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Epoxides can be opened under neutral conditions with TMSN3 and TMSCN in the presence of catalytic
amounts of Lewis acid, affording the corresponding ring-opened compounds in high yields.

� 2010 Elsevier Ltd. All rights reserved.
Epoxides are recognized among the most versatile intermedi-
ates in organic synthesis. They can be easily prepared and due to
their ring strain they react with different nucleophiles with high
regioselectivity, leading to ring-opened products.1

In the past, we have found that erbium(III) triflate [Er(OTf)3] is a
very useful and environmentally friendly functional group, and tol-
erant catalyst for several acid-catalyzed reactions.2 Owing to its
unique qualities,3 erbium triflate has already proven to be a highly
efficient and regioselective catalyst for many reactions involving
epoxides; such as the rearrangement to carbonyl compounds,4

the synthesis of acetonides,5 the conversion into 1,2-diacetates,6

the synthesis of b-amino alcohols,7 and the preparation b-hydroxy
sulfides.8

As a consequence of the necessity of milder and environmentally
friendly reaction conditions, and in continuation of our interest on
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Scheme 1. Epoxide ring-opening
the application of erbium triflate into organic transformations; in
this Letter, we aim to report that Er(OTf)3 can act as a mild and effi-
cient Lewis acid catalyst for another regio- and stereoselective
epoxide ring opening with trimethylsilylazide (TMSN3) and trim-
ethylsilylcyanide (TMSCN) (Scheme 1).

a-Azido alcohols are important precursors for alternative syn-
theses of b-aminoalcohols;9 some of them appeared in the struc-
tures of pharmaceutical, useful chiral auxiliaries, or intermediates
for the synthesis of amino sugars. The classical reagents for azi-
dohydrin synthesis are the combined use of NaN3,10 TMSN3,11 or
other azide sources12 in the presence of a Lewis acid or a transition
metal complex. The oldest reported epoxide ring-opening reactions
with NaN3 suffer from high temperatures, long reaction times or
side isomerization, epimerization, and rearrangement reactions.
Recently, a large variety of activators or promoters have been
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with (TMSN3) and (TMSCN).
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Table 1
Reaction of 3-phenyloxy-1,2-epoxypropane (a) with TMSN3 catalyzed by Er(OTf3)

Entry Er (OTf3)
(mol %)

TMSN3

(equiv)
T
(�C)a

Conversion
(%)

Yieldb

(%)

1 5 2 25 100 83 (5)c

2 5 1.1 0?25 100 67 (21)
3 5 1.5 0?25 95 81 (4)
4 5 1.5 25 95 69 (16)
5 3 1.5 0?25 64 30 (26)
6 1 1.5 0?25 9 14 (9)

a Reaction was monitored up to 400 min.
b Determined by GC/MS.
c % of hydrolyzed product determined by GC/MS.

Table 2
Reaction of epoxides with TMSN3 (1.5 equiv) and TMSCN (2.0 equiv) in the presence of Er

Entry Epoxide Productb

1 1a

O
Ph

Ph

N3

OTMS
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2
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PhO

1b PhO

OTMS

N3
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O
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N3
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O
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reported to promote epoxide ring-opening reactions with azides
under milder reaction conditions.10–12

Moreover, b-hydroxynitriles are useful synthetic intermediates
in organic synthesis owing to their versatile hydroxy and cyano
moieties. The reaction of epoxides with different cyanide sources;
such as hydrogen cyanide,13 cyanids,14 TMSCN,15 or cyanide
formed upon treatment of acetone cyanohydrins with bases;16are
among the most direct methods for the preparation of these com-
pounds. However, some of them usually require long reaction
times and harmful solvents.

In order to find the best experimental conditions, we tested the
catalytic activity of Er(OTf)3 in the epoxide ring opening of the sub-
(OTf3) (5 mol %)

Time (min) Yield (%) Ratio

30 86 0:100

400 86 100:0

OTMS

3c

30 100 51:49

30 74 —

OTMS
N3

3e
30 93a 83:17

H21

N3

OTMS

3f

400 83 65:35

120 81 100:0

300 80 100:0

240 89 100:0

30 57 0:100

(continued on next page)



Table 2 (continued)

Entry Epoxide Productb Time (min) Yield (%) Ratio

11 1c

OTMS

CN

4c

OTMS

CN

5c

10 95 47:53

12 1d

OTMS

CN

4d

20 91 —

13 1e

OTMS
CN

4e

OTMS
CN

5e 10 96a 82:18

14 1f
C10H21

OTMS

CN

4f

60 94 100:0

15 1g Cl

OTMS

CN

4g

10 100 100:0

16 1h Br

OTMS

CN

4h

240 82 100:0

17

O

1i

O

O

O

O

OTMS

CN

4i

O

O

CN

OTMS

5i

60 97 62:38

a All four diastereomers were detected.
b Compounds 2a, 3b, 2d,10h 2c, 3c,18 2g,19 2h,11d 4a, 4b, 4d, 4g, and 4h15c are known products and were characterized by the comparison of their spectra with the literature

data. Spectroscopic data for unknown products supplied in Supplementary data. The minor isomers 3e and 3f were detected by the EI-MS spectra only.
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strate model 3-phenyloxy-1,2-epoxypropane (a) with TMSN3

(Scheme 1). After a series of preliminary experiments, the best con-
version was observed when a slightly defective silyl derivative was
added to the epoxide at 0 �C in the presence of 5 mol % of the cat-
alyst and then allowed to warm to room temperature (Table 1).16

This is surprising, since in all the reported procedures the limiting
reagent is always the epoxide.

All the reactions proceeded smoothly under these conditions
and, after the appropriate reaction time (Table 2), afforded the de-
sired products in excellent yields and high purity. The product can
be separated with simple and mild work-up and only a partial
desilylation was observed in some cases, but without rearrange-
ments to isonitriles (see Scheme 2).15d

Experiments conducted with both cis and trans-stilbene lead to
the complex mixtures of products, both with TMSN3 and TMSCN.17

A GC/MS analysis of the reaction-product distribution allowed sig-
nificant amounts of elimination products; namely, non-hydrolyzed
(1,2-diphenylvinyloxy)trimethylsilane and hydrolyzed 1,2-diphe-
nylethanone; to be recognized together with some additional
products. TMSCN was more reactive than TMSN3, as its reaction
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times are significantly lower (Table 2, cf. entries 1–9, 2–10, etc.).
The higher reactivity of the TMSCN also affected regioselectivity.
In fact, addition to 1-dodecene oxide (1f) was completely selective
in the case of TMSCN, but not when using TMSN3 where significant
amounts of the isomer 3f were recovered (Table 2, entry 6). Con-
versely, the closely related cerium(III) chloride is completely selec-
tive with 1-hexene oxide, when charged in 50 mol %.11b Moreover,
addition to styrene oxide (1b) was completely a-selective with
TMSN3 and b-selective TMSCN. Other addition of azides10–12 al-
ways led to mixtures with prevalence of one or the other isomer,
whereas nitrile was already reported to give prevalence of 4b.15 Fi-
nally, complete selectivity for nucleophilic attack at the less-hin-
dered carbon of glycidyl phenyl ether and epihalohydrins was
always observed.

In order to include the present results into our proposed mech-
anism,8 where Er(OTf)3 serves as Lewis acid by coordination to the
oxygen atom; we envisaged that in an asymmetrical epoxide, the
higher nucleophilic CN� added at an early transition state in which
epoxide was still intact and crowded, the positions highly influ-
enced the attack. On the other hand, the less nucleophilic N3

�

added at a late transition state where ring opening proceeded in
a manner that C–O bond cleavage gave the best stabilization of
the developing positive charge. Thus, the b- and benzylic positions
were the favored sites for the nucleophilic attack for CN� and N3

�,
respectively. However, highly encumbered substrates such as 1e
led to mixtures, since crowding inhibits to charge-stabilization (Ta-
ble 2**, entries 5 and 13). In summary, we have developed an eco-
nomical and green method for the synthesis of a wide range of b-
hydroxynitriles and a-azido alcohols by using readily available re-
agents under neutral conditions. This method is yield- and selectiv-
ity-competitive with the previously reported methods, even the
most recent ones. Moreover, these results have allowed better clar-
ification of the mechanisms involved in the erbium(III) triflate-cat-
alyzed epoxide ring opening, by expanding the perspective of its
interaction with other nucleophiles. Further studies in this direc-
tion are in progress in our laboratory.

Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.tetlet.2010.07.123.
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