C=N)2CO2 shows 
a signal at δ = 178 ppm in the 13C{1H} NMR spectrum, which are 
comparable to those observed in the related scandium complex.[20] 
Interestingly, recrystallization of 6 in THF provided a divalent 
ytterbium complex 7. Different from 6, complex 7 is insoluble in 
toluene and benzene, and even in THF, the solubility of 7 is very 
low. The molecular structure of 7 was determined by single-crystal 
X-ray diffraction. Complex 7 is a dimer, in which each ytterbium ion 
is coordinated by one oxygen atom and two nitrogen atoms of the 
newly formed ligand [MeC(N(H)DIPP)C(CO2)C(Me)NCH2CH2NMe2]-, 
two oxygen atoms of the second ligand, one oxygen atom of THF, 
and one iodide in a distorted pentagonal bipyramidal geometry. 
The trigonal-planar geometry around the C3 atom (Σ = 360o) clearly 
indicates that the hydrogen on the C3 atom in 6 shifts to the N1 
atom in 7. The Yb‒Ocarboxylate bond lengths (Yb‒O1 2.413(2), Yb‒
O1(A) 2.482(2), and Yb‒O2(A) 2.478(2) Å) are comparable with 
those observed in (NHCDipp-CO2)3Yb(THF)2 (NHCDipp =1,3-bis(2,6-
diisopropylphenyl)imidazole-2-ylidene).[21] 

Scheme 4  Reaction of 1 with CO2 
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Figure 8  Molecular structure of complex 7 with ellipsoids at 30% 
probability level. DIPP isopropyl groups and hydrogen atoms (except H1 and 
H1A) were omitted for clarity. Selected bond distances [Å] and angles [°]: 
Yb‒N2 2.543(3), Yb‒N3 2.586(4), Yb‒I1 3.174(3), Yb‒O1 2.413(2), Yb‒O1(A) 
2.482(2), Yb‒O2 2.478(2), Yb‒O3 2.448(3), C22‒O1 1.289(4), C22‒O2 
1.268(4), C22‒C3 1.463(5), N1‒C2 1.347(5), C2‒C3 1.394(5), C3‒C4 1.483(4), 
C4‒N2 1.289(5), O1‒Yb‒O1(A) 70.68(9), Yb‒O1‒Yb(A) 109.32(9), C2‒C3‒C4 
119.6(3), C2‒C3‒C22 121.3(3), C4‒C3‒C22 119.1(3). 

Conclusions 
Salt metathesis of YbI2(THF)2 with potassium salt (KL) (L = 

[MeC(NDIPP)CHC(Me)NCH2CH2NMe2]−, DIPP = 2,6-(iPr)2C6H3)) in 
THF at room temperature provides a divalent ytterbium iodide 
[LYb(µ-I)(THF)]2 (1) in high yield. Complex 1 easily undergoes redox 
reaction with trimethylsilyl azide to generate a trivalent ytterbium 
imido complex, which is instable and the imido ligand in it 

subsequently abstracts a hydrogen from the ligand L to give a 
trivalent ytterbium amido complex. In the reactions with 
azobenzene, sulfur and diphenyl disulfide, complex 1 also shows its 
reductivity and the reactions produce ytterbium(III) azobenzene, 
ytterbium (III) sulfide, and ytterbium(III) phenylsulfide, respectively. 
Complex 1 also reacts with CO2, in this case the central carbon 
atom of β-diketiminato backbone in 1 nucleophilically attacks the 
CO2 molecule to give a divalent ytterbium carboxylate.  

Experimental 
General Procedures  

All manipulations were performed under an atmosphere of 
nitrogen using Schlenk techniques or in a nitrogen-filled glovebox. 
Toluene, THF, hexane, C6D6, and d8-THF were dried over Na/K alloy, 
transferred under vacuum, and stored in the glovebox. Azobenzene, 
trimethylsilyl azide, and diphenyl disulphide were used as received. 
Elemental sulfur was purified by sublimation before use. CO2 
(99.9%) was further dried by passing through the activated 4 Å 
molecular sieves. YbI2(THF)2[22] was synthesized following a 
literature procedure. KL (L = [MeC(NDipp)CHC(Me)NCH2CH2NMe2]−) 
was synthesized similar to that of LiL but using KH instead of 
nBuLi.[23] 1H and 13C{1H} NMR spectra were recorded on a Varian 400 
MHz, a Bruker 400 MHz or an Agilent 400 MHz spectrometer. 
Chemical shifts δ were reported in ppm with references to the 
residual resonance of the deuterated solvents for proton and 
carbon spectroscopies. IR spectra were recorded in KBr pellets on 
an ALPHA II FT-IR spectrometer. Elemental analyses were 
performed by the Analytical Laboratory of Shanghai Institute of 
Organic Chemistry. 

[LYb(µ-I)(THF)]2 (1). To a THF solution (2 mL) of YbI2(THF)2 (311 
mg, 0.54 mmol) was added a THF solution (2 mL) of KL (200 mg, 
0.54 mmol) at room temperature. The reaction was stirred for 1 
hour, resulting in a deep brown solution with gray precipitates. 
After filtration, the solvent was removed under vacuum, and the 
residue was extracted with a mixture solution of toluene (18 mL) 
and THF (2 mL). The solvent of the extraction was removed under 
vacuum, and the residue was washed with hexane (2 mL × 3) and 
dried under vacuum to give 1 as a deep brown solid. Yield: 320 mg 
(84%). 1H NMR (400 MHz, d8-THF, 25 oC): δ 7.03 (d, 3JH−H = 6.8 Hz, 
4H, m-ArH of DIPP), 6.94 (t, 3JH−H = 6.8 Hz, 2H, p-ArH of DIPP), 4.48 
(s, 2H, MeC(N)CH), 3.62 (br, 8H, THF-H, overlapped with the 
residual solvent resonance of the deuterated solvent), 3.42 (br, 4H, 
NCH2), 3.15 (m, 4H, CHMe2), 2.65 (br, 4H, NCH2), 2.36 (br, 12H, 
NMe2), 1.84 (s, 6H, CMe), 1.77 (br, 8H, THF-H), 1.48 (s, 6H, CMe), 
1.24 (d, 3JH−H = 6.0 Hz, 12H, CHMe2), 1.09 (d, 3JH−H = 6.0 Hz, 12H, 
CHMe2). 13C{1H} NMR (100 MHz, d8-THF, 25 oC): δ (ppm) 165.7, 
163.4 (imine C), 148.7 (i-ArC of DIPP), 142.2 (o-ArC of DIPP), 123.6 
(m-ArC of DIPP), 123.5 (p-ArC of DIPP), 95.2 (MeC(N)CH), 68.0 (THF-
C), 60.5, 48.3 (NCH2), 45.7 (NMe2), 28.1 (CHMe2), 26.0, 25.1, 24.7, 
22.8 (CHMe2, CMe and THF-C). IR (KBr, cm-1): ν 3051 (m), 2956 (s), 
2928 (s), 2864 (s), 2825 (s), 1624 (m), 1541 (s), 1517 (s), 1460 (s), 
1414 (s), 1379 (s), 1364 (s), 1344 (s), 1312 (s), 1265 (s), 1248 (s), 
1228 (s), 1174 (s), 1094 (s), 1027 (s), 933 (s), 876 (s), 786 (s), 758 
(s). Anal. Calcd for C50H84I2N6O2Yb2 (1): C, 42.86; H, 6.04; N, 6.00. 
Found: C, 42.54; H, 5.87; N, 6.07. 

LYbI(NHSiMe3) (2). To a toluene solution (10 mL) of 1 (1150 mg, 
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0.82 mmol) was added a toluene solution (1 mL) of trimethylsilyl 
azide (98 mg, 0.85 mmol) at room temperature. After stirring for 
30 minutes, the solvent was removed under vacuum, and the 
residue was extracted with hexane (4 mL × 3). The solvent of the 
extraction was removed under vacuum affording product 2 as an 
orange solid. Yield: 488 mg (42% yield based on Yb). 1H NMR (400 
MHz, C6D6, 25 oC): δ 34.46, 22.15, 18.22, 17.16, 11.67, 4.82, 3.24, 
2.49, 2.00, -0.84, -4.78, -18.63, -19.81, -27.52, -28.06, -32.95, -
37.93. The paramagnetism of complex 2 prevents meaningful NMR 
signal assignment. IR (KBr, cm-1): ν 2955 (s), 2891 (m), 1532 (s), 
1460 (s), 1437 (s), 1395 (s), 1343 (s), 1314 (s), 1254 (s), 1239 (s), 
1178 (m), 1096 (m), 1019 (s), 939 (m), 892 (s), 825 (m). Anal. Calcd 
for C24H44IN4SiYb (2): C, 40.22; H, 6.19; N, 7.82. Found: C, 40.62; H, 
6.16; N, 7.66. 

The residue of the extraction was also dried under vacuum to 
give an orange solid (529 mg). Its 1H NMR spectrum was recorded 
in d8-THF, but the signals are too broad to provide useful 
information. The toluene (1 mL) suspension of the residue (91 mg) 
was treated with 0.05 mL of D2O, resulting in a color changing of 
the suspension to pale yellow. The solvent was removed under 
vacuum, and the residue was divided into two parts. One was 
extracted with 1 mL of C6D6 and recorded by 1H NMR spectroscopy, 
the other part was extracted with 1 mL of C6H6 and recorded by 2H 
NMR spectroscopy. The 1H and 2H NMR spectroscopy study 
indicated the C−H activation of methyl group in monoanionic ligand 
L to form a dianionic ligand 
[MeC(NDIPP)CHC(=CH2)NCH2CH2NMe2]2−. 

LYbI(PhNNPh) (3). To a benzene solution (2 mL) of 1 (141 mg, 
0.10 mmol) was added a benzene solution (1 mL) of azobenzene 
(36 mg, 0.20 mmol) at room temperature. After stirring for 30 
minutes, the solvent was removed under vacuum. The residue was 
washed with hexane (2 mL) and dried under vacuum to give 3·C6H6 
as a blue solid. Yield: 156 mg (88%). The complex is paramagnetic. 
1H NMR (400 MHz, C6D6, 25 oC): δ 67.47, 60.41, 54.96, 47.12, 28.14, 
27.20, 18.84, 16.22, 12.92, 11.24, 8.02, 6.11, 4.15, 2.49, -1.53, -1.94, 
-5.07, -9.99, -12.77, -13.40, -15.46, -162.34, -170.56. IR (KBr, cm-1): 
ν 3052 (w), 2960 (s), 2925 (m), 2864 (m), 1521 (s), 1475 (s), 1458 
(s), 1439 (s), 1395 (s), 1341 (s), 1314 (s), 1254 (m), 1177 (m), 1097 
(m), 1019 (s), 936 (m), 792 (m), 758 (s), 675 (s). Anal. Calcd for 
C39H50IN5Yb (3·C6H6): C, 52.70; H, 5.67; N, 7.88. Found: C, 53.01; H, 
5.98; N, 7.80. 

[LYbI]2(µ-S) (4). To a benzene solution (2 mL) of 1 (140 mg, 0.10 
mmol) was added a benzene solution (1 mL) of sulfur (3.2 mg, 0.013 
mmol) at room temperature. After 40 minutes, the volatiles of the 
reaction solution were removed under vacuum, and complex 
4·C6H6 was obtained as a red solid. Yield: 119 mg (87%). The 
complex is paramagnetic. 1H NMR (400 MHz, C6D6, 25 oC): δ 93.65, 
73.95, 69.11, 52.60, 33.44, 28.67, 23.68, 21.42, 21.39, 11.80, 11.52, 
10.35, 8.84, 7.85, 3.51, 2.45, 1.65, 1.22, -2.38, -8.06, -11.78, -12.45, 
-18.81, -21.76, -23.79, -24.34, -25.04, -29.05, -29.68, -30.89, -35.85, 
-40.24, -43.46, -55.52. IR (KBr, cm-1): ν 3057 (w), 2960 (s), 2924 (m), 
2867 (m), 1626 (m), 1525 (s), 1459 (s), 1437 (s), 1391 (s), 1340 (s), 
1317 (m), 1253 (m), 1177 (m), 1098 (m), 1017 (m), 936 (m), 843 (w), 
783 (m), 760 (m). Anal. Calcd for C48H74I2N6SYb2 (4·C6H6): C, 42.17; 
H, 5.46; N, 6.15. Found: C, 42.63; H, 5.43; N, 6.03. 

[LYbI(µ-SPh)]2 (5). To a benzene solution (2 mL) of 1 (140 mg, 
0.10 mmol) was added a benzene solution (1 mL) of diphenyl 

disulphide (22 mg, 0.10 mmol) at room temperature. After 30 
minutes, the precipitate was collected, washed with benzene (2 
mL), and dried under vacuum to afford 5·C6H6 as a red solid. Yield: 
138 mg (89%). The complex is paramagnetic. 1H NMR (400 MHz, 
C6D6, 25 oC): δ 32.62, 19.09, 17.36, 13.83, 11.98, 11.32, 8.58, 7.35, 
6.82, 6.81, 5.83, 5.03, 4.67, 3.44, 1.61, 0.58, -0.09, -0.56, -4.03, -
5.60, -9.01, -9.82, -12.69, -13.83, -17.96, -50.24, -63.78. IR (KBr, cm-

1): ν 3056 (w), 2957 (s), 2923 (m), 2865 (m), 1580 (w), 1525 (s), 1436 
(s), 1390 (s), 1340 (s), 1314 (m), 1250 (m), 1177 (m), 1098 (m), 1020 
(m), 934 (m), 790 (m), 762 (m), 739 (m), 692 (m). Anal. Calcd for 
C60H84I2N6S2Yb2 (5·C6H6): C, 46.39; H, 5.45; N, 5.41. Found: C, 45.92; 
H, 5.48; N, 5.02. 

[{MeC(NDIPP)CH(CO2)C(Me)NCH2CH2NMe2}Yb(µ-I)]2 (6) and 
[{MeC(NHDIPP)C(CO2)C(Me)NCH2CH2NMe2}YbI(THF)]2 (7). A 
toluene solution (5 mL) of 1 (370 mg, 0.53 mmol) was placed in a 
tube with a Teflon stopcock. The tube was taken out of the 
glovebox and connected to a Schlenk line. The solution of 1 was 
degassed at low temperature, and then exposed to 1.0 atm of CO2 
at room temperature. After stirring for 1 hour, the volatiles were 
removed under vacuum, and the residue was washed with hexane 
(2 mL × 3), dried under vacuum to afford 6 as a dark red solid. Yield: 
322 mg (91%). 1H NMR (400 MHz, C6D6, 25 oC): δ 7.16 (m, 6H, ArH 
of DIPP, overlapped with the residual solvent resonance of the 
deuterated solvent), 5.05 (s, 2H, MeC(N)CH), 3.24 (m, 6H, CHMe2 
and NCH2), 2.93 (m, 2H, NCH2), 2.68 (s, 6H, NMe2), 2.39 (m, 8H, 
NMe2 and NCH2), 2.15 (s, 6H, CMe), 1.96 (s, 6H, CMe), 1.72 (m, 2H, 
NCH2), 1.43 (d, 3JH−H = 6.8 Hz, 6H, CHMe2), 1.22 (d, 3JH−H = 6.8 Hz, 
12H, CHMe2), 1.14 (d, 3JH−H = 6.8 Hz, 6H, CHMe2). 13C{1H} NMR (100 
MHz, C6D6, 25 oC): δ (ppm) 179.1 (imine C), 178.4 (OCO), 167.9 
(imine C), 146.6 (i-ArC of DIPP), 136.74, 136.66 (o-ArC of DIPP), 
124.1 (p-ArC of DIPP), 123.4, 123.2 (m-ArC of DIPP), 70.4 
(MeC(N)CH), 59.3 (NCH2), 49.2 (NMe2), 48.9 (NCH2), 44.7 (NMe2), 
28.2, 28.0 (CHMe2), 23.9, 23.4, 22.5 (CHMe2), 22.3, 21.0 (CMe). IR 
(KBr, cm-1): ν 3061 (w), 2963 (s), 2868 (m), 2834 (m), 2790 (m), 1665 
(m), 1630 (s), 1580 (s), 1466 (s), 1397 (s), 1364 (m), 1232 (m), 1170 
(m), 1019 (m), 934 (m), 780 (m), 760 (m). Anal. Calcd for 
C22H34IN3O2Yb (6): C, 39.29; H, 5.10; N, 6.25. Found: C, 39.28; H, 
5.22; N, 6.04. Complex 7 was isolated as dark red crystals, when 
complex 6 (103 mg, 0.15 mmol) was dissolved in 1 mL of THF and 
stood at -35 oC. Yield: 78 mg (69%). The NMR spectra of complex 7 
were not obtained due to its poor solubility in the deuterated 
organic solvents, even in the d8-THF, the solubility of 7 is very low. 
IR (KBr, cm-1): ν 3064 (w), 2963 (s), 2869 (m), 2831 (m), 2721 (w), 
1593 (s), 1571 (s), 1522 (s), 1459 (s), 1421 (s), 1361 (s), 1301 (s), 
1258 (s), 1183 (m), 1101 (m), 1043 (m), 930 (m), 808 (m), 770 (m). 
Anal. Calcd for C52H84I2N6O6Yb2 (7): C, 41.94; H, 5.69; N, 5.64. Found: 
C, 42.06; H, 5.95; N, 5.64. 

Magnetic Characterization.  
The polycrystalline sample was stuffed in capsules with 

parafilm covered to protect them from air and water. Direct current 
(dc) magnetism of poly crystals were performed on a Quantum 
Design MPMS3 magnetometer (VSM module). Capsule, parafilm 
and molecule formula (Pascal constant)[24] were considered when 
the diamagnetic correction was carried on the data. 

X-ray Crystallography 
Single crystals of 1 suitable for single-crystal X-ray diffraction 
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were grown from a mixture solution of toluene and THF, those of 2 
were from a hexane solution, those of 3 were from a mixture 
solution of benzene and hexane, those of 4 were from a mixture 
solution of toluene and benzene, those of 5 were from toluene, and 
those of 7 were from a mixture solution of THF and hexamethyl 
disiloxane.[25] The crystals were mounted under a nitrogen 
atmosphere on a glass fiber. Data collection of 1 and 2 were 
performed on a Bruker APEX-II CCD with Ga Kα radiation (λ = 
1.34139 Å), those of 3, 4, 5, and 7 were performed on a Bruker D8 
Venture with Ga Kα radiation (λ = 1.34139 Å). The SMART program 
package was used to determine the unit cell parameters. The 
absorption correction was applied using SADABS program.[26] All 
structures were solved by direct methods and refined on F2 by full-
matrix least-squares techniques with anisotropic thermal 
parameters for non-hydrogen atoms. Hydrogen atoms were placed 
at calculated positions and were included in the structure 
calculation. Calculations were carried out using the SHELXL-97, 
SHELXL-2014 or Olex2 program.[27] Crystallographic data and 
refinement parameters are listed in Table S1. 
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