Interaction of $1,3\lambda^4\delta^2$,2,4-benzodithiadiazines with neutral and charged S-electrophiles: SCl₂, C₆F₅SCl, and NS₂⁺

Alexander Yu. Makarov¹*, Irina Yu. Bagryanskaya¹, Vladimir V. Zhivonitko²

¹ N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9 Akademika Lavrentieva Ave., Novosibirsk 630090, Russia; e-mail: makarov@nioch.nsc.ru

² NMR Research Unit, Faculty of Science, University of Oulu, P. O. Box 3000, Oulu 90014, Finnland

Translated from Khimiya Geterotsiklicheskikh Soedinenii, 2020, 56(7), 968–972

Submitted April 30, 2020 Accepted May 22, 2020

Reactions of $1,3\lambda^4\delta^2,2,4$ -benzothiadiazines with SCl₂, C₆F₅SCl, and [NS₂][SbF₆] leading to 1,2,3-benzodithiazolium salts (Herz salts) were investigated. The relative rate of reaction with SCl₂ significantly depends on the nature of the substituent and its position in the carbocycle. Halogen substituents Cl, Br, and I slow down the reaction, especially if located closely to the heterocycle (positions 5 and 8). In the case of C₆F₅SCl and R = H, chlorination of the carbocycle and opening of the heterocycle also takes place with the formation of 7-chloro- $1,3\lambda^4\delta^2,2,4$ -benzothiadiazine and C₆F₅-S-N=S=N-Ar (Ar = 2-Cl-6-F₅C₆SC₆H₃), respectively. In the reaction with NS₂⁺, along with contraction of the heterocycle, also its expansion occurs with the formation of $1,2,4\lambda^4\delta^2,3,5$ -benzotrithiadiazepine.

Keywords: benzodithiazolium salts, 1,3,2,4-benzothiadiazines, 1,2,4,3,5-benzotrithiadiazepine, dithionitronium, pentafluorobenzenesulfenyl chloride, sulfur dichloride, sulfur-nitrogen heterocycles, tetrasulfur tetranitride.

 $1.3\lambda^4\delta^2, 2.4\text{-Benzothiadiazines}\ 1$ (the indices λ and δ are omitted below) are relatively little studied 12π -electron, i.e., formally antiaromatic, compounds which are stable at normal conditions. Their heteroatom reactivity is high, diverse, and largely unpredictable,¹⁻⁷ the ring contraction being the most typical kind. In particular, the reaction with SCl₂ leads to 1,2,3-benzodithiazolium salts 2 (Herz salts), which is the mildest method for their synthesis, allowing to obtain also otherwise unaccessible derivatives:^{2c,3} the reaction with Ph₃P leads to iminophosphoranes Ph₃P=N-R $(R = 1,2,3-benzodithiazol-2-yl);^{1,4}$ thermolysis and photolysis of dilute solutions produces 1,2,3-benzodithiazolyls (Herz radicals) $3^{1,3,5}$ At high concentrations, the thermolysis leads both to ring contraction toward 1,2,3-dithiazole or 1,2,5-thiadiazole ring and to ring expansion toward 1,2,4,3,5-trithiadiazepine and 1,3,2,4,7-dithiatriazepine ring. 1,6 The addition of H₂O causes opening of the heterocycle.^{4b,7}

Herz salts 2 are preparative precursors of Herz radicals 3 which are stable π -radicals, and they can in some cases be isolated separately and used as structural blocks in the design and synthesis of molecular semiconductors and magnetics.⁸ Recently, they have found application in the synthesis of polycyclic sulfur-nitrogen π -systems with intense absorption in the near-infrared range.⁹ For the

purpose of spectroscopic investigation, including reaction mechanism study, it is convenient to generate Herz radicals **3** from compounds 1.^{1,3,5}

The key intermediate of photolysis and likely also thermolysis of compounds **1** is singlet nitrenoid **4** detected under conditions of matrix isolation.^{5c,10} It has been assumed that it also takes part in reaction of compounds **1** with PPh₃ and SCl₂ by oxidative imination of the P and S atoms of those reactants (Scheme 1).^{1,2c} Isomerization of compounds **1** into intermediate **4** requires energy the source of which can be the interaction of the low-lying vacant

Rate of the reaction with SCl₂

Figure 1. The effect of substituent in the carbocycle on the rate of reaction of compunds 1a-e with SCl₂.

π-MO with the lone electron pair of phosphorus or sulfur atoms.^{2c} In this context, compounds 1 act as Lewis acids, but PPh₃ µ SCl₂ have the role of Lewis bases.

The results of reactions with other compounds, including sulfur compounds, is difficult to predict. The formation of new types of compounds, including new precursors of 1,2,3-benzodithiazolyl radicals, can be expected. In particular, the exchange of Cl atoms for organic groups in iminosulfurane **5** was expected to stabilize the latter, so that it would be possible to isolate such compounds and study their properties.

In the present work, the study of reactions of compounds 1 with SCl₂ is carried forward and other S-electrophiles, C_6F_5SCl and $[NS_2][SbF_6]$, are used for the first time. NS_2^+ cation possesses high and diverse reactivity. However, its reactions with heterocyclic compounds have been investigated only to a limited extent.¹¹

Previously it was found, using the method of competing reactions, that for derivatives of compound **1a**, containing halogens (I, Br) in 6 and 8 positions, the relative rate of their reaction with SCl₂ depends on the position of halogen: 8-isomers react more slowly.^{2c} In the present work, the effect of the nature and position of substituents on the relative rate of this reaction is studied using the same method. The processes taking place in the reaction mixture are complex and not entirely understood.^{2c} Therefore, it is possible to establish only qualitative relationships which nevertheless are important for the understanding the reactivity of 1,3,2,4-benzothiadiazines **1** and development of methods for their synthesis.

It was found that compounds **1b** (5-Br) and **1e** (8-Br) interact with SCl₂ at approximately equal rates which are significantly slower than in the case of compounds **1c** (6-Br) and **1d** (7-Br) the reaction rates of which, too, have similar values. Compound **1a** reacts faster than compounds **1c**, **d** (Fig. 1). Compound **1f** (8-Cl) is also more inert toward SCl₂ than its isomer compound **1g** (6-Cl), while between compounds **1h** (8-CH₃) and **1i** (6-CH₃) such difference is not observed. Therefore, Cl, Br, and I atoms have deactivating effect which becomes weaker with increasing their distance from the heterocycle, which corresponds to their inductive effect.

The deactivating effect of Cl, Br, I atoms better corresponds to the role of compounds 1 as nucleophiles, rather than Lewis acids. Meanwhile it can be not excluded that intermediate 4 also can act as nucleophile, since its stable analog $Ph_3S\equiv N$ is known to have such property.¹²

The reaction of compound **1a** with C_6F_5SCl leads to salt **2a** and $(C_6F_5S)_2$ as the main products. In addition to that, the chlorination of compound **1a** leading to the formation

of compound **1j** (identified by ¹H NMR spectroscopy)^{2b} and opening of the heterocycle leading to the formation of compound **6** (Scheme 2), the structure of which has been established using X-ray structural investigation (Fig. 2) are also observed. However, the low quality of crystals (R 0.17) prevents the discussion of bond lengths and valence angle values.

Scheme 2

Figure 2. Molecular structure of compound 6 with atoms represented as thermal vibration ellipsoids of 50% probability.

The reaction of compound **1a** with C_6F_5SCl proceeds slower than with SCl_2 , while $(C_6F_5)_2S_n$ (n = 1,* 2) do not interact with compound **1a** under these conditions. This speaks against the hypothesis about the reactions of compounds **1** with XSCl (X = Cl, C_6F_5) as oxidative imination of the S atom by nitrenoid **4** and in favor of the role of the latter reagents as S-electrophiles: the transition from X = Cl to X = C_6F_5 should not decrease the ability of the S to to be iminated, yet it decreases its electrophilicity; compounds (C_6F_5)₂S_n (n = 1, 2) also should be amenable to imination, but they are not electrophiles. Still one further cause of different reactivity of the reagents under discussion is the presence or absence of a good leaving group in their molecules, namely Cl atom, the elimination

^{*} In the present work, $(C_6F_5)_2S$ was synthesized by a new method using reaction of C_6F_5MgBr with (SN)₄. Although this method does not have significant advantages over those described before,¹³ it is of interest to note that formation of organic sulfides in reaction of (SN)₄ with Grignard reagents was not observed previously.¹⁴

of which is necessary for conversion of the starting compounds into the final products.

Introduction of the C_6F_5S substituent into the carbocycle of compound **6**, which requires the C–S bond cleavage in either substrate or reagent, as well as substitution of H atom by Cl atom (taking place also upon formation of compound **1j**) are difficult to explain by electrophilic or nucleophilic substitution reactions. It can be suggested that radical cation of compound **1a** participates in the process, having been previously detected by ESR spectroscopy during electrochemical oxidation of compound **1a**.¹⁵

The reaction of compound **1a** with $[NS_2][SbF_6]$ leads to products of both ring contraction and ring expansion – 1,2,3-benzodithiazolium (**2a**) and 1,2,4,3,5-benzotrithiadiazepine (**7**), as well as $(SN)_4$ (Scheme 3). The formation of these compounds can be explained by electrophilic attack of cation NS_2^+ at N-2 atom of the substrate (in contrast to NO_2^+ , the reaction center of NS_2^+ ion is S, not N atom)^{11a} with subsequent bifurcation of the reaction path toward the elimination of either NS^+ or $(SN)_2$ further dimerizing into $(SN)_4$ (Scheme 3). It should be noted that the yield of compound **7** in this reaction (20%) is twice as high as in a previously published method of its synthesis (10%).¹⁶

Scheme 3

 $2(SN)_2 \longrightarrow (SN)_4$

In summary, contraction, expansion, and opening of the heterocycle take place in the investigated reactions of S-electrophiles. 1.3.2.4-benzothiadiazines with The transformation of antiaromatic 1,3,2,4-dithiadiazine heterocycle into aromatic 1,2,3-dithiazolium is the most typical process. It is energetically favorable, which is the obvious driving force of the reaction. The reaction mechanisms are complex and require additional experimental and, especially, theoretical study because of the obvious difficulties of the experimental approach. Nevertheless, the obtained data allow to state that compounds XSCI (X = CI, C_6F_5) in reactions with 1,3,2,4-benzothiadiazines act as electrophiles rather than Lewis bases.

Experimental

¹H NMR spectra were acquired on Bruker DRX-500 (500 MHz) and Bruker WP200-SY (200 MHz) spectrometers, and ¹³C NMR spectra were acquired on a Bruker DRX-500 (126 MHz) spectrometer. ¹⁴N NMR

spectrum of the reaction mixture of compound **1a** with $[NS_2][SbF_6]$ was acquired on a Bruker DRX-500 (36 MHz) spectrometer. ¹⁹F NMR spectra were acquired on Bruker DRX-500 (471 MHz) and Bruker WP200-SY (188 MHz) spectrometers. Chemical shift reference was TMS (for ¹H and ¹³C nuclei), liquid NH₃ (for ¹⁴N nuclei), C₆F₆ (for ¹⁹F nuclei). High-resolution mass spectra were recorded on a Finnigan MAT MS-8200 spectrometer (ionization by electron impact at 70 eV). Electronic absorption spectra in UV and visible range were recorded on a Hewlett Packard 8453 spectrometer.

All described experiments were performed in absolute solvents under stirring in Ar atmosphere. Reagents were added dropwise. Solvents were evaporated under reduced pressure.

Compounds $1a-e^{2a,c}$ $1j^{2b}$ mixtures of compounds 1f and 1g, 1h and $1i^{2b}$ and $C_6F_5SCl^{17}$ were obtained in accordance with the methods described earlier. Salt $[NS_2][SbF_6]^{18}$ was generously gifted by Dr. K. V. Shuvaev.

Competing reactions of 1,3,2,4-benzothiadiazines 1 with SCl₂. A solution of SCl₂ (10 mg, 0.1 mmol) in CH₂Cl₂ (0.2 ml) was added to a solution of 1:1 mixture of compounds **1b** and **1c**, **1b** and **1e**, **1c** and **1d**, **1c** and **1a**, **1f** and **1g**, **1h** and **1i** (0.2 mmol) in CH₂Cl₂ (1.5 ml). After 30 min, the solution was filtered, the filtrate was evaporated to dryness, the residue was sublimated *in vacuo*. According to ¹H NMR spectrum, compound **1g** was absent in the sublimate; in other cases the ratio of compounds was as follows: **1b**:1c > 10; **1b**:1e = 1:1; **1c**:1a = 2:1; **1h**:1i = 1:1.

Interaction of 1,3,2,4-benzothiadiazine (1a) with C_6F_5SCl , synthesis of compound 6. Compound 1a (84 mg, 0.5 mmol) in CH₂Cl₂ (1.5 ml) was added within 20 min to a solution of C_6F_5SCl (118 mg, 0.5 mmol) in CH₂Cl₂ (1.5 ml). After 1 week, the yellow fine crystalline precipitate of salt 2a was filtered off. The filtrate was evaporated to dryness, the residue was separated by column chromatography on silica gel (eluent – hexane). $C_6F_5SSC_6F_5$ and compound 6 were isolated.

1,2,3-Benzodithiazolium chloride (2a). Yield 30 mg (32%), light-brown crystals, mp 145–160°C (decomp.). The ¹H NMR spectrum matched a published one.¹⁹

2-Chloro-6-[(pentafluorophenyl)sulfanyl]-*N*-({[(pentafluorophenyl)sulfanyl]imino}- λ^4 -sulfanylidene)aniline (6). Yield 10 mg (3.5%), orange crystals, mp 126–129°C. UV spectrum (pentane), λ_{max} , nm (log ε): 432 (3.85), 361 (3.73), 223 (4.43). ¹H NMR spectrum (500 MHz, CDCl₃), δ , ppm: 7.31 (1H, dd, J = 8.0 J = 1.0, H Ar); 6.97 (1H, t, J = 8.0, H Ar); 6.79 (1H, d, J = 8.0, H Ar). ¹³C NMR spectrum (CDCl₃), δ , ppm: 139.3; 131.2; 127.9 (CH); 127.1; 126.1 (CH); 126.5 (CH); signals of C₆F₅ groups were not detected due to their low intensity. ¹⁹F NMR spectrum (471 MHz, CDCl₃), δ , ppm (J, Hz): 32.3 (2F, d, J = 19.0); 31.1 (2F, d, J = 20.0); 14.7 (1F, tt, J = 21.0, J = 4.0); 13.1 (1F, t, J = 21.0); 3.19–3.04 (2F, m); 2.90– 3.03 (2F, m). Found, m/z: 567.8987 [M]⁺. C₁₈H₃ClF₁₀N₂S₃. Calculated, m/z: 567.8987.

Decafluorodiphenyl disulfide. Yield 40 mg (40%), paleyellow crystals, mp 49–50°C (mp $50-51°C^{20}$). Identification of 7-chloro-1,3,2,4-benzothiadiazine (1j) as a product of interaction of 1,3,2,4-benzothiadiazine (1a) with C_6F_5SCl . C_6F_5SCl (2.11 g, 0.009 mol) was added to a solution of compound 1a (0.50 g, 0.003 mol) in CH₂Cl₂ (5 ml). After 2 days, the solution was filtered, the filtrate was evaporated, the residue was sublimated *in vacuo* (80°C, 2 Torr). The main signals in the ¹H NMR spectrum of the green sublimate (1.12 g) matched those of compound 1j,^{2b} while the main signals in the ¹⁹F NMR spectrum matched those of decafluorodiphenyl sulfide.^{20a}

Decafluorodiphenyl disulfide. A solution of C₆F₅Br (9.88 g, 40 mmol) in THF (20 ml) during 30 min was added to a refluxing suspension of Mg turnings (0.96 g, 40 mmol), activated by I₂, in THF (80 ml). Almost all Mg was dissolved within 30 min. Freshly recrystallized (SN)₄ (1.84 g, 10 mmol) was added to the reaction mixture in small portions. After 1.5 h, the mixture was cooled with ice water and a solution of Br₂ (3.20 g, 20 mmol) in THF (15 ml) was gradually added. After 30 min, the mixture was filtered, the solvent was evaporated, and the residue was extracted with boiling hexane (4×30 ml). The combined extract was evaporated, the residue was sublimated and recrystallized from hexane. The sublimation and recrystallization was repeated to obtain decafluorodiphenyl sulfide. Yield 3.18 g (48%), slightly yellow crystals, mp 86-88°C (mp 85-86°C^{13c}). The ¹⁹F NMR spectrum matched a published one.²¹

Interaction of 1,3,2,4-benzothiadiazine (1a) with $(C_6F_5)_2S_n$ (n = 1, 2). Compound 1a (84 mg, 0.5 mmol) and $(C_6F_5)_2S_n$ (n = 1, 2) (183 or 199 mg, 0.5 mmol) were dissolved in CDCl₃ (0.7 ml). ¹H and ¹⁹F NMR spectra were recorded right after the mixing and after keeping for 15 days at room temperature. Only signals of starting compounds were observed in the spectra.

Interaction of 1,3,2,4-benzothiadiazine (1a) with [NS₂][SbF₆]. [NS₂][SbF₆] salt (166 mg, 0.52 mmol) was added in small portions to a solution of compound 1a (89 mg, 0.52 mmol) in CH₂Cl₂ (40 ml). After 16 h, the black precipitate (78 mg) was filtered off and washed on the filter with CH₂Cl₂. The filtrate was evaporated, the residue was dissolved in CDCl₃ (62 mg of black substance remained), and NMR spectra were recorded. The ¹H NMR spectrum corresponded to a 1:3 mixture of compounds $1a^{2a}$ and 7^{16} in the ¹⁴N NMR spectrum, beside signals of compounds $1a^{2c}$ and 7^{16} an intensive signal at 125 ppm was observed corresponding to $(SN)_4$.²² Signals of cations of salt 2a were absent in the spectra. Chromatography on silica gel (eluent PhH-heptane, 1:1, with addition of 1% EtOAc) separated compound 7 and (SN)₄. The insoluble in CDCl₃ black substance was dissolved in CF₃CO₂H and ¹H NMR spectrum was recorded containing signals of cations of salt **2a** and NH_4^+ in 12:1 molar ratio.

1,2,4\lambda^4\delta^2,3,5-Benzotrithiadiazepine (7). Yield 19.3 mg (18%, 20% considering the incomplete conversion of compound **1a**), red crystals, mp 27–28°C. The ¹H NMR spectrum matched a published one.¹⁶

Tetrasulfur tetranitride ((SN)₄). Yield 4.5 mg (9%), orange crystals, mp 180–190°C (decomposes with

evolution of gas and preceding sublimation of crystals with a characteristic shape).

X-ray structure investigation of compound 6 was carried out at 20°C on a Bruker P4 single crystal diffractometer with a graphite monochromator using MoKa radiation. The structure was solved by the direct method and refined with the full-matrix least-squares anisotropic (isotropic for H atoms) approximation using the SHELXL-97 software.²³ The positions of the H atoms were localized geometrically. The crystal was a thin (0.01-0.02 mm) elongated plate. The experiment was carried out up to 2θ 45°, since at larger angles all reflections were of zero intensity. The high R value (0.17) has possibly to do with the fact that the crystal was an aggregate, although the twin law was not established. The complete crystallographic information on compound 6 has been deposited at the Cambridge Crystallographic Data Center (deposit CCDC 1999877).

Authors thank the Collective Use Chemistry Service Center of the Siberian Branch of the Russian Academy of Sciences for the instrumental measurements and A. V. Zibarev for discussion of the results and useful suggestions.

References

- Blockhuys, F.; Gritsan, N. P.; Makarov, A. Yu.; Tersago, K.; Zibarev, A. V. *Eur. J. Inorg. Chem.* 2008, 655.
- (a) Cordes, A. W.; Hojo, M.; Koenig, H.; Noble, M. C.; Oakley, R. T.; Pennington, W. T. *Inorg. Chem.* **1986**, *25*, 1137. (b) Bagryanskaya, I. Yu.; Gatilov, Yu. V.; Makarov, A. Yu.; Maksimov, A. M.; Miller, A. O.; Shakirov, M. M.; Zibarev, A. V. *Heteroat. Chem.* **1999**, *10*, 113. (c) Makarov, A. Yu.; Bagryanskaya, I. Yu.; Gatilov, Yu. V.; Mikhalina, T. V.; Shakirov, M. M.; Shchegoleva, L. N.; Zibarev, A. V. *Heteroat. Chem.* **2001**, *12*, 563.
- (a) Gritsan, N. P.; Kim, S. N.; Makarov, A. Yu.; Chesnokov, E. N.; Zibarev, A. V. *Photochem. Photobiol. Sci.* 2006, 5, 95.
 (b Makarov, A. Yu.; Kim, S. N.; Gritsan, N. P.; Bagryanskaya, I. Yu.; Gatilov, Yu. V.; Zibarev, A. V. *Mendeleev Commun.* 2005, 15, 14.
- (a) Zibarev, A. V.; Gatilov, Yu. V.; Bagryanskaya, I. Yu.; Maksimov, A. M.; Miller, A. O. *Chem. Commun.* **1993**, 298.
 (b) Makarov, A. Yu.; Zhivonitko, V. V.; Makarov, A. G.; Zikirin, S. B.; Bagryanskaya, I. Yu.; Bagryansky, V. A.; Gatilov, Yu. V.; Irtegova, I. G.; Shakirov, M. M.; Zibarev, A. V. *Inorg. Chem.* **2011**, *50*, 3017. (c) Grayfer, T. D.; Makarov, A. Yu.; Bagryanskaya, I. Yu.; Irtegova, I. G.; Gatilov, Yu. V.; Zibarev, A. V. *Heteroat. Chem.* **2015**, *26*, 42.
- (a) Gritsan, N. P.; Makarov, A. Yu.; Zibarev, A. V. Appl. Magn. Reson. 2011, 41, 449. (b) Shuvaev, K. V.; Bagryansky, V. A.; Gritsan, N. P.; Makarov, A. Yu.; Molin, Yu. N.; Zibarev, A. V. Mendeleev Commun. 2003, 13, 178. (c) Gritsan, N. P.; Bagryansky, V. A.; Vlasyuk, I. V.; Molin, Yu. N.; Makarov, A. Yu.; Platz, M. S.; Zibarev, A. V. Russ. Chem. Bull., Int. Ed. 2001, 50, 2064. [Izv. AN, Ser. Khim. 2001, 1973.] (d) Vlasyuk, I. V.; Bagryansky, V. A.; Gritsan, N. P.; Molin, Yu. N.; Makarov, A. Yu.; Gatilov, Yu. V.; Shcherbukhin, V. V.; Zibarev, A. V. Phys. Chem. Chem. Phys. 2001, 3, 409.
- Zhivonitko, V. V.; Makarov, A. Yu.; Bagryanskaya, I. Yu.; Gatilov, Yu. V.; Shakirov, M. M.; Zibarev, A. V. *Eur. J. Inorg. Chem.* 2005, 4099.

- Makarov, A. Yu.; Bagryanskaya, I. Yu.; Gatilov, Yu. V.; Shakirov, M. M.; Zibarev, A. V. Mendeleev Commun. 2003, 13, 19.
- Volkova, Yu. M.; Makarov, A. Yu.; Pritchina, E. A.; Gritsan, N. P.; Zibarev, A. V. Mendeleev Commun. 2020, 30, 385.
- Makarov, A. Yu.; Volkova, Yu. M.; Shundrin, L. A; Dmitriev, A. A.; Irtegova, I. G.; Bagryanskaya, I. Yu.; Shundrina, I. K.; Gritsan, N. P.; Beckmann, J.; Zibarev, A. V. *Chem. Commun.* 2020, *56*, 727.
- Gritsan, N. P.; Pritchina, E. A.; Bally, T.; Makarov, A. Yu.; Zibarev, A. V. J. Phys. Chem. A 2007, 111, 817.
- 11. (a) Parsons, S.; Passmore, J. Acc. Chem. Res. 1994, 27, 101. (b) Decken, A.; Mailman, A.; Mattar, S. M.; Passmore, J. Chem. Commun. 2005, 2366. (c) Decken, A.; Mailman, A.; Passmore, J. Chem. Commun. 2009, 6077.
- 12. Yoshimura, T. Rev. Heteroat. Chem. 2000, 2, 101.
- (a) Chambers, R. D.; Cunningham, J. A.; Pyke, D. A. *Tetrahedron* **1968**, *24*, 2783. (b) Furin, G. G.; Terentyrva, T. V.; Yakobson, G. G. *Izv. SO AN SSSR, Ser. Khim.* **1972**, 78.
 (c) Belf, L. J.; Buxton, M. W.; Fuller, G. *J. Chem. Soc.* **1965**, 3372.
- 14. Mataka, S.; Takahashi, K.; Yamamoto, H.; Tashiro, M. J. Chem. Soc., Perkin Trans. 1 1980, 2417.

- Vasilieva, N. V.; Irtegova, I. G.; Gritsan, N. P.; Shundrin, L. A.; Lonchakov, A. V.; Makarov, A. Yu.; Zibarev, A. V. *Mendeleev Commun.* 2007, 17, 161.
- Makarov, A. Yu.; Shakirov, M. M.; Shuvaev, K. V.; Bagryanskaya, I. Yu.; Gatilov, Yu. V.; Zibarev, A. V. Chem. Commun. 2001, 1774.
- 17. Sartori, P.; Golloch, A. Chem. Ber. 1970, 103, 3936.
- Cameron, T. S.; Mailman, A.; Passmore, J.; Shuvaev, K. V. Inorg. Chem. 2005, 44, 6524.
- (a) Makarov, A. Yu.; Blockhuys, F.; Bagryanskaya, I. Yu.; Gatilov, Yu. V.; Shakirov, M. M.; Zibarev, A. V. *Inorg. Chem.* **2013**, *52*, 3699. (b) Akulin, Yu. I.; Gel'mont, M. M.; Strelets, B. Kh.; Éfros, L. S. *Chem. Heterocycl. Compd.* **1978**, *14*, 733. [*Khim. Geterotsikl. Soedin.* **1978**, 912.]
- 20. (a) Neil, R. J.; Peach, M. E. J. Fluor. Chem. 1971/72, 1, 257.
 (b) Robson, P.; Stacey, M; Stephens, R; Tatlow, J. C. J. Chem. Soc. 1960, 4754.
- 21. Chambers, R. D.; Cunningham, J. A.; Spring, D. J. *Tetrahedron* **1968**, *24*, 3997.
- 22. Passmore, J.; Schriver, M. J. Inorg. Chem. 1988, 27, 2749.
- Sheldrick, G. M. SHELX-97, Programs for Crystal Structure Analysis (Release 97.2); Goettingen University: Goettingen, 1997.