HETEROCYCLES, Vol. 89, No. 9, 2014, pp. 2105 - 2121. © 2014 The Japan Institute of Heterocyclic Chemistry Received, 30th July, 2014, Accepted, 26th August, 2014, Published online, 28th August, 2014 DOI: 10.3987/COM-14-13065

HYPERVALENT IODINE MEDIATED ONE-POT C-H FUNCTIONALIZATION AT 2α- OR 3α-POSITION OF INDOLE DERIVATIVES

Kazuhiro Higuchi,* Masato Inaba, Asuka Naganuma, Takako Ishizaki, Masanori Tayu, and Tomomi Kawasaki*

Meiji Pharmaceutical University, 2-522-1 Noshio Kiyose, Tokyo 204-8588, Japan: kawasaki@my-pharm.ac.jp; khiguchi@my-pharm.ac.jp

Abstract – The one-pot 2α - and 3α -functionalization of 2,3-disubstituted indoles using a hypervalent iodine reagent has been developed. The substitution at the 2α -position of indoles took place using phenyliodinebis(trifluoroacetate) with oxygen and carbon nucleophiles in moderate yields. The combination of iodosobenzene and trimethylsilyl azide afforded 3α -azide derivatives preferentially. The latter reaction was applied to other 2,3-disubstituted indoles.

INTRODUCTION

Hypervalent iodine reagents¹ having a strong leaving-group ability and electrophilicity allow a wide range of reactions, such as oxidations and C-C coupling reactions under mild conditions with a tolerance for a wide range of other functional groups. The reaction between arenes and hypervalent iodine is attractive for one of the interesting research area.² Especially the application of the electron-rich arenes such as indoles give rise to the substitution via cation radical intermediate,³ indolyliodonium fragmentation,⁴ and so on.⁵ Recently, Ishibashi's group revealed the combination of phenyliodine diacetate (PIDA) and tetrabutylammonium iodide (TBAI) reacted with tetrahydrocarbazoles to give 2α -acetoxy derivatives.⁶ Alternatively, Du Bois and co-workers developed that the reaction of tetrahydrocarbazoles using imino λ^3 -iodanes with a rhodium catalyst affords 2α - and 3α -amino derivatives.⁷

Recently, we developed the concise 2α -functionalization of indole derivatives using a thionium species generated from DMSO-TFAA (Scheme 1).⁸

Scheme 1. Thionium mediated 2α -functionalization of indole derivatives

This method is useful for the introduction of various substituents to the 2α -position⁹ in one-pot procedure under mild reaction conditions. However, we require a more practical method to access to 2α -functionalized indoles for the synthesis of biologically active compounds.¹⁰ We report herein the 2α and 3α -functionalization of indole derivatives using a hypervalent iodine reagent.

RESULTS AND DISCUSSION

Optimization of Reaction Conditions

To obtain the desired 2α -methoxy indole derivatives more conveniently, we investigated the reactivity of hypervalent iodine reagents toward *N-p*-methoxybenzyl (PMB)-tetrahydrocarbazole **1a** (Table 1). To a solution of **1a** in CH₂Cl₂ added one equivalent of hypervalent iodine reagent at 0 °C. After consumption of **1a**, ten equivalents of MeOH as a nucleophile was added to the reaction mixture. When Dess-Martin periodinane (DMP, entry 1) and phenyliodine diacetate (PIDA, entry 2) were used, carbazole **4** and dimer **3** was obtained respectively instead of the desired 2α -methoxy product **2a**. PhI(OH)OTs (Koser's reagent)¹¹ afforded a trace amount of **2a** along with dimer **3** (22%) and carbazole **4** (5%), respectively (entry 3). The use of iodopentafluorobenzene bis(trifluoroacetate) (FPIFA) as a more electrophilic λ^3 -iodan produced **2a** and **3** in 8% and 29% yields, respectively (entry 4). In the case of phenyliodine bis(trifluoroacetate) (PIFA) gave **2a** in 35% yield (entry 5). The substituent effect at the indole nitrogen was examined for PIFA. *N*-Unsubstituted tetrahydrocarbazole gave a complex-mixture (entry 6) and Boc and acetyl derivatives produced a trace amount of 2α -methoxy compounds **2c** and **2d** (entries 7, 8).

Subsequently, we examined the effect of reaction temperature using PIFA (Table 2). At room temperature, the reaction afforded no desired product **2a** and gave dimer **3** in 43% yield (entry 1). When the reaction was performed at -20 °C, **2a** was given in 30% yield (entry 3). At -30 °C, the 2 α -methoxy compound **2a** was obtained in 24% yield without the formation of dimer **3** (entry 4). At -40 °C, carbazole **4** was the sole product (entry 5). We concluded that the condition proceeded with PIFA at 0 °C is an optimized condition (entry 2).

Table 1. Optimization of reaction conditions

a) The reaction gave a complex-mixture.

N PIFA (1.0 equiv.) CH₂Cl₂ (0.1 M) РМВ + temp., time ÒMe 2a PMB 3 then РМВ MeOH (10 equiv.) 10 min 1a РМВ Р́МВ 4 yield (%) 2a 3 4 1a entry temp. (°C) time (min) 1 r.t. 15 -43 5 13 2 0 10 35 27 4 _ 3 -20 10 30 20 3 -4 50 -30 24 10 22 -5 -40 60 22 33 -

Table 2. Effect of reaction temperature using PIFA

The plausible reaction mechanism is as follows (Scheme 2). First, the 3-position of **1a** attacks an iodine atom of PIFA to generate iminium intermediate **5**. Transformation of iminium **5** to enamine **6**, followed by

the nucleophilic attack of MeOH afforded 2α -methoxy compound 2a. At room temperature (Table 2, entry 1), the immediate attack of unreacted 1a to intermediate 6 produced dimer 3 before addition of MeOH. Since 1a was consumed at 0 °C and -20 °C (checked by TLC), the regeneration of 1a would be caused by the attack of MeOH on the iodine atom in iminium 5. The addition of MeOH to 6 is faster than 1a, therefore, both yield of 2a and ratio of 2a/3 were increased (entries 2 and 3). At -30 °C and -40 °C, starting material 1a was not consumed completely and nucleophiles (1a and/or MeOH) react more slowly with 6. Consequently, the elimination of iodobenzene from intermediates and the subsequent oxidation occurs to give carbazole 4 (entries 4 and 5). The structures of 2a-d and 3 were determined by differential nOe and H-H cosy spectra (Figure 1).

Scheme 2. Plausible reaction mechanism

Figure 1. Structure determination of 2a-d and 3

Study of Nucleophiles

With the optimized conditions in hand, we investigated the scope and limitation of nucleophiles for this reaction (Table 3). As is the case in MeOH, an isopropoxy group was introduced to give 2e in 41% yield (entry 1). The carbon nucleophiles MeMgBr and Me₂Zn gave 2 α -methyl derivative 2f in 26% and 21% yields, respectively (entries 2, 3). Vinyl and allyl groups were also introduced at the 2 α -position to give products 2g (39%) and 2h (31%) (entries 4, 5). Additionally, the use of *N*-methylindole as an aryl nucleophile provided compound 2i in 9% yield (entry 6). Also, the nitrogen nucleophiles, aniline and benzylamine afforded the products 2j and 2k in 5% and 8% yields, respectively (entries 7, 8).

Table 3. Study of nucleophiles

3α-Azide Substituent

When TMSN₃ was used as a nucleophile at 0 °C for substrate 1a, 2α -azide product 2l was obtained in 20% yield (Table 4, entry 1, Method A). At -20 °C, 3α-azide product 7a was produced in 45% yield along with 2α -product **2l** in 26% yield (entry 2). For *N*-Boc derivative **1c** under this reaction condition, both 2α - and 3α -substituted products **2m** and **7c** were obtained in 22% and 25% yields, respectively (entry 3).

Table 4. Azidation of 1 with the combination of hypervalent iodine and TMSN₃

$\begin{array}{c} & & \\$									
entry	1	R	reagents	temp (°C)		<u>у</u>	ields	(%) 7	1
<u> </u>	1a	PMB	PIFA, TMSN ₃ ^{a)}	0	21	20	7a	trace	18
2	"	"	"	-20	"	26	"	45	
3	1c	Boc	ш		2m	22	7c	25	11
4	1a	PMB	PIFA-TMSN3 ^{b)}	-40	21	9	7a	33	12
5	"	"	PhIO-TMSN ₃ ^{c)}	"	"	9	"	43	-
6	1c	Boc	"		2m	21	7c	30	5
7	1e	CO ₂ Me	"	-40 to -25	2n	13	7e	25	4
8	1d	Ac	"	"	20	6	7d	16	12

a) Method A: mixture of 1 and PIFA (1.0 equiv.) then addition of TMSN₃ (10 equiv.) in CH₂Cl₂ (0.1 M). b) Method B: preformed PhI(N₃)₂ by PIFA (1.2 equiv.) and TMSN₃ (2.4 equiv.) in MeCN (0.1 M). c) Method B: preformed PhI(N₃)₂ by PhIO (1.2 equiv.) and TMSN₃ (2.4 equiv.) in CH₂Cl₂ (0.1 M).

Since the treatment of **1c** with MeOH produced trace of 2α -derivative **2c** (3% yield, Table 1, entry 7), we hypothesized that the mechanism of azidation is different from that of other nucleophiles as shown in Table 3. It is known that combinations of iodosobenzene (PhIO) and TMSN₃ generate phenyliodine bisazide (PhI(N₃)₂),¹² which is an extremely labile intermediate for producing radical species.¹³ Thus, we investigated the use of preformed PhI(N₃)₂ for the azidation¹⁴ of **1** (Table 4, entries 4-8, Method B). To a solution of PIFA in MeCN was added TMSN₃ at -40 °C and the mixture was stirred for 5 min. After the addition of **1a**, 2α -azide **2l** and 3α -azide **7a** were formed in 9% and 33% yields, respectively (entry 4). The combination of PhIO and TMSN₃ increased the yield of **7a** to 43% (entry 5). The other substrates **1c-e** gave 3α -azide compounds **7c-e** in 16-30 % yields (entries 6-8). The position of the substituted azide group in **2** and **7** was determined by differential nOe and H-H cosy spectra (Figure 2).

Figure 2. Structure determination of 2l,m and 7a,c

Based on these results, we suggest the following plausible mechanism included both ionic and radical pathways (Scheme 3). In the ionic pathway, **1a** and PIFA generate iminium **5** followed by formation of enamine **6** and then S_N2 '-type reaction between the azide ion and **6** gives 2α -compound **21**. In the radical

Scheme 3. Plausible reaction mechanism

pathway, the iodine atom of iminium **5** or PIFA reacts with TMSN₃ to produce $PhI(N_3)_2$ **8**. Then, the azide radical from **8** reacts with tetrahydrocarbazole **1a** at 2 α and/or 3 α position and then the generated benzylic radical coupled with the iodo radical to form intermediates **9** and **10**. Finally, reductive elimination of iodobenzene gave the corresponding products **21** and **7a**.

Using the combination of iodosobenzene and TMSN₃ (Table 4, entry 5), we studied the scope and limitations of the substrates for a variety of 2,3-disubstituted indoles (Table 5). *N*-Boc cyclopenta[*b*]indole **1g** and cyclohepta[*b*]indoles **1i** produced the corresponding 2α - and 3α -azide products **2** and **7** in higher yield than *N*-PMB derivatives **1f** and **1h** (entries 1 vs 2, 3 vs 4). The reaction of cyclohepta[*b*]indole **1h** was accompanied by formation of olefin **11** in 23% yield (entry 3). In the case of 2,3-dialkyl substituted indoles, *N*-PMB derivatives gave better yields and selectivity than the *N*-Boc indoles (entries 5 vs 6, 7 vs 8). In particular, *N*-PMB-2-propyl-3-ethylindole **1n** gave only 3α -product **7n** in 75% yield (entry 9).

 Table 5. Study of various 2,3-disubstituted indole derivatives

a) N.A. means not available.

b) Compound 11 was obtained in 23 % yield.

CONCLUSION

We studied the one-pot functionalization of 2,3-substituted indoles with hypervalent iodine reagents. We developed the substitution at 2α -position of indoles using PIFA with oxygen and carbon nucleophiles, which afforded 2α -derivatives in moderate yields. In the case of the combination of PhIO and TMSN₃, the

radical mechanism was also included to afford 3α -azide derivatives preferentially. These results provide an interesting complementary approach to our previous method using thionium species, which afforded 2α -azide derivatives.

EXPERIMENTAL

All melting points were measured on a Yanagimoto micro melting point apparatus, and are uncorrected. IR spectra were recorded on a Shimadzu IR Prestige-21 spectrophotometer. ¹H and ¹³C NMR spectra were measured on a JEOL JNM-AL300 (300 MHz), a JEOL JNM-AL400 (400 MHz), a JEOL JNM-ECS400 (400 MHz), or a JEOL JNM-LA500 (500 MHz) spectrometer with tetramethylsilane as an internal standard. *J*-Values are given in Hertz. Mass spectra were recorded on a JEOL JMS 700 instrument with a direct inlet system. Thin layer chromatography (TLC) was carried out on a Merck silica gel plate 60F₂₅₄. Column chromatography was carried out on a silica gel [Fuji Silysia Co. Inc. (silica gel PSQ 60B)]. All solvents were purified by standard procedures prior to use. The following compounds were characterized by the previous reports: **1a-d, 1f-m, 2a, 2d-m, 3, 4**.^{6,8,15}

Repesentative procedure for C-H functionalization of indole derivatives with hypervalent iodine reagent (Table 1-3, Table 4 entries 1-3)

Under argon atmosphere, to a solution of **1a** (92 mg, 0.31 mmol) in CH₂Cl₂ (0.1 M) was added PIFA (0.13 g, 0.31 mmol) at 0 °C. After 10 min stirring, MeOH (0.13 mL, 3.1 mmol) was added to the reaction mixture. The mixture was stirred for 10 min and quenched by aqueous sodium sulfite (3 mL) and then extracted with CH₂Cl₂ (10 mL, 3 times). The organic layer was washed by brine and dried over MgSO₄. The concentrated residue was purified by silica gel chromatography (AcOEt/*n*-hexane = 1/20) to give **2a**⁸ (34 mg, 35%); **3**⁸ (24 mg, 27%); **4**¹⁵ (3.5 mg, 4%).

9-(tert-Butoxycarbonyl)-1-methoxy-1,2,3,4-tetrahydro-9H-carbazole (2c)

Colorless oil. IR (CHCl₃): 2982, 2934, 1722, 1454, 1371, 1314 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 1.69 (9H, s, ^{*t*}Bu), 1.78-2.04 (3H, m, CH₂CH₂CHOMe, CH₂CH₂CHOMe), 2.28 (1H, ddt, *J* = 3.0, 6.6, 13.8 Hz, CH₂CHOMe), 2.53 (1H, ddd, *J* = 6.3, 11.4, 16.8 Hz, CCH₂CH₂), 2.80 (1H, ddd, *J* = 2.1, 5.4, 16.2 Hz, CCH₂CH₂), 3.50 (3H, s, OCH₃), 5.04 (1H, t, *J* = 3.0 Hz, CHOMe), 7.19 (1H, dt, *J* = 0.9, 7.2 Hz, Ar-H), 7.27 (1H, dt, *J* = 1.5, 7.2 Hz, Ar-H), 7.43 (1H, dd, *J* = 0.6, 8.1 Hz, Ar-H), 8.02 (1H, d, *J* = 8.1 Hz, Ar-H). ¹³C NMR (75 MHz, CDCl₃): δ 17.2, 21.1, 27.1, 28.3, 56.3, 70.6, 83.2, 115.7, 118.5, 119.8, 122.2, 128.9, 124.5, 134.2, 136.2, 150.3. MS (EI): *m/z* (%) 301 (M⁺, 34), 214 (11), 201 (54), 170 (63), 169 (100), 168 (44), 167 (13), 57 (29). HRMS (EI): *m/z* Calcd for C₁₈H₂₃NO₃: 301.1678; Found: 301.1680.

9-(4-Methoxybenzyl)-1-phenylamino-1,2,3,4-tetrahydro-9H-carbazole (2j)

Yellow oil. IR (CHCl₃): 2928, 2839, 1601, 1512, 1501, 1464, 1246 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 1.77-1.91 (3H, m, CH₂CH₂CHN, CH₂CH₂CHNHAr), 2.17-2.27 (1H, m, CH₂CHNHAr), 2.67 (1H, dt, *J* = 5.4, 8.7 Hz, CCH₂CH₂), 2.90 (1H, dt, *J* = 4.2, 16.2 Hz, CCH₂CH₂), 3.75 (3H, s, OCH₃), 3.83 (1H, brs, NHPh), 4.65 (1H, brs, CHNHAr), 5.20 (1H, d, *J* = 16.8 Hz, NCH₂Ar), 5.31 (1H, d, *J* = 16.8 Hz, NCH₂Ar), 6.53 (2H, d, *J* = 7.8 Hz, Ar-H), 6.67-6.71 (1H, m, Ar-H), 6.77-6.73 (2H, m, Ar-H), 6.84-6.86 (2H, m, Ar-H), 7.11 (1H, ddd, *J* = 0.9, 6.6, 7.5 Hz, Ar-H), 7.17 (2H, dd, *J* = 7.5, 8.4 Hz, Ar-H), 7.18 (1H, dt, *J* = 1.2, 6.6 Hz, Ar-H), 7.26 (1H, dt, *J* = 0.9, 7.2 Hz, Ar-H), 7.57 (1H, dt, *J* = 0.8, 7.5 Hz, Ar-H). ¹³C NMR (100 MHz, CDCl₃): δ 18.4, 21.0, 28.5, 44.9, 45.8, 55.2, 109.5, 112.6, 113.0, 114.0, 117.4, 118.6, 119.0, 122.1, 126.6, 127.3, 129.3, 130.4, 134.2, 137.1, 146.3, 158.7. MS (EI) *m/z* (%): 382 (M⁺, 1), 290 (23), 289 (56), 121 (100), 93 (13). HRMS (EI): *m/z* Calcd for C₂₆H₂₆N₂O: 382.2045; Found: 382.2040.

Representative procedure for C-H functionalization of indole derivatives with hypervalent iodine reagent (Table 4 entries 4-8, Table 5)

Under argon atmosphere, a solution of iodosobenzene (PhIO, 57 mg, 0.26 mmol) in CH_2Cl_2 (2.2 mL) was added trimethylsilyl azide (TMSN₃, 72 µL, 0.52 mmol) and stirred for 5 min. Subsequently, **1a** (63 mg, 0.22 mmol) was added to the reaction mixture and stirred for 60 min at -40 °C. The mixture was quenched by aqueous sodium sulfite (2 mL) and then extracted with CH_2Cl_2 (10 mL, 3 times). The organic layer was washed by brine and dried by MgSO₄. The concentrated residue was purified by silica gel chromatography (AcOEt/*n*-hexane = 1/20) or preparative silica gel chromatography to give **2l** (6.4 mg, 9%); **7a** (32 mg, 43%).

4-Azido-9-(4-methoxybenzyl)-1,2,3,4-tetrahydro-9*H*-carbazole (7a)

Brown oil. IR (CHCl₃): 2947, 2837, 2097, 1730, 1612, 1512, 1464 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 1.88-2.15 (4H, m, CHN₃C<u>H₂CH₂</u>, CHN₃CH₂C<u>H₂</u>), 2.53-2.63 (1H, m, CC<u>H₂</u>), 2.73 (1H, dt, *J* = 4.8, 16.2 Hz, CC<u>H₂</u>), 3.73 (3H, s, OC<u>H₃</u>), 4.88 (1H, t, *J* = 4.2 Hz, C<u>H</u>N₃), 5.19 (2H, d, *J* = 1.8 Hz, NC<u>H₂</u>Ar), 6.78-6.83 (2H, m, Ar-<u>H</u>), 6.90-6.95 (2H, m, Ar-<u>H</u>), 7.12-7.20 (2H, m, Ar-<u>H</u>), 7.23-7.29 (1H, m, Ar-<u>H</u>), 7.68-7.73 (1H, m, Ar-<u>H</u>). ¹³C NMR (75 MHz, CDCl₃): δ 19.0, 21.9, 29.9, 45.8, 54.9, 55.2, 107.5, 109.4, 114.1, 118.2, 119.9, 121.6, 126.6, 127.3, 129.4, 136.6, 138.2, 158.8. HRMS (FAB): *m/z* Calcd for C₂₀H₂₀N₄O: 332.1637; Found: 332.1635.

4-Azido-9-(*tert*-butoxycarbonyl)-1,2,3,4-tetrahydro-9*H*-carbazole (7c)

Yellow oil. IR (CHCl₃): 3009, 2980, 2945, 2934, 2100, 1724, 1454, 1369, 1314 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 1.71 (9H, s, ^{*t*}Bu), 1.93-2.12 (4H, m, CHN₃CH₂CH₂, CHN₃CH₂CH₂), 2.84-3.04 (1H, m, CCH₂),

3.18 (1H, dt, *J* = 4.8, 18.0 Hz, CC<u>H</u>₂), 4.72 (1H, t, *J* = 3.9 Hz, C<u>H</u>N₃), 7.22-7.32 (2H, m, Ar-<u>H</u>), 7.57-7.67 (1H, m, Ar-<u>H</u>), 8.08-8.18 (1H, m, Ar-<u>H</u>).

¹³C NMR (75 MHz, CDCl₃): δ 19.5, 25.6, 28.2, 28.9, 54.2, 84.0, 114.1, 115.6, 118.0, 123.0, 124.0, 128.2, 135.8, 138.7, 150.4. MS (EI): *m/z* (%) 312 (19), 270 (16), 215 (14), 214 (100), 213 (19), 170 (66), 169 (20), 168 (30), 167 (12), 57 (41). HRMS (EI): *m/z* Calcd for C₁₇H₂₀N₄O₂: 312.1586; Found: 312.1585.

1-Azido-9-(methoxycarbonyl)-1,2,3,4-tetrahydro-9*H*-carbazole (2n)

White solid. mp 93-95 °C. IR (CHCl₃): 2953, 2100, 1734, 1456, 1443, 1369 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 1.89-2.05 (3H, m, CH₂CH₂CHN₃), 2.15-2.29 (1H, m, CH₂CH₂CHN₃), 2.50-2.65 (1H, m, CCH₂), 2.85 (1H, dt, *J* = 3.6, 16.8 Hz, CCH₂), 4.10 (3H, s, OCH₃), 5.29 (1H, t, *J* = 3.0 Hz, CHN₃), 7.27 (1H, dt, *J* = 0.9, 7.5 Hz, Ar-H), 7.36 (1H, dt, *J* = 1.2, 7.2 Hz, Ar-H), 7.47 (1H, dt, *J* = 0.6, 7.8 Hz, Ar-H), 8.15 (1H, d, *J* = 8.1 Hz, Ar-H). ¹³C NMR (100 MHz, CDCl₃): δ 17.4, 20.8, 30.7, 53.8, 55.1, 116.0, 118.8, 121.3, 123.1, 125.5, 128.8, 131.4, 136.1, 152.0. MS (EI): *m/z* (%) 270 (M⁺, 15), 229 (15), 228 (100), 168 (16), 167 (11). HRMS (EI): *m/z* Calcd for C₁₄H₁₄N₄O₂: 270.1117; Found: 270.1115.

4-Azido-9-(methoxycarbonyl)-1,2,3,4-tetrahydro-9*H*-carbazole (7e)

Yellowish white solid. mp 77-79 °C. IR (CHCl₃): 2955, 2359, 2340, 2099, 1734, 1458, 1443, 1368 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 1.90-2.17 (4H, m, CHN₃C<u>H₂</u>C<u>H₂</u>), 2.80-3.04 (1H, m), 3.20 (1H, dt, *J* = 4.5, 18.3 Hz, CC<u>H₂</u>), 4.05 (3H, s, OC<u>H₃</u>), 4.72 (1H, t, *J* = 4.2 Hz, C<u>H</u>N₃), 7.30 (1H, t, *J* = 3.3 Hz, Ar-<u>H</u>), 7.30 (1H, ddd, *J* = 1.8, 7.2, 17.1 Hz, Ar-<u>H</u>), 7.56-7.67 (1H, m, Ar-H), 8.07-8.20 (1H, m, Ar-<u>H</u>). ¹³C NMR (100 MHz, CDCl₃): 19.4, 25.2, 28.9, 53.5, 54.1, 114.8, 115.6, 118.2, 123.3, 124.3, 128.3, 135.7, 138.6, 152.4. MS (EI): *m/z* (%) 270 (M⁺, 12), 229 (15), 228 (100), 168 (16), 167 (12). HRMS (EI): *m/z* Calcd for C₁₄H₁₄N₄O₂: 270.1117; Found: 270.1118.

9-Acetyl-1-azido-1,2,3,4-tetrahydro-9H-carbazole (20)

Brown oil. IR (CHCl₃): 2947, 2930, 2100, 1697, 1460, 1373, 1308 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 1.91-2.05 (3H, m, CH₂CH₂CHN₃), 2,12- 2.25 (1H, m, CH₂CH₂CHN₃), 2.504-2.70 (1H, m, CCH₂), 2.84 (3H, s, COCH₃), 2.81-2.91 (1H, m, CCH₂), 5.39 (1H, t, *J* = 3.0 Hz, CHN₃), 7.29 (1H, dt, *J* = 0.9, 7.5 Hz, Ar-H), 7.37 (1H, dt, *J* = 1.2, 7.2 Hz, Ar-H), 7.51 (1H, dt, *J* = 0.6, 7.8 Hz, Ar-H), 7.76 (1H, dt, *J* = 0.6, 8.1 Hz, Ar-H). ¹³C NMR (75 MHz, CDCl₃): δ 17.4, 20.8, 27.4, 30.7, 55.3, 114.7, 119.5, 121.8, 123.1, 125.3, 129.5, 132.7, 135.7, 169.6. MS (EI): *m/z* (%) 254 (M⁺, 25), 213 (11), 212 (74), 211 (17), 184 (18), 183 (17), 171 (13), 170 (100), 169 (38), 168 (56), 167 (23), 156 (12). HRMS (EI): *m/z* Calcd for C₁₄H₁₄N₄O: 254.1168; Found: 254.1167.

9-Acetyl-4-azido-1,2,3,4-tetrahydro-9*H*-carbazole (7d)

Colorless solid. mp 76-79 °C. IR (CHCl₃): 3009, 2949, 2099, 1701, 1371, 1304 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 1.90-2.30 (4H, m, CHN₃C<u>H₂</u>C<u>H₂</u>), 2.74 (3H, s, COC<u>H₃</u>), 2.91-3.04 (1H, m, CC<u>H₂</u>), 3.17 (1H, dt, J = 4.5, 17.7 Hz, CC<u>H₂</u>), 4.73 (1H, t, J = 3.9 Hz, C<u>H</u>N₃), 7.31 (1H, t, J = 3.6 Hz, Ar-<u>H</u>), 7.31 (1H, ddd, J = 2.1, 7.2, 15.6 Hz, Ar-<u>H</u>), 7.60-7.70 (1H, m, Ar-<u>H</u>), 7.92-8.02 (1H, m, Ar-<u>H</u>). ¹³C NMR (100 MHz, CDCl₃): δ 19.8, 26.3, 27.4, 28.7, 54.2, 115.2, 115.5, 118.6, 123.5, 124.5, 128.8, 135.7, 138.7, 170.0. MS (EI): *m/z* (%) 254 (M⁺, 13), 212 (43), 211 (15), 184 (11), 171 (12), 170 (100), 169 (33), 168 (46), 167 (20), 156 (13). HRMS (EI): *m/z* Calcd for C₁₄H₁₄N₄O: 254.1168; Found: 254.1161.

3-Azido-4-(4-methoxybenzyl)-1,2,3,4-tetrahydrocyclopenta[*b*]indole (2p)

Brown oil. IR (CHCl₃): 3007, 2936, 2864, 2094, 1512, 1464, 1246 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ : 2.62 (1H, ddt, J = 2.8, 7.6, 16.4 Hz, CH₂C<u>H₂</u>CHN₃), 2.82 (1H, ddd, J = 3.6, 8.8, 14.0 Hz, C<u>H₂</u>CH₂CHN₃), 2.95 (1H, ddt, J = 6.0, 8.0, 13.8 Hz, CH₂C<u>H₂</u>CHN₃), 3.02-3.15 (1H, m, C<u>H₂</u>CH₂CHN₃), 3.77 (3H, s, OC<u>H₃</u>), 4.64 (1H, dt, J = 2.8, 9.2 Hz, C<u>H</u>N₃), 5.19 (1H, d, J = 16.1 Hz, NC<u>H₂</u>Ar), 5.34 (1H, d, J = 15.6 Hz, NC<u>H₂</u>Ar), 6.77-6.89 (2H, m, Ar-<u>H</u>), 7.03-7.08 (2H, m, Ar-<u>H</u>), 7.10 (1H, td, J = 1.0, 8.0 Hz, Ar-<u>H</u>), 7.17 (1H, td, J = 1.6, 8.4 Hz, Ar-<u>H</u>), 7.25 (1H, td, J = 1.2, 8.4 Hz, Ar-<u>H</u>), 7.52 (1H, dt, J = 0.8, 7.6 Hz, Ar-<u>H</u>). ¹³C NMR (100 MHz, CDCl₃): 23.2, 36.7, 47.6, 55.2, 60.0, 110.5, 114.1, 119.6, 119.8, 121.9, 122.2, 123.5, 127.9, 129.6, 141.2, 142.0, 159.0. MS (EI): m/z (%) 318 (M⁺, 12), 290 (13), 276 (29), 275 (23), 121 (100). HRMS (EI): m/zCalcd for C₁₉H₁₈N₄O: 318.1481; Found: 318.1479.

3-Azido-4-(*tert*-butoxycarbonyl)-1,2,3,4-tetrahydrocyclopenta[b]indole (2q)

Yellowish green oil. IR (CHCl₃): 2980, 2936, 2099, 1730, 1368, 1319 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 1.69 (9H, s, ^{*t*}Bu), 2.56 (1H, ddd, J = 0.8, 6.0, 9.9 Hz, CH₂CH₂CHN₃), 2.70-2.92 (2H, m, CH₂CH₂CHN₃), 2.98 (1H, ddt, J = 1.5, 2.1, 12.3 Hz, CH₂CH₂CH₂CHN₃), 5.10 (1H, d, J = 6.6 Hz, CHN₃), 7.25 (1H, dt, J = 1.2, 7.5 Hz, Ar-H), 7.33 (1H, dt, J = 1.2, 7.2 Hz, Ar-H), 7.46 (1H, dd, J = 0.6, 5.7 Hz, Ar-H), 8.20 (1H, d, J = 8.1Hz, Ar-H). ¹³C NMR (100 MHz, CDCl₃): δ 22.8, 28.2, 36.6, 62.0, 84.1, 116.2, 119.8, 123.0, 124.9, 125.5, 129.1, 139.8, 140.8, 149.3. MS (EI): m/z (%) 298 (M⁺, 26), 256 (20), 242 (11), 201 (13), 200 (97), 169 (21), 157 (12), 156 (100), 155 (47), 57 (43). HRMS (EI): m/z Calcd for C₁₆H₁₈N₄O₂: 298.1430; Found: 298.1424.

1-Azido-4-(*tert*-butoxycarbonyl)-1,2,3,4-tetrahydrocyclopenta[b]indole (7g)

Brown oil. IR (CHCl₃): 3007, 2980, 2936, 2093, 1730, 1369, 1321 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 1.66 (9H, s, ^{*t*}Bu), 2.49 (1H, ddt, J = 3.0, 8.4, 14.4 Hz, CHN₃CH₂CH₂), 2.81-2.98 (1H, m, CHN₃CH₂CH₂), 3.06 (1H, ddd, J = 3.6, 8.7, 17.1 Hz, CHN₃CH₂CH₂), 3.27 (1H, dddd, J = 1.8, 5.1, 7.8, 16.8 Hz, CHN₃CH₂CH₂), 4.96 (1H, dt, J = 2.1, 7.8 Hz, CHN₃), 7.27 (1H, ddd, J = 1.8, 7.2, 19.2 Hz, Ar-H), 7.27 (1H,

t, J = 2.1 Hz, Ar-<u>H</u>), 7.52 (1H, dd, J = 2.7, 6.9 Hz, Ar-<u>H</u>), 8.18 (1H, dd, J = 1.8, 6.6 Hz, Ar-<u>H</u>). ¹³C NMR (100 MHz, CDCl₃): δ 27.9, 28.2, 35.6, 60.7, 83.9, 115.9, 118.7, 122.5, 123.2, 123.8, 125.1, 140.3, 146.3, 149.6. MS (EI): m/z (%) 298 (M⁺, 14), 256 (22), 201 (13), 200 (100), 199 (16), 169 (11), 156 (56), 155 (22), 154 (12), 57 (41). HRMS (EI): m/z C₁₆H₁₈N₄O₂: 298.1430; Found: 298.1424.

6-Azido-5-(4-methoxybenzyl)-5,6,7,8,9,10-hexahydrocyclohepta[b]indole (2r)

Brown oil. IR (CHCl₃): 2930, 2100, 1512, 1464 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 1.50-1.75 (1H, m, CCH₂C<u>H₂</u>), 1.83 (1H, ddt, *J* = 3.0, 12.0, 16.8 Hz, C<u>H</u>₂CHN₃), 1.90-2.12 (3H, m, CCH₂C<u>H</u>₂C<u>H</u>₂), 2.20 (1H, ddt, *J* = 2.4, 5.1, 13.2 Hz, C<u>H</u>₂CHN₃), 2.86 (1H, ddd, *J* = 2.7, 11.7, 14.7 Hz, CC<u>H</u>₂), 3.10 (1H, ddd, *J* = 2.4, 6.0, 15.9 Hz, CC<u>H</u>₂), 3.76 (3H, s, OC<u>H</u>₃), 4.76 (1H, dd, *J* = 2.7, 5.4 Hz, C<u>H</u>N₃), 5.32 (1H, d, *J* = 17.1 Hz, NC<u>H</u>₂Ar), 5.41 (1H, d, *J* = 17.1 Hz, NC<u>H</u>₂Ar), 6.76-6.85 (2H, m, Ar-<u>H</u>), 6.85-6.95 (2H, m, Ar-<u>H</u>), 7.14 (1H, ddd, *J* = 1.5, 6.9, 8.1 Hz, Ar-<u>H</u>), 7.21 (1H, dt, *J* = 1.2, 6.6 Hz, Ar-<u>H</u>), 7.27 (1H, d, *J* = 7.2 Hz, Ar-<u>H</u>), 7.61 (1H, d, *J* = 6.9 Hz, Ar-<u>H</u>). ¹³C NMR (75 MHz, CDCl₃): δ 23.7, 24.8, 27.9, 32.3, 46.0, 55.2, 57.1, 109.6, 114.2, 117.5, 119.0, 119.4, 122.6, 126.9, 127.3, 129.8, 132.9, 136.4, 158.9. MS (EI): *m/z* (%) 346 (M⁺, 3), 304 (21), 303 (57), 121 (100). HRMS (EI): *m/z* Calcd for C₂₁H₂₂N₄O: 346.1794; Found: 346.1791.

5-(4-Methoxybenzyl)-5,6,7,8-tetrahydrocyclohepta[b]indole (11)

Green oil. IR (CHCl₃): 2932, 1612, 1512, 1468, 1248 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 2.02 (2H, quint, J = 5.7 Hz, CH₂CH₂CH₂), 2.46 (2H, dd, J = 5.1, 10.8 Hz, CHCH₂CH₂), 2.95 (2H, t, J = 5.7 Hz, CCH₂CH₂), 3.74 (3H, s, OCH₃), 5.24 (2H, s, NCH₂Ar), 5.74 (1H, dt, J = 5.7, 11.4 Hz, CHCHCH₂), 6.68 (1H, dt, J = 1.5, 11.4 Hz, CHCHCH₂), 6.73-6.84 (2H, m, Ar-H), 6.85-7.00 (2H, m, Ar-H), 7.08-7.18 (2H, m, Ar-H), 7.18-7.22 (1H, m, Ar-H), 7.60-7.70 (1H, m, Ar-H). ¹³C NMR (100 MHz, CDCl₃): δ 23.3, 28.3, 30.6, 45.9, 55.2, 109.0, 110.8, 114.2, 117.6, 119.6, 120.0, 121.3, 125.3, 127.2, 127.5, 129.7, 136.3, 138.6, 158.8. MS (EI): m/z (%) 303 (M⁺, 44), 121 (100). HRMS (EI): m/z Calcd for C₂₁H₂₁NO: 303.1623; Found: 303.1622.

6-Azido-5-(*tert*-butoxycarbonyl)-5,6,7,8,9,10-hexahydrocyclohepta[b]indole (2s)

Dark green oil. IR (CHCl₃): 2932, 2104, 1722, 1454, 1371, 1360, 1315, 1308 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 1.71 (9H, s, ^{*t*}Bu), 1.45-1.81 (1H, m, CHN₃CH₂CH₂CH₂), 1.81-1.98 (2H, m, CHN₃CH₂CH₂), 1.98-2.13 (2H, m, CHN₃CH₂CH₂CH₂), 2.13-2.23 (1H, m, CHN₃CH₂), 2.75-2.97 (2H, m, CCH₂), 5.92 (1H, dd, *J* = 2.1, 6.3 Hz, CHN₃), 7.24 (1H, dt, *J* = 1.2, 7.5 Hz, Ar-H), 7.31 (1H, dt, *J* = 1.5, 7.2 Hz, Ar-H), 7.50 (1H, dt, *J* = 0.6, 7.5 Hz, Ar-H), 8.04 (1H, dt, *J* = 1.2-7.5 Hz, Ar-H). ¹³C NMR (100 MHz, CDCl₃): δ 23.1, 24.4, 26.6, 28.3, 31.5, 57.4, 84.5, 115.8, 118.7, 122.6, 124.8, 124.9, 129.3, 134.4, 135.5, 150.6. MS (EI): *m/z* (%) 326 (M⁺, 20), 228 (34), 227 (30), 226 (16), 185 (15), 184 (100), 183 (30), 182 (32), 180 (30), 169 (15), 168 (14), 57 (42). HRMS (EI): *m/z* Calcd for C₁₈H₂₂N₄O₂: 326.1743; Found: 326.1746.

10-Azido-5-(tert-butoxycarbonyl)-5,6,7,8,9,10-hexahydrocyclohepta[b]indole (7i)

Dark green oil. IR (CHCl₃): 2981, 2932, 2102, 1726, 1456, 1371, 1354, 1312 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 1.69 (9H, s, ^{*I*}Bu), 1.60-1.80 (1H, m, CHN₃CH₂CH₂CH₂), 1.82-1.98 (2H, m, CHN₃CH₂CH₂), 1.98-2.16 (2H, m, CHN₃CH₂CH₂), 2.16-2.36 (1H, m, CHN₃CH₂), 3.15 (1H, ddd, *J* = 2.4, 9.9, 17.1 Hz, CCH₂), 3.45 (1H, ddd, *J* = 2.4, 8.1, 17.1 Hz, CCH₂), 5.10 (1H, dd, *J* = 1.8, 5.7 Hz, CH_{N₃}), 7.20-7.30 (2H, m, Ar-H), 7.44-7.60 (1H, m, Ar-H), 7.94-8.07 (1H, m, Ar-H). ¹³C NMR (100 MHz, CDCl₃): δ 24.4, 26.5, 27.3, 28.3, 31.5, 56.5, 84.2, 115.2, 117.2, 117.5, 122.8, 123.8, 129.3, 135.2, 142.3, 150.6. MS (EI): *m/z* (%) 326 (M⁺, 19), 284 (17), 283 (25), 229 (15), 228 (100), 227 (89), 185 (10), 184 (76), 183 (57), 182 (51), 180 (12), 169 (11), 168 (31), 167 (18), 57 (66). HRMS (EI): *m/z* Calcd for C₁₈H₂₂N₄O₂: 326.1743; Found: 326.1742.

2-(Azidomethyl)-1-(4-methoxybenzyl)-3-methyl-1*H*-indole (2t)

Brown oil. IR (CHCl₃): 3007, 2936, 2108, 1512, 1248 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 2.40 (3H, s, CC<u>H₃</u>), 3.75 (3H, s, OC<u>H₃</u>), 4.40 (2H, s, C<u>H₂N₃</u>), 5.33 (2H, s, NC<u>H₂Ar</u>), 6.74-6.83 (2H, m, Ar-<u>H</u>), 6.86-6.95 (2H, m, Ar-<u>H</u>), 7.14 (1H, ddd, *J* = 1.5, 6.3, 7.5 Hz, Ar-<u>H</u>), 7.22 (1H, dt, *J* = 1.5, 8.1 Hz, Ar-<u>H</u>), 7.24-7.29 (1H, m, Ar-<u>H</u>), 7.61 (1H, dt, *J* = 1.2, 7.8 Hz, Ar-<u>H</u>). ¹³C NMR (75 MHz, CDCl₃): δ 8.9, 44.2, 46.3, 55.2, 109.6, 111.9, 114.2, 119.3, 119.4, 122.8, 127.1, 127.8, 128.9, 129.8, 137.1, 158.9. MS (EI): *m/z* (%) 306 (M⁺, 23), 278 (28), 264, (21), 157 (15), 121 (100). HRMS (EI): *m/z* Calcd for C₁₈H₁₈N₄O: 306.1480; Found: 306.1478.

3-(Azidomethyl)-1-(4-methoxybenzyl)-2-methyl-1*H*-indole (7j)

Brown oil. IR (CHCl₃): 3007, 2936, 2106, 1512, 1248 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 2.39 (3H, s, CC<u>H₃</u>), 3.75 (3H, s, OC<u>H₃</u>), 4.55 (2H, s, C<u>H₂</u>N₃), 5.28 (2H, s, NC<u>H₂</u>Ar), 6.76-6.82 (2H, m, Ar-<u>H</u>), 6.86-6.93 (2H, m, Ar-<u>H</u>), 7.11-7.20 (2H, m, Ar-<u>H</u>), 7.22-7.28 (1H, m, Ar-<u>H</u>), 7.59-7.68 (1H, m, Ar-<u>H</u>). ¹³C NMR (100 MHz, CDCl₃): δ 10.4, 45.4, 46.2, 55.3, 105.8, 109.4, 114.2, 117.9, 120.0, 121.7, 127.1, 127.5, 129.4, 136.0, 136.5, 158.9. MS (EI): *m/z* (%) 306 (M⁺, 12), 278 (16), 264 (27), 121 (100). HRMS (EI): *m/z* Calcd for C₁₈H₁₈N₄O: 306.1481; Found: 306.1478.

2-(Azidomethyl)-1-(*tert*-butoxycarbonyl)-3-methyl-1*H*-indole (2u)

Yellowish green oil. IR (CHCl₃): 2982, 2928, 2102, 1724, 1454, 1357, 1339, 1329 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 1.71 (9H, s, ^{*t*}Bu), 2.32 (3H, s, C<u>H</u>₃), 4.78 (2H, s, C<u>H</u>₂N₃), 7.27 (1H, dt, *J* = 1.2, 9.6 Hz, Ar-<u>H</u>), 7.35 (1H, dt, *J* = 1.5, 7.2 Hz, Ar-<u>H</u>), 7.52 (1H, dd, *J* = 0.9, 7.5 Hz, Ar-<u>H</u>), 8.12 (1H, d, *J* = 9.6 Hz, Ar-<u>H</u>). ¹³C NMR (100 MHz, CDCl₃): δ 8.8, 28.2, 45.6, 84.4, 115.9, 119.06, 119.11, 122.7, 125.3, 129.4, 129.7, 136.1, 150.2. MS (EI): *m/z* (%) 286 (M⁺, 34), 230 (13), 188 (28), 186 (26), 159 (16), 158 (32), 157 (29), 145 (13), 144 (100), 143 (24), 130 (25), 57 (80), 41 (11). HRMS (EI): *m/z* Calcd for C₁₅H₁₈N₄O₂:

286.1430; Found: 286.1428.

3-(Azidomethyl)-1-(*tert*-butoxycarbonyl)-2-methyl-1*H*-indole (7k)

Yellowish green oil. IR (CHCl₃): 2982, 2934, 2108, 1730, 1458, 1358 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 1.70 (9H, s, ^{*t*}Bu), 2.63 (3H, s, C<u>H</u>₃), 4.46 (2H, s, C<u>H</u>₂N₃), 7.21-7.35 (2H, m, Ar-<u>H</u>), 7.53 (1H, ddd, *J* = 3.9, 5.2, 10.1 Hz, Ar-<u>H</u>), 8.12 (1H, ddd, *J* = 4.5, 5.4, 11.4 Hz, Ar-<u>H</u>). ¹³C NMR (75 MHz, CDCl₃): δ 14.0, 28.2, 44.5, 84.1, 112.3, 115.5, 117.7, 122.9, 124.0, 128.8, 135.6, 136.6, 150.5. MS (EI): *m/z* (%) 286 (M⁺, 47), 230 (39), 213 (11), 188 (76), 158 (25), 157 (23), 145 (12), 144 (100), 143 (17), 130 (14), 57 (89), 41 (12). HRMS (EI): *m/z* Calcd for C₁₅H₁₈N₄O₂: 286.1430; Found: 286.1427.

2-(1-Azidoethyl)-1-(4-methoxybenzyl)-3-methyl-1*H*-indole (2v)

Yellow oil. IR (CHCl₃) 3007, 2932, 2106, 1512, 1466, 1246 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 1.47 (3H, d, *J* = 7.2 Hz, CHN₃CH₃), 2.43 (3H, s, CCH₃), 3.75 (3H, s, OCH₃), 5.05 (1H, q, *J* = 7.2 Hz, CHN₃), 5.37 (1H, d, *J* = 17.4 Hz, NCH₂Ar), 5.46 (1H, d, *J* = 17.4 Hz, NCH₂Ar), 6.75-6.83 (2H, m, Ar-H), 6.84-6.93 (2H, m, Ar-H), 7.10-7.18 (3H, m, Ar-H), 7.59-7.63 (1H, m, Ar-H). ¹³C NMR (75 MHz, CDCl₃): δ 9.0, 20.5, 46.8, 53.8, 55.2, 109.7, 114.1, 119.0, 119.3, 122.5, 126.9, 128.2, 130.0, 133.2, 137.0, 144.7, 158.9. MS (EI): *m/z* (%) 320 (M⁺, 24), 278 (33), 277 (29), 122 (12), 121 (100). HRMS (EI): *m/z* Calcd for C₁₉H₂₀N₄O: 320.1637; Found: 320.1635.

3-(Azidomethyl)-2-ethyl-1-(4-methoxybenzyl)-1*H*-indole (7l)

Brown oil. IR (CHCl₃): 3007, 2970, 2936, 2108, 1512, 1466, 1248 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 1.17 (3H, t, *J* = 7.5 Hz, CH₂CH₃), 2.79 (2H, q, *J* = 7.5 Hz, CH₂CH₃), 3.73 (3H, s, OCH₃), 4.54 (2H, s, CH₂N₃), 5.29 (2H, s, NCH₂Ar), 6.74-6.81 (2H, m, Ar-<u>H</u>), 6.83-6.90 (2H, m, Ar-<u>H</u>), 7.10-7.22 (3H, m, Ar-<u>H</u>), 7.60-7.68 (1H, m, Ar-<u>H</u>). ¹³C NMR (100 MHz, CDCl₃): δ 15.4, 17.9, 45.5, 46.1, 55.2, 105.1, 109.8, 114.2, 118.1, 120.1, 121.8, 127.0, 127.7, 129.6, 136.5, 141.9, 158.9. MS (EI): *m/z* (%) 320 (M⁺, 14), 278 (31), 121 (100). HRMS (EI): *m/z* Calcd for C₁₉H₂₀N₄O: 320.1637; Found: 320.1638.

3-(1-Azidomethyl)-1-(*tert*-butoxycarbonyl)-2-ethyl-1*H*-indole (7m)

Yellow oil. IR (CHCl₃): 2982, 2108, 1730, 1458, 1371, 1360, 1329 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 1.27 (3H, t, *J* = 7.2 Hz, CH₂CH₃), 1.70 (9H, s, ^{*t*}Bu), 3.09 (2H, q, *J* = 7.2 Hz, CH₂CH₃), 4.45 (2H, s, CH₂N₃), 7.25 (1H, dt, *J* = 2.4, 7.8 Hz, Ar-H), 7.29 (1H, dt, *J* = 2.4, 7.2 Hz, Ar-H), 7.50-7.58 (1H, m, Ar-H), 8.12 (1H, dd, *J* = 1.8, 6.6 Hz, Ar-H). ¹³C NMR (100 MHz, CDCl₃): δ 15.4, 20.1, 28.2, 44.7, 84.2, 111.9, 115.7, 118.0, 123.0, 124.1, 128.8, 135.9, 142.5, 150.2. MS (EI) *m/z* (%): 300 (M⁺, 44), 244 (36), 216 (13), 203 (12), 202 (89), 172 (32), 171 (35), 159 (12), 158 (100), 157 (21), 156 (24), 155 (12), 144 (13), 143 (12), 57 (86), 41

(12). HRMS (EI): *m/z* Calcd for C₁₆H₂₀N₄O₂: 300.1586; Found: 300.1583.

3-Ethyl-1-(4-methoxybenzyl)-2-propyl-1*H*-indole (1n)

To a suspension of NaH (128 mg, 60% in mineral oil, 3.21 mmol) in dry DMF (5.0 mL) was added 3-ethyl-2-propylindole¹⁶ (400 mg, 214 mmol) at 0 °C. After stirring at room temperature for 10 min, the reaction mixture was added tetrabutylammonium iodide (79 mg, 0.214 mmol) and *p*-methoxybenzyl chroride (260 μ L, 2.57 mmol) and stirred for 30 min. The reaction was quenched by the addition of saturated aqueous NH₄Cl (10 mL) and extracted with Et₂O (30 mL, 3 times). The organic layer was dried over MgSO₄ and filtrate was concentrated. The residue was purified by silica gel chromatography (AcOEt/*n*-hexane = 1/5) to afford **1n** (504 mg, 77%).

Yellow oil. IR (CHCl₃): 3005, 2963, 2932, 2870, 1612, 1512, 1468, 1246 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 0.93 (3H, t, *J* = 7.2 Hz, CH₂CH₂CH₂(H₃), 1.23 (3H, t, *J* = 7.2 Hz, CCH₂CH₃), 1.50 (2H, ddd, *J* = 7.2, 15.2, 15.2 Hz, CH₂CH₂CH₃), 2.66 (2H, t, *J* = 8.0 Hz, CH₂CH₂CH₃), 2.76 (2H, q, *J* = 7.2 Hz, CCH₂CH₃), 3.71 (3H, s, OCH₃), 5.22 (2H, s, NCH₂Ar), 6.70-6.82 (2H, m, Ar-H), 6.82-6.92 (2H, m, Ar-H), 7.02-7.10 (2H, m, Ar-H), 7.11-7.22 (1H, m, Ar-H), 7.54-7.61 (1H, m, Ar-H). ¹³C NMR (100 MHz, CDCl₃): δ 15.6, 17.5, 19.4, 25.3, 28.1, 47.5, 56.7, 110.9, 115.5 (2C), 119.8, 120.3, 122.2, 128.5, 129.3, 132.0, 137.8, 138.0, 160.2. MS (EI): *m/z* (%) 308 ([M⁺+1], 12), 307 (M⁺, 52), 121 (100). HRMS (EI): *m/z* Calcd for C₂₁H₂₅NO: 307.1936; Found: 307.1936.

3-(1-Azidoethyl)-1-(4-methoxybenzyl)-2-propyl-1*H***-indole (7n)**

Yellowish green oil. IR (CHCl₃): 3007, 2961, 2934, 2872, 2104, 1612, 1512, 1466, 1248, 1223 cm⁻¹. ¹H NMR (300 MHz, CDCl₃): δ 0.95 (3H, t, *J* = 7.2 Hz, CH₂CH₂CH₂C₁), 1.42-1.62 (2H, m, CH₂CH₂CH₃), 1.69 (3H, d, *J* = 6.9 Hz, CHN₃CH₃), 2.71 (2H, t, *J* = 7.8 Hz, CCH₂), 3.73 (3H, s, OCH₃), 5.04 (1H, q, *J* = 6.9 Hz, CCHN₃), 5.25 (2H, s, NCH₂Ar), 6.74-6.82 (2H, m, Ar-H), 6.82-6.90 (2H, m, Ar-H), 7.06-7.21 (3H, m, Ar-H), 7.75-7.83 (1H, m, Ar-H). ¹³C NMR (100 MHz, CDCl₃): δ 14.0, 21.5, 24.0, 26.6, 46.0, 55.2, 55.5, 109.8, 110.9, 114.1, 119.56, 119.64, 121.4, 125.7, 126.9, 129.6, 136.8, 138.2, 158.8. MS (EI): *m/z* (%) 348 (M⁺, 1), 306 (14), 305 (44), 122 (10), 121 (100). HRMS (EI): *m/z* Calcd for C₂₁H₂₄N₄O: 348.1950; Found: 348.1946.

ACKNOWLEDGEMENTS

We thank N. Eguchi, T. Koseki, and S. Yamada at the Analytical Center of our university for performing microanalysis, NMR and mass spectrometry measurements.

REFERENCES

- Y. Kita, G. F. Koser, M. Ochiai, H. Tohma, A. Varvoglis, T. Wirth, and V. V. Zhdankin, 'Top. Curr. Chem.: Hypervalent Iodine Chemistry, Modern Developments in Organic Synthesis' Vol. 224, ed. by T. Wirth, Springer, Berlin, 2003, pp. 1-248; A. Varvoglis, *Tetrahedron*, 1997, 53, 1179; R. M. Moriarty and O. Prakash, *Org. React.*, 1999, 54, 273; V. V. Zhdankin and P. J. Stang, *Chem. Rev.*, 2008, 108, 5299; L. F. Silva, Jr. and B. Olofsson, *Nat. Prod. Rep.*, 2011, 28, 1722.
- 2. T. Dohi, M. Ito, N. Yamaoka, K. Morimoto, H. Fujioka, and Y. Kita, *Tetrahedron*, 2009, 65, 10797.
- 3. T. Dohi, K. Morimoto, N. Takenaga, A. Goto, A. Maruyama, Y. Kiyono, H. Tohma, and Y. Kita, *J. Org. Chem.*, 2007, **72**, 109.
- J. A. Campbell, C. A. Broka, L. Gong, K. A. M. Walker, and J.-H. Wang, *Tetrahedron Lett.*, 2004, 45, 4073; D. Lubriks, I. Sokolovs, and E. Suna, *J. Am. Chem. Soc.*, 2012, 134, 15436; D. Tu, L. Ma, X. Tong, X. Deng, and C. Xia, *Org. Lett.*, 2012, 14, 4830; Q. Liu, Q. Y. Zhao, J. Liu, P. Wu, H. Yi, and A. Lei, *Chem. Commun.*, 2012, 48, 3239.
- N. A. Braun, J. D. Bray, and M. A. Ciufolini, *Tetrahedron Lett.*, 1999, 40, 4985; X. Qi, H. Bao, and U. K. Tambar, *J. Am. Chem. Soc.*, 2011, 133, 10050.
- 6. H. Zaimoku, T. Hatta, T. Taniguchi, and H. Ishibashi, Org. Lett., 2012, 14, 6088.
- 7. K. W. Fiori and J. Du Bois, J. Am. Chem. Soc., 2007, 129, 562.
- K. Higuchi, M. Tayu, and T. Kawasaki, *Chem. Commun.*, 2011, 47, 6728; M. Tayu, K. Higuchi, M. Inaba, and T. Kawasaki, *Org. Biomol. Chem.*, 2013, 11, 496.
- G. Büchi and R. E. Manning, J. Am. Chem. Soc., 1966, 88, 2532; H. Sakakibara and T. Kobayashi, Tetrahedron, 1966, 22, 2475; M. Ikeda, F. Tabusa, Y. Nishimura, S. Kwon, and Y. Tamura, Tetrahedron Lett., 1976, 27, 2347; A. S. Bailey, J. B. Haxby, A. N. Hilton, J. M. Peach, and M. H. Vandrevala, J. Chem. Soc., Perkin Trans. 1, 1981, 382; Y. Murakami and H. Ishii, Chem. Pharm. Bull., 1981, 29, 699; Y. Tamura, M. Kirihara, M. Sasho, S. Akai, J. Sekihachi, R. Okunaka, and Y. Kita, Chem. Commun., 1987, 1474; P. He and S. Zhu, Tetrahedron, 2005, 61, 12398; Y. Nakano and D. W. Lupton, Chem. Commun., 2014, 1757.
- R. Di Fabio, R. Giovannini, B. Bertani, M. Borriello, A. Bozzoli, D. Donati, A. Falchi, D. Ghirlanda, C. P. Leslie, A. Pecunioso, G. Rumboldt, and S. Spada, *Bioorg. Med. Chem. Lett.*, 2006, 16, 1749; K. S. Gudmundsson, P. R. Sebahar, L. D. Richardson, J. G. Catalano, S. D. Boggs, A. Spaltenstein, P. B. Sethna, K. W. Brown, R. Harvey, and K. R. Romines, *Bioorg. Med. Chem. Lett.*, 2009, 19, 3489; L. Li, C. Beaulieu, M.-C. Carriere, D. Denis, G. Greig, D. Guay, G. O'Neill, R. Zamboni, and Z. Wang, *Bioorg. Med. Chem. Lett.*, 2010, 20, 7462.
- O. Neiland and B. Karele, J. Org. Chem., USSR (Engl. Transl.), 1970, 6, 889; G. F. Koser, A. G. Relenyi, A. N. Kalos, L. Rebrovic, and R. H. Wettach, J. Org. Chem., 1982, 47, 2487.

- 12. E. Zbiral and G. Nestler, *Tetrahedron*, 1970, **26**, 2945; F. Cech and E. Zbiral, *Tetrahedron*, 1975, **31**, 605.
- P. Magnus, J. Lacour, and W. Weber, *J. Am. Chem. Soc.*, 1993, **115**, 9347; F. Fontana, F. Minisci, Y.-M. Yan, and L. Zhao, *Tetrahedron Lett.*, 1993, **34**, 2517; P. Magnus, J. Lacour, P. A. Evans, M. B. Roe, and C. Hulme, *J. Am. Chem. Soc.*, 1996, **118**, 3406; C. M. Pedersen, L. G. Marinescu, and M. Bols, *Org. Biomol. Chem.*, 2005, **3**, 816.
- R. M. Moriarty and J. S. Khosrowshahi, *Tetrahedron Lett.*, 1986, 27, 2809; M. Arimoto, H. Yamaguchi,
 E. Fujita, M. Ochiai, and Y. Nagao, *Tetrahedron Lett.*, 1987, 28, 6289; P. Magnus and J. Lacour, *J. Am. Chem. Soc.*, 1992, 114, 767; P. Magnus, C. Hulme, and W. Weber, *J. Am. Chem. Soc.*, 1994, 116, 4501;
 Y. Kita, H. Tohma, K. Hatanaka, T. Takada, S. Fujita, S. Mitoh, H. Sakurai, and S. Oka, *J. Am. Chem. Soc.*, 1994, 116, 3684; Y. Kita, H. Tohma, T. Takada, S. Mitoh, S. Fujita, and M. Gyoten, *Synlett*, 1994, 427.
- 15. T. Kitawaki, Y. Hayashi, A. Ueno, and N. Chida, *Tetrahedron*, 2006, 62, 6792.
- K. Matsumoto, A. Tanaka, I. Yukio, N. Hayashi, M. Toda, and R. A. Bulman, *Heterocycl. Commun.*, 2011, 9, 9.