# Dalton Transactions

An international journal of inorganic chemistry

### Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: J. Gu, S. Wan, M. Kirillova and A. Kirillov, *Dalton Trans.*, 2020, DOI: 10.1039/D0DT01261K.



This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.



rsc.li/dalton

View Article Online

View Journal

## H-bonded and metal(II)-organic architectures assembled from an unexplored aromatic tricarboxylic acid: Structural variety and functional properties

Jin-Zhong Gu,\*a Shi-Mao Wan,a Marina V. Kirillovab and Alexander M. Kirillov\*b,c

Received (in XXX, XXX) XthXXXXXXX 200X, Accepted Xth XXXXXXXX 200X 5 First published on the web Xth XXXXXXXX 200X DOI: 10.1039/b000000x

This study reports the application of an aromatic tricarboxylic acid, 2,5-di(4carboxylphenyl)nicotinic acid (H<sub>3</sub>dcna) as a versatile and unexplored organic building block for assembling a new series of metal(II) (M = Co, Ni, Zn, Fe, and Mn) complexes and coordination <sup>10</sup> polymers, namely [M(Hdcna)(phen)<sub>2</sub>(H<sub>2</sub>O)]·H<sub>2</sub>O (M = Co (1), Ni (2)), [Zn( $\mu$ -Hdcna)(phen)]<sub>n</sub> (3), [Co( $\mu$ -Hdcna)(bipy)(H<sub>2</sub>O)<sub>2</sub>]<sub>n</sub>·nH<sub>2</sub>O (4), [Zn<sub>2</sub>( $\mu$ -Hdcna)<sub>2</sub>(bipy)<sub>2</sub>(H<sub>2</sub>O)<sub>4</sub>]·6H<sub>2</sub>O (5), [Zn( $\mu$ <sub>3</sub>-

- Hdcna)(H<sub>2</sub>biim)]<sub>n</sub> (**6**),  $[Ni_2(Hdcna)_2(\mu-bpb)(bpb)_2(H_2O)_4]$  (**7**),  $[Fe(\mu_4-Hdcna)(\mu-H_2O)]_n \cdot nH_2O$  (**8**), and  $[Mn_3(\mu_5-dcna)_2(bipy)_2(H_2O)_2]_n \cdot 2nH_2O$  (**9**). Such a diversity of products was hydrothermally prepared from the corresponding metal(II) salts, H<sub>3</sub>dcna as a principal multifunctional ligand, and
- <sup>15</sup> N-donor mediators of crystallization (1,10-phenanthroline, phen; 2,2'-bipyridine, bipy; 2,2'-biimidazole, H<sub>2</sub>biim; or 1,4-bis(pyrid-4-yl)benzene, bpb). The obtained products 1–9 were fully characterized by standard methods (elemental analysis, FTIR, TGA, PXRD) and the structures were established by single-crystal X-ray diffraction. These vary from the discrete monomers (1, 2) and dimers (5, 7) to the 1D (3, 4, 6) and 2D (8, 9) coordination polymers (CPs). Structural and
- <sup>20</sup> topological characteristics of hydrogen-bonded or metal-organic architectures in **1–9** were highlighted, revealing that their structural multiplicity depends on the type of metal(II) source and crystallization mediator. Thermal stability as well as luminescent, magnetic, or catalytic properties were explored for selected compounds. In particular, the zinc(II) derivatives **3**, **5**, and **6** were applied as efficient heterogeneous catalysts for the cyanosilylation of aldehydes with trimethylsilyl
- 25 cyanide at room temperature. The catalytic reactions were optimized by tuning the different reaction parameters (solvent composition, time, catalyst loading) and the substrate scope was also explored. Compound 5 revealed superior catalytic activity leading to up to 75% product yields, while maintaining its original performance upon recycling for at least four reaction cycles. Finally, the obtained herein products represent the unique examples of coordination compounds derived

<sup>30</sup> from H<sub>3</sub>dcna, thus opening up the use of this multifunctional tricarboxylic acid for generating complexes and coordination polymers with interesting structures and functional properties.

#### Introduction

- <sup>35</sup> The design of new first-row transition metal complexes and coordination polymers (CPs) has seen an enormous development in the last two decades.<sup>1–4</sup> This is principally associated with a fascinating structural diversity of such compounds and their remarkable applications in diverse research fields which, among
- <sup>40</sup> many other areas, include gas storage and separation,<sup>5-11</sup> catalysis,<sup>12–15</sup> luminescence,<sup>16–21</sup> and magnetism.<sup>22–25</sup> However, even after years of comprehensive studies and numerous synthetic methodologies developed, it is still not easy to foresee structures of the resulting metal-organic architectures, since a
- <sup>45</sup> diversity of factors may impact their synthesis and crystallization. The most common factors include the structural features of principal and supporting organic ligands,<sup>26–30</sup> coordination requirements of metal ions,<sup>28,31,32</sup> solvent composition,<sup>33–36</sup> reaction temperature,<sup>37–39</sup> and pH value.<sup>40,41</sup> Among these, the

<sup>50</sup> type of main ligand represents a particularly interesting variable to modify, allowing the generation of potentially desired products. In this regard, polycarboxylic acids containing several aromatic rings with variable positions of the –COOH functionalities represent one of the most compelling classes of organic ligands,
 <sup>55</sup> especially when dealing with the synthesis of new coordination polymers (CPs) or metal-organic frameworks (MOFs). The popularity of such aromatic carboxylic acids as building blocks for generating metal-organic architectures can be explained by their coordination versatility and an ability to act as multiple
 <sup>60</sup> linkers, a high thermal stability, a tunable deprotonation of – COOH groups, remarkable physicochemical properties, as well

- as an ability to function as hydrogen bond donors and acceptors thus facilitating the formation of intricate H-bonded networks.<sup>12,14,28,41-44</sup>
- 65 As an extension of our research on the hydrothermal synthesis of new first-row transition metal CPs and complexes driven by polycarboxylate blocks, herein we have centered our attention on a novel aromatic tricarboxylic acid, namely 2,5-di(4carboxylphenyl)nicotinic acid (H<sub>3</sub>dcna, Scheme 1), as an

unexplored building block in coordination chemistry. Hence, the principal goal of the present work has been the exploration of H<sub>3</sub>dcna as a multifunctional ligand for the assembly of new metal(II)-organic architectures under hydrothermal conditions, s along with the investigation of their structural features and properties. The selection of H<sub>2</sub>dcna can be explained by a number

- properties. The selection of  $H_3$ dcna can be explained by a number of features. (1) It is an organic ligand with three aromatic rings in a linear arrangement that are decorated with three carboxylic acid groups and a pyridyl site. (2)  $H_3$ dcna thus features seven possible
- <sup>10</sup> sites for coordination, namely six O carboxylate atoms and one N donor of the nicotinate ring. (3) This building block is thermally stable and can be fully or partially deprotonated to produce soluble species under hydrothermal conditions. (4) H<sub>3</sub>dcna can function as a multiple hydrogen bond acceptor and/or donor and <sup>15</sup> support the generation of H-bonded networks. (5) According to a
- search of the Cambridge Structural Database, coordination chemistry of H<sub>3</sub>dcna remains unexplored.<sup>38,45</sup>

Thus, with all this motivation in mind, we report in this work the hydrothermal generation, full characterization, 20 crystal structures, topological and H-bonding features, thermal stability, luminescent, magnetic, and catalytic properties of a new series of nine metal(II)-organic architectures assembled from H<sub>3</sub>dcna as a principal ligand in the presence of some N-donor crystallization mediators 25 (Scheme 1). The hydrothermally generated products have been formulated as  $[M(Hdcna)(phen)_2(H_2O)] \cdot H_2O$  (M = Co (2)), $[Zn(\mu-Hdcna)(phen)]_n$ (1),Ni (3), [Co(µ-Hdcna)(bipy)(H<sub>2</sub>O)<sub>2</sub>]<sub>n</sub> $\cdot n$ H<sub>2</sub>O (4), $[Zn_2(\mu Hdcna)_2(bipy)_2(H_2O)_4] \cdot 6H_2O$  (5),  $[Zn(\mu_3-Hdcna)(H_2biim)]_n$  $_{30}$  (6),  $[Ni_2(Hdcna)_2(\mu-bpb)(bpb)_2(H_2O)_4]$  (7),  $[Fe(\mu_4-Hdcna)(\mu-bpb)(\mu-bpb)_2(H_2O)_4]$  (7),  $[Fe(\mu_4-Hdcna)(\mu-bpb)(\mu-bpb)_2(H_2O)_4]$  (7),  $[Fe(\mu_4-Hdcna)(\mu-bpb)(\mu-bpb)_2(H_2O)_4]$  (7),  $[Fe(\mu_4-Hdcna)(\mu-bpb)(\mu-bpb)_2(H_2O)_4]$  (7),  $[Fe(\mu_4-Hdcna)(\mu-bpb)(\mu-bpb)_2(H_2O)_4]$  (7),  $[Fe(\mu_4-Hdcna)(\mu-bpb)(\mu-bpb)_2(H_2O)_4]$  (7),  $[Fe(\mu_4-Hdcna)(\mu-bpb)(\mu-bpb)(\mu-bpb)_2(H_2O)_4]$  (7),  $[Fe(\mu_4-Hdcna)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bpb)(\mu-bp$  $H_2O)_n \cdot nH_2O$  (8), and  $[Mn_3(\mu_5-dcna)_2(bipy)_2(H_2O)_2]_n \cdot 2nH_2O$ (9).

Apart from representing the unique examples of coordination compounds derived from H<sub>3</sub>dcna, this study has also explored <sup>35</sup> the thermal stability as well as luminescent, magnetic, or catalytic properties of selected products. In particular, zinc(II) derivatives **3**, **5**, and **6** have been applied as efficient heterogeneous catalysts for the cyanosilylation of aldehydes, including the optimization of different reaction parameters <sup>40</sup> and investigation of substrate scope.



Scheme 1 Structures of H<sub>3</sub>dcna and N-donor crystallization mediators.

#### 45 Experimental section

#### General methods

All chemicals and solvents were obtained from commercial suppliers. 2,5-Di(4-carboxylphenyl)nicotinic acid (H<sub>3</sub>dcna)

was acquired from Jinan Henghua Sci. & Tec. Co., Ltd. <sup>50</sup> C/N/H analyses were run on an Elementar Vario EL elemental analyzer. Bruker EQUINOX 55 spectrometer was used for recording the FTIR spectra (potassium bromide discs). LINSEIS STA PT1600 thermal analyzer was used for thermogravimetric (TGA) measurements (heating rate: 10 <sup>55</sup> °C/min; inert N<sub>2</sub> atmosphere). PXRD (powder X-ray diffraction) analyses were carried out on a Rigaku-Dmax 2400 diffractometer (Cu-K $\alpha$  radiation,  $\lambda = 1.54060$  Å). Solid-state excitation and emission spectra were measured on an Edinburgh FLS920 fluorescence spectrometer under ambient <sup>60</sup> temperature. Magnetic susceptibility data were collected

using a Quantum Design SQUID Magnetometer MPMSXL-7 (2–300 K, field of 0.1 T); diamagnetic contribution correction was performed prior to the analysis of data. Solution <sup>1</sup>H NMR spectra were recorded on a JNM ECS 400M spectrometer.

#### Synthesis of compounds 1–9

All products were assembled via a hydrothermal synthetic procedure, in which the reaction mixtures of different composition (Table 1) were treated in H<sub>2</sub>O at 160 °C for three <sup>70</sup> days, followed by a gradual cooling down and crystallization (10 °C per hour). Complete synthetic procedures and analytical data for compounds **1–9** are given in ESI.

 Table 1 Hydrothermal synthesis of 1-9: composition of the reaction mixtures.

| Product formula                                                                                                              | Metal(II)                            | Crystalliza-        | M <sup>2+</sup> /H <sub>3</sub> dena/ |
|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------|---------------------------------------|
|                                                                                                                              | precursor                            | tion media-         | CM/NaOH                               |
|                                                                                                                              |                                      | tor (CM)            | molar ratio                           |
| [Co(Hdcna)(phen) <sub>2</sub> (H <sub>2</sub> O)]·H <sub>2</sub> O (1)                                                       | CoCl <sub>2</sub> ·6H <sub>2</sub> O | phen                | 1/1/1/2                               |
| [Ni(Hdcna)(phen) <sub>2</sub> (H <sub>2</sub> O)]·H <sub>2</sub> O (2)                                                       | NiCl <sub>2</sub> ·6H <sub>2</sub> O | phen                | 1/1/1/2                               |
| $[Zn(\mu-Hdcna)(phen)]_n$ (3)                                                                                                | ZnCl <sub>2</sub>                    | phen                | 1/1/1/2                               |
| $[Co(\mu-Hdcna)(bipy)(H_2O)_2]_n \cdot nH_2O (4)$                                                                            | CoCl <sub>2</sub> ·6H <sub>2</sub> O | bipy                | 1/1/1/2                               |
| [Zn <sub>2</sub> (µ-Hdcna) <sub>2</sub> (bipy) <sub>2</sub> (H <sub>2</sub> O) <sub>4</sub> ]·6H <sub>2</sub> O ( <b>5</b> ) | ZnCl <sub>2</sub>                    | bipy                | 1/1/1/2                               |
| $[Zn(\mu_3-Hdcna)(H_2biim)]_n$ (6)                                                                                           | ZnCl <sub>2</sub>                    | H <sub>2</sub> biim | 1/1/1/2                               |
| $[Ni_{2}(Hdcna)_{2}(\mu-bpb)(bpb)_{2}(H_{2}O)_{4}]$ (7)                                                                      | NiCl <sub>2</sub> ·6H <sub>2</sub> O | bpb                 | 1/1/1/2                               |
| $[Fe(\mu_4-Hdcna)(\mu-H_2O)]_n \cdot nH_2O (8)$                                                                              | FeSO <sub>4</sub> ·7H <sub>2</sub> O | -                   | 1/1/-/2                               |
| $[Mn_3(\mu_5-dcna)_2(bipy)_2(H_2O)_2]_n \cdot 2nH_2O$ (9)                                                                    | MnCl <sub>2</sub> ·4H <sub>2</sub> O | bipy                | 1/0.67/1/2                            |

75 "Synthesis under hydrothermal conditions: stainless steel reactor (Teflon-lined, 25 mL volume), water as solvent (10 mL), 160 °C, 3 days.

#### Single crystal X-ray diffraction and topological analysis

X-ray data for single crystals of 1–9 were obtained using <sup>80</sup> either a Bruker Smart CCD or an Agilent SuperNova diffractometer (graphite-monochromated Mo  $K_{\alpha}$  radiation,  $\lambda$ = 0.71073 Å). Semiempirical absorption corrections were performed with SADABS. SHELXS-97 and SHELXL-97<sup>46</sup> were used for structure solution by direct methods and <sup>85</sup> refining by full-matrix least-squares on  $F^2$ . All the non-H atoms were refined anisotropically by full-matrix leastsquares methods on  $F^2$ . All the CH hydrogen atoms were placed in calculated positions with fixed isotropic thermal parameters and included in structure factor calculations at the <sup>90</sup> final stage of full-matrix least-squares refinement. H atoms of H<sub>2</sub>O/COOH functionalities were positioned by difference maps and constrained to ride on their parent O atoms. In structures **7–9**, as it was not possible to see clear electron-

density peaks in difference maps which would correspond to acceptable locations for the H atoms of water oxygen O7, the refinement was completed with no allowance for these H atoms in the model. Summary of crystal data for 1–9 is given in Table 2. Selected bond distances (Table S1) and parameters of H-bonding (Table S2) are listed in ESI.

Metal-organic or H-bonded networks in 1-9 were also analyzed from a topological perspective by applying the concept of underlying net.<sup>47,48</sup> Simplified nets were

- <sup>10</sup> constructed by reducing the bridging ligands (when analyzing metal-organic networks) or discrete metal complexes (when analyzing hydrogen-bonded networks) to corresponding centroids while preserving their connectivity. The analysis of hydrogen-bonded networks was restrained to considering only <sup>15</sup> strong H-bonds D-H···A: D···A < 3.50 Å, H···A < 2.50 Å, and
- $\angle$ (D-H···A) > 120°; D/A are the donor/acceptor atoms.<sup>47,48</sup> CCDC-1984462–1984470 contain the supplementary crystallographic data for 1–9.

#### Catalytic cyanosilylation of aldehydes

<sup>20</sup> In a typical test, a suspension of an aromatic aldehyde (0.50 mmol, 4-nitrobenzaldehyde as a model substrate), trimethylsilyl cyanide (1.0 mmol), and catalyst (typically 3 mol%) in dichloromethane (2.5 mL) was stirred at room temperature. After a desired reaction time, the catalyst was
<sup>25</sup> removed by centrifugation, followed by an evaporation of the solvent from the filtrate under reduced pressure to give a crude solid. This was dissolved in CDCl<sub>3</sub> and analyzed by <sup>1</sup>H NMR spectroscopy for quantification of products (Fig. S5, ESI). To perform the recycling experiment, the catalyst was
<sup>30</sup> isolated by centrifugation, washed with dichloromethane, dried at room temperature, and reused. The subsequent steps were performed as described above.

#### 35 Results and discussion

**Hydrothermal preparation of 1–9.** Despite commercial availability and the presence of seven potential coordination sites, 2,5-di(4-carboxylphenyl)nicotinic acid (H<sub>3</sub>dcna) still remains unexplored as an aromatic building block for <sup>40</sup> generating coordination compounds. To fill this gap, in this study we attempted a considerable number of hydrothermal reactions at 160 °C between transition metal(II) cations (i.e., Co<sup>2+</sup>, Ni<sup>2+</sup>, Zn<sup>2+</sup>, Fe<sup>2+</sup>, and Mn<sup>2+</sup>) and H<sub>3</sub>dcna, also in the presence of sodium hydroxide (deprotonating agent) and <sup>45</sup> different *N*-donor crystallization mediators (Scheme 1). The latter were selected from 1,10-phenanthroline (phen), 2,2'-bipyridine (bipy), 2,2'-biimidazole (H<sub>2</sub>biim), or 1,4-bis(pyrid-

4-yl)benzene (bpb). Within the synthetic attempts performed, nine reactions were successful and well reproducible, leading
to the formation of pure microcrystalline products (Table 1) along with single crystals suitable for X-ray diffraction. The cobalt(II) compounds 1 and 4 were generated under equal conditions, except using different crystallization mediators (phen for 1 or bipy for 4), but led to distinct structures.
Likewise, structural differences between the Ni(II) derivatives 2 and 7 are also regarded to the use of distinct mediators of crystallization. Products 1 and 3 were also obtained under similar conditions, except for the type metal(II) chloride (CoCl<sub>2</sub>·6H<sub>2</sub>O for 1 and ZnCl<sub>2</sub> for 3). The differences observed <sup>60</sup> in the structures of 1–9 show that their formation is primarily

dependent on the type of crystallization mediator and metal(II) source. All compounds were fully characterized and their crystal structures were confirmed by single-crystal X-ray diffraction (Table 2).

65

| Compound                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                        | 2                                                                                                                                                                                                                                                                    | 3                                                                                                                                                                                                                        | 4                                                                                                                                                                                                                                                                                                                                                              | 5                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Chemical formula                                                                                                                                                                                                                                                                                                                                                                                | C44H21C0N2O                                                                                                                                                                                                                              | C44H21NiN5O                                                                                                                                                                                                                                                          | C22H10ZnN2O4                                                                                                                                                                                                             | C20H25C0N2O0                                                                                                                                                                                                                                                                                                                                                   | $C_{40}H_{50}Zn_2N_2O_{22}$ |
| Formula weight                                                                                                                                                                                                                                                                                                                                                                                  | 816 67                                                                                                                                                                                                                                   | 816.45                                                                                                                                                                                                                                                               | 606.87                                                                                                                                                                                                                   | 630.46                                                                                                                                                                                                                                                                                                                                                         | 1345.86                     |
| Crystal system                                                                                                                                                                                                                                                                                                                                                                                  | Triclinic                                                                                                                                                                                                                                | Triclinic                                                                                                                                                                                                                                                            | Monoclinic                                                                                                                                                                                                               | Triclinic                                                                                                                                                                                                                                                                                                                                                      | Triclinic                   |
| Space group                                                                                                                                                                                                                                                                                                                                                                                     | P-1                                                                                                                                                                                                                                      | P-1                                                                                                                                                                                                                                                                  | $P2_1/n$                                                                                                                                                                                                                 | P-1                                                                                                                                                                                                                                                                                                                                                            | P-1                         |
| a/Å                                                                                                                                                                                                                                                                                                                                                                                             | 11 3259(8)                                                                                                                                                                                                                               | 113784(7)                                                                                                                                                                                                                                                            | 17.6863(4)                                                                                                                                                                                                               | 6 9985(6)                                                                                                                                                                                                                                                                                                                                                      | 9 0097(4)                   |
| h/Å                                                                                                                                                                                                                                                                                                                                                                                             | 13 2252(9)                                                                                                                                                                                                                               | 13 1996(8)                                                                                                                                                                                                                                                           | 17.2313(3)                                                                                                                                                                                                               | 9.2423(13)                                                                                                                                                                                                                                                                                                                                                     | 12 2876(5)                  |
| c/Å                                                                                                                                                                                                                                                                                                                                                                                             | 14.6526(13)                                                                                                                                                                                                                              | 14 5453(9)                                                                                                                                                                                                                                                           | 17.2313(3)<br>18 2480(3)                                                                                                                                                                                                 | 21235(2)                                                                                                                                                                                                                                                                                                                                                       | 14 0100(7)                  |
| a/°                                                                                                                                                                                                                                                                                                                                                                                             | 67 349(7)                                                                                                                                                                                                                                | 67 404(6)                                                                                                                                                                                                                                                            | 90                                                                                                                                                                                                                       | 91 236(10)                                                                                                                                                                                                                                                                                                                                                     | 98 691(4)                   |
| R/0                                                                                                                                                                                                                                                                                                                                                                                             | 76175(7)                                                                                                                                                                                                                                 | 76.007(5)                                                                                                                                                                                                                                                            | 109 196(2)                                                                                                                                                                                                               | 01.002(8)                                                                                                                                                                                                                                                                                                                                                      | 102 242(4)                  |
| $p_{\prime}$                                                                                                                                                                                                                                                                                                                                                                                    | (0.173(7))                                                                                                                                                                                                                               | (0.097(3))                                                                                                                                                                                                                                                           | 108.180(2)                                                                                                                                                                                                               | 91.092(0)<br>105.276(10)                                                                                                                                                                                                                                                                                                                                       | 105.242(4)                  |
| <i>γ</i> /                                                                                                                                                                                                                                                                                                                                                                                      | 03.391(7)                                                                                                                                                                                                                                | 03.830(0)                                                                                                                                                                                                                                                            | 90                                                                                                                                                                                                                       | 103.276(10)                                                                                                                                                                                                                                                                                                                                                    | 94.700(3)                   |
| V/A <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                | 1836.1(3)                                                                                                                                                                                                                                | 1831.5(2)                                                                                                                                                                                                                                                            | 5283.43(18)                                                                                                                                                                                                              | 1324.2(3)                                                                                                                                                                                                                                                                                                                                                      | 1481.23(12)                 |
| 7/K                                                                                                                                                                                                                                                                                                                                                                                             | 293(2)                                                                                                                                                                                                                                   | 293(2)                                                                                                                                                                                                                                                               | 293(2)                                                                                                                                                                                                                   | 293(2)                                                                                                                                                                                                                                                                                                                                                         | 293(2)                      |
| Z                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                        | 2                                                                                                                                                                                                                                                                    | 8                                                                                                                                                                                                                        | 2                                                                                                                                                                                                                                                                                                                                                              | 1                           |
| $D_c/\mathrm{g}~\mathrm{cm}^{-3}$                                                                                                                                                                                                                                                                                                                                                               | 1.477                                                                                                                                                                                                                                    | 1.481                                                                                                                                                                                                                                                                | 1.526                                                                                                                                                                                                                    | 1.581                                                                                                                                                                                                                                                                                                                                                          | 1.509                       |
| $\mu/\mathrm{mm}^{-1}$                                                                                                                                                                                                                                                                                                                                                                          | 0.533                                                                                                                                                                                                                                    | 1.314                                                                                                                                                                                                                                                                | 1.745                                                                                                                                                                                                                    | 0.713                                                                                                                                                                                                                                                                                                                                                          | 1.738                       |
| F(000)                                                                                                                                                                                                                                                                                                                                                                                          | 842                                                                                                                                                                                                                                      | 844                                                                                                                                                                                                                                                                  | 2480                                                                                                                                                                                                                     | 650                                                                                                                                                                                                                                                                                                                                                            | 696                         |
| Refl. measured                                                                                                                                                                                                                                                                                                                                                                                  | 6511                                                                                                                                                                                                                                     | 5990                                                                                                                                                                                                                                                                 | 8814                                                                                                                                                                                                                     | 4682                                                                                                                                                                                                                                                                                                                                                           | 4851                        |
| Unique refl. $(R_{int})$                                                                                                                                                                                                                                                                                                                                                                        | 4370 (0.0438)                                                                                                                                                                                                                            | 4684 (0.0315)                                                                                                                                                                                                                                                        | 6899 (0.0343)                                                                                                                                                                                                            | 2258 (0.0848)                                                                                                                                                                                                                                                                                                                                                  | 4355 (0.0224)               |
| GOF on $F^2$                                                                                                                                                                                                                                                                                                                                                                                    | 1.050                                                                                                                                                                                                                                    | 1.018                                                                                                                                                                                                                                                                | 1.024                                                                                                                                                                                                                    | 1.022                                                                                                                                                                                                                                                                                                                                                          | 1.053                       |
| $R_1[I > 2\sigma(I)]^a$                                                                                                                                                                                                                                                                                                                                                                         | 0.0582                                                                                                                                                                                                                                   | 0.0388                                                                                                                                                                                                                                                               | 0.0486                                                                                                                                                                                                                   | 0.0868                                                                                                                                                                                                                                                                                                                                                         | 0.0340                      |
| $wR_2[I \geq 2\sigma(I)]^b$                                                                                                                                                                                                                                                                                                                                                                     | 0.1121                                                                                                                                                                                                                                   | 0.0940                                                                                                                                                                                                                                                               | 0.1338                                                                                                                                                                                                                   | 0.1597                                                                                                                                                                                                                                                                                                                                                         | 0.0972                      |
|                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                |                             |
| Compound                                                                                                                                                                                                                                                                                                                                                                                        | 6                                                                                                                                                                                                                                        | 7                                                                                                                                                                                                                                                                    | 8                                                                                                                                                                                                                        | 9                                                                                                                                                                                                                                                                                                                                                              |                             |
| Compound<br>Chemical formula                                                                                                                                                                                                                                                                                                                                                                    | <b>6</b><br>C <sub>26</sub> H <sub>17</sub> ZnN <sub>5</sub> O <sub>6</sub>                                                                                                                                                              | 7 $C_{88}H_{66}Ni_2N_8O_{16}$                                                                                                                                                                                                                                        | <b>8</b><br>C <sub>20</sub> H <sub>15</sub> FeNO <sub>8</sub>                                                                                                                                                            | <b>9</b><br>C <sub>60</sub> H <sub>44</sub> Mn <sub>3</sub> N <sub>6</sub> O <sub>16</sub>                                                                                                                                                                                                                                                                     |                             |
| Compound<br>Chemical formula<br>Formula weight                                                                                                                                                                                                                                                                                                                                                  | <b>6</b><br>C <sub>26</sub> H <sub>17</sub> ZnN <sub>5</sub> O <sub>6</sub><br>560.82                                                                                                                                                    | $7 \\ C_{88}H_{66}Ni_2N_8O_{16} \\ 1608.90$                                                                                                                                                                                                                          | <b>8</b><br>C <sub>20</sub> H <sub>15</sub> FeNO <sub>8</sub><br>453.18                                                                                                                                                  | 9<br>C <sub>60</sub> H <sub>44</sub> Mn <sub>3</sub> N <sub>6</sub> O <sub>16</sub><br>1269.83                                                                                                                                                                                                                                                                 |                             |
| Compound<br>Chemical formula<br>Formula weight<br>Crystal system                                                                                                                                                                                                                                                                                                                                | <b>6</b><br>C <sub>26</sub> H <sub>17</sub> ZnN <sub>5</sub> O <sub>6</sub><br>560.82<br>Triclinic                                                                                                                                       | 7<br>$C_{88}H_{66}Ni_2N_8O_{16}$<br>1608.90<br>Triclinic                                                                                                                                                                                                             | <b>8</b><br>C <sub>20</sub> H <sub>15</sub> FeNO <sub>8</sub><br>453.18<br>Triclinic                                                                                                                                     | <b>9</b><br>C <sub>60</sub> H <sub>44</sub> Mn <sub>3</sub> N <sub>6</sub> O <sub>16</sub><br>1269.83<br>Triclinic                                                                                                                                                                                                                                             |                             |
| Compound<br>Chemical formula<br>Formula weight<br>Crystal system<br>Space group                                                                                                                                                                                                                                                                                                                 | <b>6</b><br>$C_{26}H_{17}ZnN_5O_6$<br>560.82<br>Triclinic<br><i>P</i> -1                                                                                                                                                                 | 7<br>C <sub>88</sub> H <sub>66</sub> Ni <sub>2</sub> N <sub>8</sub> O <sub>16</sub><br>1608.90<br>Triclinic<br><i>P</i> -1                                                                                                                                           | 8<br>$C_{20}H_{15}FeNO_8$<br>453.18<br>Triclinic<br>P-1                                                                                                                                                                  | <b>9</b><br>C <sub>60</sub> H <sub>44</sub> Mn <sub>3</sub> N <sub>6</sub> O <sub>16</sub><br>1269.83<br>Triclinic<br><i>P</i> -1                                                                                                                                                                                                                              |                             |
| Compound<br>Chemical formula<br>Formula weight<br>Crystal system<br>Space group<br><i>a</i> /Å                                                                                                                                                                                                                                                                                                  | <b>6</b><br>C <sub>26</sub> H <sub>17</sub> ZnN₅O <sub>6</sub><br>560.82<br>Triclinic<br><i>P</i> −1<br>9.1466(7)                                                                                                                        | 7<br>$C_{88}H_{66}Ni_2N_8O_{16}$<br>1608.90<br>Triclinic<br><i>P</i> -1<br>6.1632(4)                                                                                                                                                                                 | <b>8</b><br>C <sub>20</sub> H <sub>15</sub> FeNO <sub>8</sub><br>453.18<br>Triclinic<br><i>P</i> -1<br>6.9066(8)                                                                                                         | <b>9</b><br>C <sub>60</sub> H <sub>44</sub> Mn <sub>3</sub> N <sub>6</sub> O <sub>16</sub><br>1269.83<br>Triclinic<br><i>P</i> -1<br>9.4017(13)                                                                                                                                                                                                                |                             |
| Compound<br>Chemical formula<br>Formula weight<br>Crystal system<br>Space group<br>a/Å<br>b/Å                                                                                                                                                                                                                                                                                                   | 6<br>C <sub>26</sub> H <sub>17</sub> ZnN₅O <sub>6</sub><br>560.82<br>Triclinic<br><i>P</i> −1<br>9.1466(7)<br>9.5909(7)                                                                                                                  | 7<br>$C_{88}H_{66}Ni_2N_8O_{16}$<br>1608.90<br>Triclinic<br>P-1<br>6.1632(4)<br>12.2650(7)                                                                                                                                                                           | <b>8</b><br>C <sub>20</sub> H <sub>15</sub> FeNO <sub>8</sub><br>453.18<br>Triclinic<br><i>P</i> -1<br>6.9066(8)<br>9.3698(8)                                                                                            | <b>9</b><br>C <sub>60</sub> H <sub>44</sub> Mn <sub>3</sub> N <sub>6</sub> O <sub>16</sub><br>1269.83<br>Triclinic<br><i>P</i> -1<br>9.4017(13)<br>10.8041(18)                                                                                                                                                                                                 |                             |
| Compound<br>Chemical formula<br>Formula weight<br>Crystal system<br>Space group<br>a/Å<br>b/Å<br>c/Å                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                          | 7<br>$C_{88}H_{66}Ni_2N_8O_{16}$<br>1608.90<br>Triclinic<br>P-1<br>6.1632(4)<br>12.2650(7)<br>24.6163(17)                                                                                                                                                            | <b>8</b><br>C <sub>20</sub> H <sub>15</sub> FeNO <sub>8</sub><br>453.18<br>Triclinic<br><i>P</i> -1<br>6.9066(8)<br>9.3698(8)<br>14.8244(9)                                                                              | 9<br>$C_{60}H_{44}Mn_3N_6O_{16}$<br>1269.83<br>Triclinic<br>P-1<br>9.4017(13)<br>10.8041(18)<br>14.5350(16)                                                                                                                                                                                                                                                    |                             |
| Compound<br>Chemical formula<br>Formula weight<br>Crystal system<br>Space group<br>a/Å<br>b/Å<br>c/Å<br>$a/^\circ$                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                          | 7<br>$C_{88}H_{66}Ni_2N_8O_{16}$<br>1608.90<br>Triclinic<br>P-1<br>6.1632(4)<br>12.2650(7)<br>24.6163(17)<br>95.914(5)                                                                                                                                               | <b>8</b><br>C <sub>20</sub> H <sub>15</sub> FeNO <sub>8</sub><br>453.18<br>Triclinic<br><i>P</i> -1<br>6.9066(8)<br>9.3698(8)<br>14.8244(9)<br>74.751(6)                                                                 | 9<br>$C_{60}H_{44}Mn_3N_6O_{16}$<br>1269.83<br>Triclinic<br>P-1<br>9.4017(13)<br>10.8041(18)<br>14.5350(16)<br>105.013(12)                                                                                                                                                                                                                                     |                             |
| Compound<br>Chemical formula<br>Formula weight<br>Crystal system<br>Space group<br><i>a</i> /Å<br><i>b</i> /Å<br><i>c</i> /Å<br><i>a</i> /°<br>β/°                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                          | 7<br>$C_{88}H_{66}Ni_2N_8O_{16}$<br>1608.90<br>Triclinic<br>P-1<br>6.1632(4)<br>12.2650(7)<br>24.6163(17)<br>95.914(5)<br>93.921(5)                                                                                                                                  | 8<br>$C_{20}H_{15}FeNO_8$<br>453.18<br>Triclinic<br>P-1<br>6.9066(8)<br>9.3698(8)<br>14.8244(9)<br>74.751(6)<br>85.796(7)                                                                                                | 9<br>$C_{60}H_{44}Mn_3N_6O_{16}$<br>1269.83<br>Triclinic<br>P-1<br>9.4017(13)<br>10.8041(18)<br>14.5350(16)<br>105.013(12)<br>99.708(11)                                                                                                                                                                                                                       |                             |
| Compound<br>Chemical formula<br>Formula weight<br>Crystal system<br>Space group<br>a/Å<br>b/Å<br>c/Å<br>$a/^{\circ}$<br>$\beta/^{\circ}$<br>$y/^{\circ}$                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                          | 7<br>$C_{88}H_{66}Ni_2N_8O_{16}$<br>1608.90<br>Triclinic<br>P-1<br>6.1632(4)<br>12.2650(7)<br>24.6163(17)<br>95.914(5)<br>93.921(5)<br>101.777(5)                                                                                                                    | <b>8</b><br>C <sub>20</sub> H <sub>15</sub> FeNO <sub>8</sub><br>453.18<br>Triclinic<br><i>P</i> -1<br>6.9066(8)<br>9.3698(8)<br>14.8244(9)<br>74.751(6)<br>85.796(7)<br>82.493(8)                                       | $\begin{array}{c} \textbf{9} \\ \textbf{C}_{60}\textbf{H}_{44}\textbf{Mn}_3\textbf{N}_6\textbf{O}_{16} \\ 1269.83 \\ \text{Triclinic} \\ P-1 \\ \textbf{9.4017(13)} \\ 10.8041(18) \\ 14.5350(16) \\ 105.013(12) \\ \textbf{99.708(11)} \\ 107.961(14) \end{array}$                                                                                            |                             |
| Compound<br>Chemical formula<br>Formula weight<br>Crystal system<br>Space group<br>a/Å<br>b/Å<br>c/Å<br>$a/^{\circ}$<br>$\beta/^{\circ}$<br>$\gamma/^{\circ}$<br>$\gamma/^{\circ}$<br>$\gamma/Å$                                                                                                                                                                                                |                                                                                                                                                                                                                                          | 7<br>$C_{88}H_{66}Ni_2N_8O_{16}$<br>1608.90<br>Triclinic<br>P-1<br>6.1632(4)<br>12.2650(7)<br>24.6163(17)<br>95.914(5)<br>93.921(5)<br>101.777(5)<br>1804.3(2)                                                                                                       | 8<br>$C_{20}H_{15}FeNO_8$<br>453.18<br>Triclinic<br>P-1<br>6.9066(8)<br>9.3698(8)<br>14.8244(9)<br>74.751(6)<br>85.796(7)<br>82.493(8)<br>916.87(15)                                                                     | $\begin{array}{c} \textbf{9} \\ \textbf{C}_{60}\textbf{H}_{44}\textbf{Mn}_3\textbf{N}_6\textbf{O}_{16} \\ 1269.83 \\ \textbf{Triclinic} \\ P-1 \\ 9.4017(13) \\ 10.8041(18) \\ 14.5350(16) \\ 105.013(12) \\ 99.708(11) \\ 107.961(14) \\ 1306.0(3) \end{array}$                                                                                               |                             |
| Compound<br>Chemical formula<br>Formula weight<br>Crystal system<br>Space group<br>a/Å<br>b/Å<br>c/Å<br>a/°<br>$\beta/°$<br>$\gamma/°$<br>$\gamma/°$<br>$\gamma/Å$<br>$\gamma/Å$<br>$\gamma/Å$                                                                                                                                                                                                  |                                                                                                                                                                                                                                          | 7<br>$C_{88}H_{66}Ni_2N_8O_{16}$<br>1608.90<br>Triclinic<br>P-1<br>6.1632(4)<br>12.2650(7)<br>24.6163(17)<br>95.914(5)<br>93.921(5)<br>101.777(5)<br>1804.3(2)<br>293(2)                                                                                             | <b>8</b><br>C <sub>20</sub> H <sub>15</sub> FeNO <sub>8</sub><br>453.18<br>Triclinic<br><i>P</i> -1<br>6.9066(8)<br>9.3698(8)<br>14.8244(9)<br>74.751(6)<br>85.796(7)<br>82.493(8)<br>916.87(15)<br>293(2)               | $\begin{array}{l} \textbf{9} \\ \textbf{C}_{60}\textbf{H}_{44}\textbf{Mn}_{3}\textbf{N}_{6}\textbf{O}_{16} \\ 1269.83 \\ \textbf{Triclinic} \\ P-1 \\ 9.4017(13) \\ 10.8041(18) \\ 14.5350(16) \\ 105.013(12) \\ 99.708(11) \\ 107.961(14) \\ 1306.0(3) \\ 293(2) \end{array}$                                                                                 |                             |
| Compound<br>Chemical formula<br>Formula weight<br>Crystal system<br>Space group<br>a/Å<br>b/Å<br>c/Å<br>a/°<br>$\beta/°$<br>$\gamma/°$<br>$\gamma/°$<br>$V/Å^3$<br>T/K<br>Z                                                                                                                                                                                                                     |                                                                                                                                                                                                                                          | 7<br>$C_{88}H_{66}Ni_2N_8O_{16}$<br>1608.90<br>Triclinic<br><i>P</i> -1<br>6.1632(4)<br>12.2650(7)<br>24.6163(17)<br>95.914(5)<br>93.921(5)<br>101.777(5)<br>1804.3(2)<br>293(2)<br>1                                                                                | <b>8</b><br>C <sub>20</sub> H <sub>15</sub> FeNO <sub>8</sub><br>453.18<br>Triclinic<br><i>P</i> -1<br>6.9066(8)<br>9.3698(8)<br>14.8244(9)<br>74.751(6)<br>85.796(7)<br>82.493(8)<br>916.87(15)<br>293(2)<br>2          | $\begin{array}{c} \textbf{9} \\ \textbf{C}_{60}\textbf{H}_{44}\textbf{Mn}_{3}\textbf{N}_{6}\textbf{O}_{16} \\ 1269.83 \\ \textbf{Triclinic} \\ P-1 \\ 9.4017(13) \\ 10.8041(18) \\ 14.5350(16) \\ 105.013(12) \\ 99.708(11) \\ 107.961(14) \\ 1306.0(3) \\ 293(2) \\ 1 \end{array}$                                                                            |                             |
| Compound<br>Chemical formula<br>Formula weight<br>Crystal system<br>Space group<br>a/Å<br>b/Å<br>c/Å<br>a/°<br>$\beta/°$<br>$\gamma/°$<br>$\gamma/°$<br>$V/Å^3$<br>T/K<br>Z<br>$D_{r}/g cm^{-3}$                                                                                                                                                                                                |                                                                                                                                                                                                                                          | 7<br>$C_{88}H_{66}Ni_2N_8O_{16}$<br>1608.90<br>Triclinic<br><i>P</i> -1<br>6.1632(4)<br>12.2650(7)<br>24.6163(17)<br>95.914(5)<br>93.921(5)<br>101.777(5)<br>1804.3(2)<br>293(2)<br>1<br>1.481                                                                       | <b>8</b><br>C <sub>20</sub> H <sub>15</sub> FeNO <sub>8</sub><br>453.18<br>Triclinic<br><i>P</i> -1<br>6.9066(8)<br>9.3698(8)<br>14.8244(9)<br>74.751(6)<br>85.796(7)<br>82.493(8)<br>916.87(15)<br>293(2)<br>2<br>1.642 | $\begin{array}{c} \textbf{9} \\ C_{60}H_{44}Mn_3N_6O_{16} \\ 1269.83 \\ Triclinic \\ P-1 \\ 9.4017(13) \\ 10.8041(18) \\ 14.5350(16) \\ 105.013(12) \\ 99.708(11) \\ 107.961(14) \\ 1306.0(3) \\ 293(2) \\ 1 \\ 1.615 \end{array}$                                                                                                                             |                             |
| Compound<br>Chemical formula<br>Formula weight<br>Crystal system<br>Space group<br>a/Å<br>b/Å<br>c/Å<br>a/°<br>$\beta/°$<br>$\gamma/°$<br>$\gamma/°$<br>$V/Å^3$<br>T/K<br>Z<br>$D_c/g \text{ cm}^{-3}$<br>$u/\text{cm}^{-1}$                                                                                                                                                                    |                                                                                                                                                                                                                                          | 7<br>$C_{88}H_{66}Ni_2N_8O_{16}$<br>1608.90<br>Triclinic<br>P-1<br>6.1632(4)<br>12.2650(7)<br>24.6163(17)<br>95.914(5)<br>93.921(5)<br>101.777(5)<br>1804.3(2)<br>293(2)<br>1<br>1.481<br>1.315                                                                      |                                                                                                                                                                                                                          | $\begin{array}{l} \textbf{9} \\ C_{60}H_{44}Mn_3N_6O_{16} \\ 1269.83 \\ Triclinic \\ P-1 \\ 9.4017(13) \\ 10.8041(18) \\ 14.5350(16) \\ 105.013(12) \\ 99.708(11) \\ 107.961(14) \\ 1306.0(3) \\ 293(2) \\ 1 \\ 1.615 \\ 6.518 \end{array}$                                                                                                                    |                             |
| Compound<br>Chemical formula<br>Formula weight<br>Crystal system<br>Space group<br>a/Å<br>b/Å<br>c/Å<br>a/°<br>$\beta/°$<br>$\gamma/°$<br>$\gamma/°$<br>$V/Å^3$<br>T/K<br>Z<br>$D_c/g cm^{-3}$<br>$\mu/mm^{-1}$<br>F(000)                                                                                                                                                                       |                                                                                                                                                                                                                                          | 7<br>$C_{88}H_{66}Ni_2N_8O_{16}$<br>1608.90<br>Triclinic<br>P-1<br>6.1632(4)<br>12.2650(7)<br>24.6163(17)<br>95.914(5)<br>93.921(5)<br>101.777(5)<br>1804.3(2)<br>293(2)<br>1<br>1.481<br>1.315<br>830                                                               |                                                                                                                                                                                                                          | $\begin{array}{c} \textbf{9} \\ C_{60}H_{44}Mn_3N_6O_{16} \\ 1269.83 \\ Triclinic \\ P-1 \\ 9.4017(13) \\ 10.8041(18) \\ 14.5350(16) \\ 105.013(12) \\ 99.708(11) \\ 107.961(14) \\ 1306.0(3) \\ 293(2) \\ 1 \\ 1.615 \\ 6.518 \\ 645 \end{array}$                                                                                                             |                             |
| Compound<br>Chemical formula<br>Formula weight<br>Crystal system<br>Space group<br>a/Å<br>b/Å<br>c/Å<br>$a/^{\circ}$<br>$\beta/^{\circ}$<br>$\gamma/^{\circ}$<br>$V/Å^{3}$<br>T/K<br>Z<br>$D_c/g \text{ cm}^{-3}$<br>$\mu/\text{ mm}^{-1}$<br>F(000)<br>Refl. measured                                                                                                                          |                                                                                                                                                                                                                                          | 7<br>$C_{88}H_{66}Ni_2N_8O_{16}$<br>1608.90<br>Triclinic<br>P-1<br>6.1632(4)<br>12.2650(7)<br>24.6163(17)<br>95.914(5)<br>93.921(5)<br>101.777(5)<br>1804.3(2)<br>293(2)<br>1<br>1.481<br>1.315<br>830<br>5971                                                       |                                                                                                                                                                                                                          | $\begin{array}{c} \textbf{9} \\ C_{60}H_{44}Mn_3N_6O_{16} \\ 1269.83 \\ Triclinic \\ P-1 \\ 9.4017(13) \\ 10.8041(18) \\ 14.5350(16) \\ 105.013(12) \\ 99.708(11) \\ 107.961(14) \\ 1306.0(3) \\ 293(2) \\ 1 \\ 1.615 \\ 6.518 \\ 645 \\ 4266 \end{array}$                                                                                                     |                             |
| Compound<br>Chemical formula<br>Formula weight<br>Crystal system<br>Space group<br>a/Å<br>b/Å<br>c/Å<br>$a/^{\circ}$<br>$\beta/^{\circ}$<br>$\gamma/^{\circ}$<br>$V/Å^{3}$<br>T/K<br>Z<br>$D_c/g cm^{-3}$<br>$\mu/mm^{-1}$<br>F(000)<br>Refl. measured<br>Unique refl. ( $R_{w}$ )                                                                                                              | <b>6</b><br>$C_{26}H_{17}ZnN_5O_6$<br>560.82<br>Triclinic<br><i>P</i> -1<br>9.1466(7)<br>9.5909(7)<br>13.2159(10)<br>84.013(6)<br>78.778(7)<br>77.986(7)<br>1109.82(15)<br>293(2)<br>2<br>1.678<br>2.041<br>572<br>3709<br>3320 (0.0185) | 7<br>$C_{88}H_{66}Ni_2N_8O_{16}$<br>1608.90<br>Triclinic<br>P-1<br>6.1632(4)<br>12.2650(7)<br>24.6163(17)<br>93.921(5)<br>101.777(5)<br>1804.3(2)<br>293(2)<br>1<br>1.481<br>1.315<br>830<br>5971<br>3865 (0.0802)                                                   | 8<br>$C_{20}H_{15}FeNO_8$<br>453.18<br>Triclinic<br>P-1<br>6.9066(8)<br>9.3698(8)<br>14.8244(9)<br>74.751(6)<br>85.796(7)<br>82.493(8)<br>916.87(15)<br>293(2)<br>2<br>1.642<br>0.874<br>460<br>3236<br>2585 (0.0353)    | 9<br>$C_{60}H_{44}Mn_3N_6O_{16}$<br>1269.83<br>Triclinic<br>P-1<br>9.4017(13)<br>10.8041(18)<br>14.5350(16)<br>105.013(12)<br>99.708(11)<br>107.961(14)<br>1306.0(3)<br>293(2)<br>1<br>1.615<br>6.518<br>645<br>4266<br>3493 (0.0591)                                                                                                                          |                             |
| Compound<br>Chemical formula<br>Formula weight<br>Crystal system<br>Space group<br>a/Å<br>b/Å<br>c/Å<br>a/°<br>$\beta/°$<br>$\gamma/°$<br>$V/Å^3$<br>T/K<br>Z<br>$D_c/g \text{ cm}^{-3}$<br>$\mu/\text{mm}^{-1}$<br>F(000)<br>Refl. measured<br>Unique refl. ( $R_{int}$ )<br>GOF on $F^2$                                                                                                      |                                                                                                                                                                                                                                          | 7<br>$C_{88}H_{66}Ni_2N_8O_{16}$<br>1608.90<br>Triclinic<br>P-1<br>6.1632(4)<br>12.2650(7)<br>24.6163(17)<br>95.914(5)<br>93.921(5)<br>101.777(5)<br>1804.3(2)<br>293(2)<br>1<br>1.481<br>1.315<br>830<br>5971<br>3865 (0.0802)<br>1.064                             |                                                                                                                                                                                                                          | $\begin{array}{c} 9\\ C_{60}H_{44}Mn_3N_6O_{16}\\ 1269.83\\ Triclinic\\ P-1\\ 9.4017(13)\\ 10.8041(18)\\ 14.5350(16)\\ 105.013(12)\\ 99.708(11)\\ 107.961(14)\\ 1306.0(3)\\ 293(2)\\ 1\\ 1.615\\ 6.518\\ 645\\ 4266\\ 3493\ (0.0591)\\ 1.001\\ \end{array}$                                                                                                    |                             |
| Compound<br>Chemical formula<br>Formula weight<br>Crystal system<br>Space group<br>a/Å<br>b/Å<br>c/Å<br>a/°<br>$\beta/°$<br>$\gamma/°$<br>$\gamma/°$<br>V/Å3<br>T/K<br>Z<br>$D_c/g \text{ cm}^{-3}$<br>$\mu/\text{mm}^{-1}$<br>F(000)<br>Refl. measured<br>Unique refl. ( $R_{int}$ )<br>GOF on $F^2$<br>$R_1[Z \ge 2\sigma(D)]^a$                                                              |                                                                                                                                                                                                                                          | 7<br>$C_{88}H_{66}Ni_2N_8O_{16}$<br>1608.90<br>Triclinic<br>P-1<br>6.1632(4)<br>12.2650(7)<br>24.6163(17)<br>95.914(5)<br>93.921(5)<br>101.777(5)<br>1804.3(2)<br>293(2)<br>1<br>1.481<br>1.315<br>830<br>5971<br>3865 (0.0802)<br>1.064<br>0.0736                   |                                                                                                                                                                                                                          | $\begin{array}{l} \textbf{9} \\ \textbf{C}_{60}\textbf{H}_{44}\textbf{Mn_3}\textbf{N}_6\textbf{O}_{16} \\ 1269.83 \\ \textbf{Triclinic} \\ P-1 \\ 9.4017(13) \\ 10.8041(18) \\ 14.5350(16) \\ 105.013(12) \\ 99.708(11) \\ 107.961(14) \\ 1306.0(3) \\ 293(2) \\ 1 \\ 1.615 \\ 6.518 \\ 645 \\ 4266 \\ 3493(0.0591) \\ 1.001 \\ 0.0826 \end{array}$            |                             |
| Compound<br>Chemical formula<br>Formula weight<br>Crystal system<br>Space group<br>a/Å<br>b/Å<br>c/Å<br>a/°<br>$\beta/°$<br>$\gamma/°$<br>$\gamma/°$<br>$\gamma/°$<br>$\gamma/°$<br>$\gamma/°$<br>$\gamma/Å$<br>T/K<br>Z<br>$D_c/g cm^{-3}$<br>$\mu/mm^{-1}$<br>F(000)<br>Refl. measured<br>Unique refl. ( $R_{int}$ )<br>GOF on $F^2$<br>$R_1 [L^> 2\sigma(I)]^a$<br>$wR_5 [L^> 2\sigma(I)]^b$ |                                                                                                                                                                                                                                          | 7<br>$C_{88}H_{66}Ni_2N_8O_{16}$<br>1608.90<br>Triclinic<br><i>P</i> -1<br>6.1632(4)<br>12.2650(7)<br>24.6163(17)<br>95.914(5)<br>93.921(5)<br>101.777(5)<br>1804.3(2)<br>293(2)<br>1<br>1.481<br>1.315<br>830<br>5971<br>3865 (0.0802)<br>1.064<br>0.0736<br>0.1989 |                                                                                                                                                                                                                          | $\begin{array}{l} \textbf{9} \\ \textbf{C}_{60}\textbf{H}_{44}\textbf{Mn_3}\textbf{N}_6\textbf{O}_{16} \\ 1269.83 \\ \textbf{Triclinic} \\ P-1 \\ 9.4017(13) \\ 10.8041(18) \\ 14.5350(16) \\ 105.013(12) \\ 99.708(11) \\ 107.961(14) \\ 1306.0(3) \\ 293(2) \\ 1 \\ 1.615 \\ 6.518 \\ 645 \\ 4266 \\ 3493 (0.0591) \\ 1.001 \\ 0.0826 \\ 0.2070 \end{array}$ |                             |
| Compound<br>Chemical formula<br>Formula weight<br>Crystal system<br>Space group<br>a/Å<br>b/Å<br>c/Å<br>a/°<br>$\beta/°$<br>$\gamma/°$<br>$\gamma/°$<br>$\gamma/°$<br>$\gamma/Å$<br>T/K<br>Z<br>$D_c/g \text{ cm}^{-3}$<br>$\mu/\text{mm}^{-1}$<br>F(000)<br>Refl. measured<br>Unique refl. $(R_{int})$<br>GOF on $F^2$<br>$R_1 [I> 2\sigma(I)]^a$<br>$wR_2 [I> 2\sigma(I)]^b$                  |                                                                                                                                                                                                                                          | 7<br>$C_{88}H_{66}Ni_2N_8O_{16}$<br>1608.90<br>Triclinic<br><i>P</i> -1<br>6.1632(4)<br>12.2650(7)<br>24.6163(17)<br>95.914(5)<br>93.921(5)<br>101.777(5)<br>1804.3(2)<br>293(2)<br>1<br>1.481<br>1.315<br>830<br>5971<br>3865 (0.0802)<br>1.064<br>0.0736<br>0.1989 |                                                                                                                                                                                                                          | 9<br>$C_{60}H_{44}Mn_3N_6O_{16}$<br>1269.83<br>Triclinic<br>P-1<br>9.4017(13)<br>10.8041(18)<br>14.5350(16)<br>105.013(12)<br>99.708(11)<br>107.961(14)<br>1306.0(3)<br>293(2)<br>1<br>1.615<br>6.518<br>645<br>4266<br>3493 (0.0591)<br>1.001<br>0.0826<br>0.2070                                                                                             |                             |

#### Table 2 Crystal data summary for 1–9

#### Structural description

Published on 11 May 2020. Downloaded on 5/12/2020 7:04:16 AM.

- $[M(Hdcna)(phen)_2(H_2O)] \cdot H_2O \ (M = Co \ (1), Ni \ (2)).$ Since mononuclear complexes 1 and 2 are isomorphous (Table 2), the structure of 1 is described as an example (Fig. 1). It comprises a Co(II) center, a terminal monodentate Hdcna<sup>2-</sup> block (mode I, Sheme 2), two phen and one water ligands,
- 10 along with a crystallization H<sub>2</sub>O molecule (Fig. 1a). The Co1 atom is 6-coordinate forming a distorted {CoN<sub>4</sub>O<sub>2</sub>} octahedral

geometry. The  $[M(Hdcna)(phen)_2(H_2O)]$  units are hydrogenbonded between each other and involving water molecules of crystallization. As a result, an H-bonded 1D double chain is 15 generated (Fig. 1b). It can be topologically described as a **SP** 1-periodic net (3,6)(1,2) with the  $(3^3.4^2.5)$  point symbol (Fig. 1c).

Dalton Transactions Accepted Manuscript



Scheme 2 Different modes of coordination for Hdcna<sup>2-</sup> and dcna<sup>3-</sup> ligands in compounds 1-9.

 $[Zn(\mu-Hdcna)(phen)]_n$  (3). This compound is a 1D zigzag s coordination polymer (Fig. 2), wherein an asymmetric unit bears two Zn atoms (Zn1/Zn2), two  $\mu$ -Hdcna<sup>2-</sup> blocks, and two phen ligands (Fig. 2a). The 6-coordinate Zn1 and Zn2 centers display the distorted octahedral {ZnN<sub>2</sub>O<sub>4</sub>} environments. These are filled by four carboxylate oxygen 10 atoms of two  $\mu$ -Hdcna<sup>2-</sup> linkers and a pair of nitrogen atoms from phen moiety. The Zn–O [2.004(3)–2.480(4) Å] and Zn– N [2.105(3)–2.131(3) Å] bonds are within typical values.<sup>9,28,49</sup> The Hdcna<sup>2-</sup> ligand acts as a  $\mu$ -linker (mode II, Scheme 2) with both COO<sup>-</sup> groups in a bidentate mode. The  $\mu$ -Hdcna<sup>2-</sup> <sup>15</sup> linkers repeatedly connect the adjacent Zn1 and Zn2 centers to generate a 1D zigzag chain (Fig. 2b) of the 2C1 topological type (Fig. 2c). Besides, such 1D metal-organic chains are additionally interconnected by H-bonds to form a 2D H-bonded layer (Fig. S1, ESI).



25

Fig. 1 Crystal structure of 1. (a) Molecular unit; CH atoms are omitted. (b) 1D H-bonded double chain; view along the *a* axis. (c) Topological representation of 1D H-bonded chain with a SP 1-periodic net (3,6)(1,2) topology; centroids of  $[M(Hdcna)(phen)_2(H_2O)]$  molecular nodes (magenta), centroids of H<sub>2</sub>O linkers (red).



**Fig. 2** Crystal structure of **3**. (a) Coordination environment and connectivity of Zn centers; CH atoms are omitted. Symmetry code: i = x, y, z + 1. (b) 1D zigzag metal-organic chain; view along the *a* axis. Symmetry codes: i = x, y, z + 1; ii = x, y, z - 1. (c) Topological representation of two 1D chains with a 5 2C1 topology; Zn centers (cyan balls), centroids of  $\mu$ -Hdcna<sup>2-</sup> blocks (gray).

 $[Co(\mu-Hdcna)(bipy)(H_2O)_2]_n \cdot nH_2O \qquad (4).$ this 1D In coordination polymer (Fig. 3), an asymmetric unit is composed of a Co(II) center, a µ-Hdcna<sup>2-</sup> linker, one bipy and 10 two terminal H<sub>2</sub>O ligands, in addition to a lattice water molecule (Fig. 3a). The Co1 atom is 6-coordinate forming a distorted octahedral  $\{CoN_2O_4\}$  environment. It is occupied by two oxygen atoms from two µ-Hdcna<sup>2-</sup> linkers, two H<sub>2</sub>O ligands, and two nitrogen atoms from bipy. The Co-O 15 [2.034(5)-2.197(4)Å] and Co-N [2.095(6)-2.124(6) Å] bond distances well agree with related literature data.41,43,44 The Hdcna<sup>2-</sup> ligand functions as a µ-linker with two monodentate COO<sup>-</sup> groups (mode III, Scheme 2). The µ-Hdcna<sup>2-</sup> linkers connect neighboring Co1 centers to give a linear 1D metal-20 organic chain (Fig. 3b) of the 2C1 topological type (Fig. 3c). A number of hydrogen bonds between adjacent chains lead to the formation of 2D H-bonded layers (Fig. S2).

 $[Zn_2(\mu-Hdcna)_2(bipy)_2(H_2O)_4]\cdot 6H_2O$  (5). This structure reveals a cyclic Zn(II) dimer (Fig. 4). Its asymmetric unit 25 contains a Zn1 atom, a  $\mu$ -Hdcna<sup>2-</sup> linker, a bipy moiety, and 45

two H<sub>2</sub>O ligands, in addition to three crystallization water molecules. The 6-coordinate Zn1 atom has a distorted  $\{ZnN_2O_4\}$  octahedral environment. It is occupied by two carboxylate oxygen atoms from two µ-Hdcna<sup>2-</sup> ligands, two 30 bipy N donors, and a pair of H<sub>2</sub>O ligands (Fig. 4a). The Hdcna<sup>2-</sup> ligand is bridging bidentate and functions as an internal µ-linker (mode IV, Scheme 2), namely by interconnecting the Zn1 atoms into a cyclic dizinc(II) molecular unit with a Zn…Zn distance of 13.312(2) Å. 35 Interestingly, crystallization water molecules are arranged into cyclic (H<sub>2</sub>O)<sub>4</sub> clusters of the R4 type<sup>50-52</sup> (Fig. S3, ESI) that can grow into (H<sub>2</sub>O)<sub>6</sub> aggregates if water ligands are taken into consideration. Numerous hydrogen-bond interactions between these water clusters and [Zn2(µ-<sup>40</sup> Hdcna)<sub>2</sub>(bipy)<sub>2</sub>(H<sub>2</sub>O)<sub>4</sub>] dimers lead to a complex 3D Hbonded framework (Fig. 4b). After simplification, this can be classified within the **fsc** topological type, revealing a binodal 4,6-connected net with the  $(4^4.6^{10}.8)(4^4.6^2)$  point symbol (Fig. 4c).



<sup>50</sup> Fig. 3. Crystal structure of 4. (a) Coordination environment and connectivity of Co1 centers; CH atoms are omitted. Symmetry code: i = x, y+1, z. (b) Linear 1D metal-organic chain; view along the *a* axis. (c) Topological representation of two 1D chains with a 2C1 topology; Co centers (magenta balls), centroids of  $\mu$ -Hdcna<sup>2-</sup> blocks (gray).



**Fig. 4** Crystal structure of **5**. (a) Cyclic dimer unit; CH atoms are omitted. Symmetry code: i = -x + 2, -y + 1, -z + 2. (b) 3D H-bonded network; view s along the *a* axis; 2,2'-bipy ligands are omitted. (c) Topological representation of a simplified 3D H-bonded net with a **fsc** topology; view along the a axis; centroids of  $[Zn_2(\mu-Hdcna)_2(bipy)_2(H_2O)_4]$  molecular units (cyan balls), centroids of  $(H_2O)_4$  clusters (red).

 $[Zn(\mu_3-Hdcna)(H_2biim)]_n$  (6). Coordination polymer 6 shows a 1D ladder structure (Fig. 5). An asymmetric unit contains a <sup>10</sup> Zn1 center, a  $\mu_3$ -Hdcna<sup>2-</sup> linker, and a terminal H<sub>2</sub>biim ligand. The Zn1 atom is 5-coordinate and reveals a distorted trigonal bipyramidal {ZnN<sub>2</sub>O<sub>3</sub>} geometry (Fig. 5a), which is formed by three oxygen atoms from three  $\mu_3$ -Hdcna<sup>2-</sup> moieties and two N donors from H<sub>2</sub>biim. The Zn–O [1.951(2)–2.142(2)Å] <sup>15</sup> and Zn–N [2.066(2)–2.145(2)Å] bonds are within standard values.<sup>28,49,53</sup> The Hcpia<sup>2-</sup> ligand functions as a tridentate  $\mu_3$ - linker (mode V, Scheme 2), with its central ring carboxylate group bridging two zinc centers to form a Zn<sub>2</sub> subunit with a Zn1…Zn1 separation of 3.276(5) Å (Fig. 5b). These Zn<sub>2</sub> <sup>20</sup> subunits are joined together via remaining COO<sup>-</sup> group of  $\mu_3$ -Hdcna<sup>2-</sup> to produce a 1D metal-organic ladder (Fig. 5b). A topology of this ladder (Fig. 5c) can be described as an uninodal 3-connected chain of a SP 1-periodic net (4,4)(0,2) type. It contains the 3-connected Zn1 and  $\mu_3$ -Hdcna<sup>2-</sup> nodes <sup>25</sup> and has a point symbol of (4<sup>2</sup>.6).



<sup>30</sup> Fig. 5 Crystal structure of 6. (a) Coordination environment and connectivity of Zn1 center; CH atoms are omitted. Symmetry codes: i = -x + 1, -y + 2, -z + 1; ii = x, y + 1, z. (b) 1D metal-organic ladder; view along the *a* axis; H<sub>2</sub>biim ligands are omitted. (c) Topological representation of a 1D ladder with a SP 1-periodic net (4,4)(0,2) topology; view along the *a* axis; Zn nodes (cyan balls), centroids of  $\mu_3$ -Hdcna<sup>2-</sup> nodes (gray).

 $[Ni_2(Hdcna)_2(\mu-bpb)(bpb)_2(H_2O)_4]$  (7). This compound features a discrete dimeric structure (Fig. 6), with an asymmetric unit holding a Ni1 center, a terminal Hdcna<sup>2-</sup> ligand, one and a half of 1,4-bpb moieties, and a pair of terminal H<sub>2</sub>O ligands. The half of 1,4-bpb moiety lies on an inversion center. The Ni1 center is 6-coordinate and unveils an octahedral {NiN<sub>2</sub>O<sub>4</sub>} environment. It is occupied by two to carboxylate oxygen atoms two N donors from two 1.4-bpb

<sup>40</sup> carboxylate oxygen atoms, two N donors from two 1,4-bpb moieties, and two H<sub>2</sub>O ligands (Fig. 6a). The Ni–O [2.033(3)–

2.180(4) Å] and Ni–N [2.085(4)–2.094(4) Å] distances are within expected values.<sup>38,53,54</sup> While Hdcna<sup>2-</sup> is acting as a terminal ligand (mode VI, Scheme 2), the Ni1 centers are <sup>45</sup> bridged by a  $\mu$ -bpb linker to form a dimeric molecular unit (Fig. 6a). These Ni<sub>2</sub> units are further organized into a 3D Hbonded network trough the O–H···O/N hydrogen bonds (Fig. 6b). The resulting network is topologically classified (Fig. 6c) as an uninodal 8-connected net with the **hex** (hexagonal <sup>50</sup> primitive) topology and the point symbol of (3<sup>6</sup>.4<sup>18</sup>.5<sup>3</sup>.6).



**Fig. 6** Crystal structure of 7. (a) Molecular unit; CH atoms are omitted. Symmetry code: i = -x + 1, -y + 2, -z + 1. (b) 3D H-bonded network; view along 5 the *a* axis. (c) Topological representation of a simplified 3D H-bonded net with a **hex** topology; view along the a axis; centroids of [Ni<sub>2</sub>(Hdcna)<sub>2</sub>( $\mu$ -bpb)(bpb)<sub>2</sub>(H<sub>2</sub>O)<sub>4</sub>] molecular units (green balls).

[ $Fe(\mu_4$ -Hdcna)( $\mu$ -H<sub>2</sub>O)]<sub>n</sub>·nH<sub>2</sub>O (8). This compound is a 2D CP (Fig. 7) and its asymmetric unit encloses two Fe(II) <sup>10</sup> centers (Fe1 and Fe2 with half occupancy, lie on independent inversion centers), one  $\mu_4$ -Hdcna<sup>2-</sup> block, one  $\mu$ -H<sub>2</sub>O ligand, and one lattice water molecule (Fig. 7a). Both Fe1 and Fe2 centers are 6-coordinate and assume a distorted octahedral {FeO<sub>6</sub>} geometry, which is occupied by four carboxylate <sup>15</sup> oxygen atoms from four  $\mu_4$ -Hdcna<sup>2-</sup> ligands as well as two  $\mu$ -H<sub>2</sub>O ligands. The lengths of the Fe–O bonds are within the 1.955(2)–2.055(2) Å range.<sup>54–56</sup> The Hdcna<sup>2-</sup> block functions

Published on 11 May 2020. Downloaded on 5/12/2020 7:04:16 AM

as a tetradentate  $\mu_4$ -bridging ligand with two COO<sup>-</sup> groups being bridging bidentate (mode VII, Scheme 2). These <sup>20</sup> carboxylate functionalities as well as the  $\mu$ -H<sub>2</sub>O linkers unite the Fe(II) centers to form a decorated 1D chain motif (Fig. 7b). Such 1D motifs are further connected by the remaining COO<sup>-</sup> groups to produce a 2D metal-organic layer (Fig. 7c). Such a layer can be classified as a binodal 4,6-linked net with <sup>25</sup> a 4,6L26 topology. It is described by the  $(3^2.4^2.5^2)(3^4.4^4.5^4.6^3)$ point symbol wherein the  $(3^2.4^2.5^2)$  and  $(3^4.4^4.5^4.6^3)$  indices refer to the  $\mu_4$ -Hdcna<sup>2-</sup> and Fe1/Fe2 nodes, respectively.







**Fig. 7**. Crystal structure of **8**. (a) Coordination environment around the Fe1 and Fe2 centers; CH atoms are omitted. Symmetry codes: i = -x + 1, -y + 1, -z + 1; ii = -x + 1, -y, -z + 1; iii = x, y + 1, z; iv = x + 1, y, z; v = x + 1, y + 1, z; vi = -x + 2, -y + 1, -z + 1. (b) 1D chain motif. (c) 2D metal-organic layer (view along the *c* axis). (c) Topological representation of a 2D metal-organic layer with a 4,6L26 topology; view along the *c* axis; Fe1/Fe2 nodes (green balls), centroids of  $\mu_4$ -HL<sup>2-</sup> nodes (gray), centroids of  $\mu$ -H<sub>2</sub>O linkers (red).

[ $Mn_3(\mu_5$ - $dcna)_2(bipy)_2(H_2O)_2]_n$ · $2nH_2O$  (9). This compound has an intricate 2D metal-organic layer structure (Fig. 8). An asymmetric unit contains two Mn(II) centers (a full <sup>10</sup> occupancy Mn1 and a half occupancy Mn2; Mn2 lies on an inversion center), a  $\mu_5$ - $dcna^{3-}$  block, a bipy moiety, a terminal H<sub>2</sub>O ligand, as well as a water molecule of crystallization. The Mn1 center is 7-coordinate and assumes a distorted pentagonal bipyramid {MnN<sub>2</sub>O<sub>5</sub>} environment, which is <sup>15</sup> populated by five O atoms from three  $\mu_5$ - $dcna^{3-}$  blocks and a pair of bipy nitrogen atoms (Fig. 8a). The Mn2 center is 6coordinate revealing a distorted octahedral {MnO<sub>6</sub>} geometry, which is completed by four O atoms from four  $\mu_5$ - $dcna^{3-}$ moieties and two terminal H<sub>2</sub>O ligands. The Mn–O [2.147(3)– <sup>20</sup> 2.495(4) Å] and Mn–N [2.258(4)–2.280(4)Å] bonds show

typical distances.<sup>28,41,57</sup> The dcna<sup>3-</sup> block functions as an overall heptadentate  $\mu_5$ -spacer (mode VIII, Scheme 2), in which three COO<sup>-</sup> groups are terminal bidentate,  $\mu$ -bridging bidentate or tridentate. Three adjacent Mn(II) atoms are <sup>25</sup> joined via four carboxylate groups from four  $\mu_5$ -dcna<sup>3-</sup> blocks to form Mn<sub>3</sub> subunits with a Mn1···Mn2 distance of 3.936(4) Å (Fig. 8b). These trimanganese(II) subunits are further joined together through the remaining carboxylate groups of  $\mu_5$ -dcna<sup>3-</sup> into an intricate 2D metal-organic layer (Fig. 8c). <sup>30</sup> After being simplified, topological analysis of this layer (Fig. 8d) discloses a trinodal 3,4,5-linked net of the 3,4,5L47 type. It is defined by the (4.6<sup>2</sup>)<sub>2</sub>(4<sup>3</sup>.6<sup>7</sup>)<sub>2</sub>(4<sup>4</sup>.6<sup>2</sup>) point symbol with the (4.6<sup>2</sup>), (4<sup>3</sup>.6<sup>7</sup>)<sub>2</sub>, and (4<sup>4</sup>.6<sup>2</sup>) notations corresponding to the Mn1,  $\mu_5$ -dcna<sup>3-</sup>, and Mn2 nodes, respectively.



**Fig. 8** Crystal structure of **9**. (a) Coordination environment and connectivity of Mn1 and Mn2 centers; H atoms are omitted. Symmetry codes: i = x + 1, y + 1, z; ii = x + 2, y + 1, z; iii = -x + 2, -y + 2, -z; iv = -x + 1, -y + 1, -z. (b) Trinuclear Mn(II) subunit. Symmetry code: i = x + 1, y + 1, z. (c) 2D metalorganic layer; view along the *ab* plane. (c) Topological representation of a simplified 2D layer with a 3,4,5L47 topology; view along the *c* axis; Mn1/Mn2 nodes (turquoise balls), centroids of  $\mu_5$ -dcna<sup>3-</sup> nodes (gray).

#### 45 Structural comparison of 1-9

2,5-Di(4-carboxylphenyl)nicotinic acid (H<sub>3</sub>dcna) acts as Hdcna<sup>2-</sup> or dcna<sup>3-</sup> ligand in 1-9 with eight distinct coordination modes (Scheme 2). In all products, the N site at the central ring of Hdcna<sup>2-</sup>/dcna<sup>3-</sup> remains uncoordinated <sup>50</sup> what can be associated with a steric factor. The COO<sup>-</sup> groups of Hdcna<sup>2-</sup>/dcna<sup>3-</sup> show different denticity that varies from monodentate, bidentate, µ-bridging bidentate or tridentate. Despite considering H<sub>3</sub>dcna as a rigid ligand, there is some

rotation between the central and outer aromatic rings along <sup>55</sup> the C–C bonds in Hdcna<sup>2–</sup>/dcna<sup>3–</sup>, as attested by the dihedral angles in the 8.65–55.76° range. This gives some flexibility for fitting the coordination preference of metal centers in the course of hydrothermal generation of **1–9**. Apart from H<sub>3</sub>dcna, the type of metal cation and crystallization mediator <sup>60</sup> significantly influence the structure of the resulting product. In fact, similar synthetic strategies (Table 1) led to the generation of coordination compounds of distinct composition, nuclearity and dimensionality which range from mono- (1, 2) and dinuclear (5, 7) complexes to 1D (3, 4, 6) and 2D (8, 9) coordination polymers.

#### **PXRD** and TGA

- <sup>5</sup> PXRD (powder X-ray diffraction) patterns of 1–9 were recorded at room temperature using the microcrystalline samples (Fig. S4, ESI). In brief, the experimentally obtained diffractograms well agree with ones calculated on the basis of single-crystal X-ray diffraction data. This comparison testifies <sup>10</sup> a phase purity of the as-synthesized samples 1–9.
- TGA was used to study the thermal stability of compounds 1– 9 under nitrogen atmosphere (Fig. 9). Compound 1 shows a release of two H<sub>2</sub>O molecules between 58 and 146 °C (exptl, 4.6%; calcd, 4.4%), followed by a decomposition of the 15 dehydrated sample above 243 °C. For 2, a loss of two water moieties is detected in the 79–196 °C interval (exptl, 4.3%; calcd, 4.4%), while a dehydrated solid is then stable until 317 °C. TGA data indicate that the zinc(II) products 3 and 6 are stable up to 301 and 266 °C, respectively. For compound 4, 20 there is a release of three H<sub>2</sub>O molecules between 41 and 207 °C (exptl, 8.5%; calcd, 8.6%), followed by a decomposition above 271 °C. For 5, a thermal effect in the 82–155 °C range is associated with a loss of ten H<sub>2</sub>O molecules (exptl, 13.1%;
- calcd, 13.4%); the remaining solid maintains stability until 25 306 °C. In compound 7, the release of four H<sub>2</sub>O ligands (exptl, 4.3%; calcd, 4.5%) is detected in the 177–230 °C interval, whereas the decomposition of a dehydrated solid starts at 275 °C. TGA trace of CP 8 reveals a release of two water moieties (exptl, 8.0%; calcd, 7.9%) in the 256–288 °C <sup>30</sup> range; the decomposition is then observed above 327 °C. For CP 9, a mass loss corresponding to four H<sub>2</sub>O molecules occurs in the 90–122 °C interval (exptl, 5.5%; calcd, 5.7%). However, the dehydrated metal-organic network remains stable up to 378 °C.





Fig. 9 TGA plots of 1-9 (10 °C/min, 25-800 °C, N<sub>2</sub> atmosphere)

#### Luminescent properties

The emission spectra of zinc(II) derivatives (**3**, **5**, and **6**) and <sup>40</sup> H<sub>3</sub>dcna were recorded in the solid state at room temperature (Fig. 10). The spectrum of H<sub>3</sub>dcna discloses a weak emission band centered at 401 nm. In contrast to H<sub>3</sub>dcna, zinc(II) derivatives feature bands of a more pronounced intencity with maxima in the 364–388 nm range, namely 388 nm for **3**, 364 <sup>45</sup> nm for **5**, and 379 nm for **6**. These bands are associated with an intraligand  $\pi$ – $\pi$ \* or n– $\pi$ \* transitions of main carboxylate ligand.<sup>28,49,53</sup> An enhanced luminescence of **3**, **5**, and **6** vs. H<sub>3</sub>dcna is likely due to the coordination of ligands to Zn(II), which may strengthen the rigidity of ligands and diminish a <sup>50</sup> loss of energy from radiationless decay.<sup>53,54,57</sup>



Fig. 10 Solid-state emission spectra of 3, 5, 6, and H<sub>3</sub>dcna at room temperature ( $\lambda_{ex}$ = 326 nm).

#### **Magnetic properties**

<sup>55</sup> Magnetic behavior was investigated for the 2D Mn(II) coordination polymer **9** (Fig. 11). The  $\chi_M T$  value at 300 K (13.02 cm<sup>3</sup>·mol<sup>-1</sup>·K) is close to that (13.11 cm<sup>3</sup>·mol<sup>-1</sup>·K) expected for three magnetically isolated high-spin Mn(II) centers ( $S_{Mn} = 5/2$ , g = 2.0). A monotonous decline of  $\chi_M T$  on <sup>60</sup> decreasing the temperature shows that there is a prevailing antiferromagnetic interaction (Fig. 11). In the 10–300 K range, the magnetic susceptibility obeys the Curie–Weiss law with C= 13.31 cm<sup>3</sup>·mol<sup>-1</sup>·K and  $\theta = -10.14$  K. A negative  $\theta$  and a decrease of  $\chi_M T$  are ascribed to an overall antiferromagnetic <sup>65</sup> coupling between the Mn(II) centers in Mn<sub>3</sub> subunits, which feature two sets of magnetic exchange pathways involving different carboxylate bridges (Fig. 8b). As an attempt to fit

35

the magnetic data of 9 (2–300 K), we applied the following expression<sup>58,59</sup> for linear trinuclear Mn(II) derivatives:

$$\hat{H} = -2\sum_{i=1}^{n} \sum_{j=i}^{n} J_{ij} \vec{S}_{i} \vec{S}_{j}$$

$$\hat{H} = -2J_{12}\vec{S}_{1} \vec{S}_{2} - 2J_{23}\vec{S}_{2} \vec{S}_{3} - 2J_{13}\vec{S}_{1} \vec{S}_{3}$$

$$\chi_{t} = \frac{N\beta^{2}g^{2}}{3kT} \times \frac{\sum_{S} S_{T}(S_{T} + 1)(2S_{T} + 1)e^{-E(S_{T})/kT}}{\sum_{S} (2S_{T} + 1)e^{-E(S_{T})/kT}}$$

$$\chi_{m} = \frac{\chi_{t}}{1 - (2zJ'/Ng^{2}\beta^{2})\chi_{t}}$$

where  $J_{12} = J_{23} = J_1$  and  $J_{13} = J_2$ . The parameters  $J_{12}$  and  $J_{23}$ s are the exchange interactions between the "central" Mn(II) and the two "outer" Mn(II) atoms, whereas  $J_2$  is the interaction between the "outer" Mn(II) centers within the Mn<sub>3</sub> subunit (Fig. 8b); zJ' refers to the intercluster coupling constant in the 2D CPs. This model produced reasonable results with the following exchange parameters:  $J_1/k_B = -2.45$ K,  $J_2/k_B = 0.41$  K,  $zJ'/k_B = -0.26$  K, and g = 2.01 (the agreement factor,  $R = \sum (\chi_m T_{exp} - m T_{calc})^2 / \sum (\chi_m T_{exp})^2$  was  $5.73 \times 10^{-5}$ ). These parameters confirm an antiferromagnetic interaction between the Mn centers within the trimanganese(II) subunits. The inercluster magnetic interaction (zJ') is small, thus indicating a very weak exchange interaction among two Mn<sub>3</sub> subunits. This can be explained by a long separation (10.804(3) Å) of the adjacent Mn<sub>3</sub> subunits.



<sup>20</sup> Fig. 11 Temperature dependence of  $\chi_M T$  (O) and  $1/\chi_M(\Box)$  vs. *T* for compound 9. The blue line represents the best fit to the equation in the text. The red line displays the Curie-Weiss fitting.

#### Catalytic cyanosilylation of aldehydes

- Given the potential of zinc(II) coordination compounds to <sup>25</sup> catalyze the cyanosilylation of aldehydes,<sup>60–62</sup> we explored the application of **3**, **5**, and **6** as heterogeneous catalysts in the cyanosilylation of 4-nitrobenzaldehyde as a model substrate to give 2-(4-nitrophenyl)-2-[(trimethylsilyl)oxy]acetonitrile. Typical tests were carried out by reacting a mixture of 4-<sup>30</sup> nitrobenzaldehyde, trimethylsilyl cyanide (TMSCN), and a Zn
- catalyst in dichloromethane at room temperature (Scheme 3, Table 3). Such effects as reaction time, catalyst loading, solvent composition, catalyst recycling, and finally substrate scope were investigated.



Scheme 3 Zn-catalyzed cyanosilylation of 4-nitrobenzaldehyde (model substrate).

The dizinc(II) compound 5 appears to be the most active among the tested catalysts, resulting in an efficient conversion 4-nitrobenzaldehyde 2-(4-nitrophenyl)-2-40 of to [(trimethylsilyl)oxy]acetonitrile (Table 3). The latter is accumulated with an yield growth from 25 to 73% on extending the reaction time from 1 to 12 h (Table 3, entries 1-7; Fig. S6). An effect of catalyst loading was also studied, 45 showing that the product yield increases from 56 to 75% on rising the catalyst amount from 2 to 4 mol% (entries 7-9). Apart from dichloromethane, other solvents were explored but appeared to be less efficient with the following the trend in product yields (entries 7, 10–13):  $CH_2Cl_2$  (73%) >  $CH_3Cl_3$  $_{50}$  (69%) > CH<sub>3</sub>OH (67%) > CH<sub>3</sub>CN (63%) > THF (56%). In comparison with 5, the compounds 3 and 6 are slightly less active producing the maximum yields of 2-(4-nitrophenyl)-2-[(trimethylsilyl)oxy]acetonitrile in the 55-60% range (entries 14, 15, Table 3). Although a relationship between structure 55 and catalytic activity can not be clearly seen, the highest efficiency shown by 5 may eventually be associated to its dimer structure or favorable packing arrangement with better accessible metal sites. It is also important to mention that the cvanosilvlation of 4-nitrobenzaldehyde almost does not 60 proceed in the absence of catalyst (only 3% product yield) or when using H<sub>3</sub>dcna (5% yield) or ZnCl<sub>2</sub> (8% yield) as catalysts (Table 3, entries 16-18). Moreover, in the presence of 5, no other reaction products were detected thus indicating an excellent selectivity.

Table 3 Zn-catalyzed cyanosilylation of 4-nitrobenzal dehyde with TMSCN.<sup>a</sup>

| 11110 0111 |          |         |                              |                                 |                       |
|------------|----------|---------|------------------------------|---------------------------------|-----------------------|
| Entry      | Catalyst | Time, h | Catalyst<br>loading,<br>mol% | Solvent                         | Yield, % <sup>1</sup> |
| 1          | 5        | 1       | 3.0                          | $CH_2Cl_2$                      | 25                    |
| 2          | 5        | 2       | 3.0                          | $CH_2Cl_2$                      | 47                    |
| 3          | 5        | 4       | 3.0                          | $CH_2Cl_2$                      | 55                    |
| 4          | 5        | 6       | 3.0                          | $\mathrm{CH}_2\mathrm{Cl}_2$    | 62                    |
| 5          | 5        | 8       | 3.0                          | $CH_2Cl_2$                      | 67                    |
| 6          | 5        | 10      | 3.0                          | $CH_2Cl_2$                      | 70                    |
| 7          | 5        | 12      | 3.0                          | $\mathrm{CH}_2\mathrm{Cl}_2$    | 73                    |
| 8          | 5        | 12      | 2.0                          | $CH_2Cl_2$                      | 56                    |
| 9          | 5        | 12      | 4.0                          | $CH_2Cl_2$                      | 75                    |
| 10         | 5        | 12      | 3.0                          | CH <sub>3</sub> CN              | 63                    |
| 11         | 5        | 12      | 3.0                          | THF                             | 56                    |
| 12         | 5        | 12      | 3.0                          | CH <sub>3</sub> OH              | 67                    |
| 13         | 5        | 12      | 3.0                          | CH <sub>3</sub> Cl              | 69                    |
| 14         | 3        | 12      | 3.0                          | $CH_2Cl_2$                      | 55                    |
| 15         | 6        | 12      | 3.0                          | $CH_2Cl_2 \\$                   | 60                    |
| 16         | blank    | 12      | -                            | $CH_2Cl_2 \\$                   | 3                     |
| 17         | ZnCl     | 12      | 3.0                          | CH <sub>2</sub> Cl <sub>2</sub> | 8                     |

The substrate scope was also investigated on other substituted aromatic aldehydes, namely by reacting them with trimethylsilyl cyanide under optimized conditions (3.0 mol% 5, CH<sub>2</sub>Cl<sub>2</sub>, 12 h). The corresponding cyanohydrin products <sup>10</sup> were produced in yields ranging from 50 to 69% (Table 4). Aryl aldehydes bearing strong electron-withdrawing substituents (e.g., nitro and chloro groups) exhibited the best reactivity (Table 4, entries 2–5), which might be related to an increase in the substrate electrophilicity. As expected, the <sup>15</sup> aldehyde substrates bearing electron-donating functionalities (e.g., methyl or methoxy groups) showed lower reaction

yields (Table 4, entries 7 and 8). Finally, to examine the stability of 5 in the present cyanosilylation process, we tested the recyclability of this 20 heterogeneous catalyst. For this purpose, upon completion of a reaction cycle, we separated the catalyst by centrifugation, washed it with CH<sub>2</sub>Cl<sub>2</sub> and dried at room temperature before its use in a subsequent cycle. The obtained results (Fig. S7, ESI) indicate that the catalyst 5 essentially maintains its 25 activity for at least four consecutive reaction cycles as attested by similar product yields. According to the PXRD data (Fig. S8), the structure of 5 is essentially preserved after four catalytic cycles, despite the presence of some additional peaks or broadending of several signals. These changes are 30 associated with the presence of some impurities or decreased crystallinity, which might be expected after several catalytic runs. Hence, reusability of this catalyst for a number of additional runs might not be very efficient.

<sup>35</sup> **Table 4.** Cyanosilylation of various aldehydes with TMSCN catalyzed by **5**.<sup>a</sup>



| Entry | Substituted Benzaldehyde                        | Product               |
|-------|-------------------------------------------------|-----------------------|
|       | Substrate (R-C <sub>6</sub> H <sub>4</sub> CHO) | Yield, % <sup>b</sup> |
| 1     | R = H                                           | 57                    |
| 2     | $R = 2-NO_2$                                    | 63                    |
| 3     | $R = 3-NO_2$                                    | 69                    |
| 4     | $R = 4-NO_2$                                    | 73                    |
| 5     | R = 4-Cl                                        | 66                    |
| 6     | R = 4-OH                                        | 62                    |
| 7     | $R = 4-CH_3$                                    | 54                    |
| 8     | R = 4-OCH <sub>3</sub>                          | 50                    |

<sup>a</sup>Reaction conditions: aldehyde (0.5 mmol), TMSCN (1.0 mmol), catalyst 5 (3.0 mol.%), CH<sub>2</sub>Cl<sub>2</sub> (2.5 mL), solvent (2.5 mL), room
<sup>45</sup> temperature (~25 °C). <sup>b</sup>Yields based on <sup>1</sup>H NMR analysis: [moles of product per mol of aldehyde substrate]×100%.

#### Conclusions

- <sup>50</sup> In this study we explored the use of H<sub>3</sub>dcna (2,5-di(4carboxylphenyl)nicotinic acid) as a novel tricarboxylic aromatic acid for assembling nine new metal(II) coordination compounds **1–9**, which were completely characterized by standard methods including single-crystal X-ray diffraction.
- <sup>55</sup> Besides, structural and topological characteristics of the hydrogen-bonded or metal-organic architectures in 1-9 were highlighted, disclosing that their structural multiplicity is associated to the type of metal(II) center and *N*-donor crystallization mediator, along with the coordination modes of
- <sup>60</sup> the Hdcna<sup>2-</sup>/dcna<sup>3-</sup> ligands. In fact, the dimensionality of the obtained products ranges from discrete monomers (1 and 2) and dimers (5 and 7) to 1D chains (3, 4, and 6) and 2D metalorganic layers (8 and 9).

Thermal stability as well as luminescent, magnetic, or 65 catalytic properties were also investigated for selected compounds. In particular, the dizinc(II) complex **5** was shown to efficiently catalyze the cyanosilylation of aldehydes with trimethylsilyl cyanide under ambient conditions. The selective conversion of 4-nitrobenzaldehyde to 2-(4-nitrophenyl)-2-

- 70 [(trimethylsilyl)oxy]acetonitrile was explored as a model reaction, for which various parameters were optimized (solvent composition, time, catalyst loading), resulting in up to 75% product yields. Besides, this heterogeneous catalyst can be recycled for up to four times maintaining its original 75 catalytic activity. The substrate scope of the reaction was also extended to other substituted benzaldehydes, revealing their reactivity dependence on the electron-withdrawing or donating properties of functional groups.
- Moreover, the obtained herein products represent the unique <sup>80</sup> examples of coordination compounds derived from H<sub>3</sub>dcna, thus opening up the use of this tricarboxylic aromatic acid for generating complexes and coordination polymers with interesting structures and functional properties. We believe the present work will stimulate the use of H<sub>3</sub>dcna and related <sup>85</sup> multicarboxylic acids for designing new coordination compounds toward applications as functional molecules.

#### Acknowledgements

This work was supported by the 111 Project of MOE (111-2-17), the Foundation for Science and Technology (FCT) and 90 Portugal 2020 (projects CEECIND/03708/2017, LISBOA-01-0145-FEDER-029697, UIDB/00100/2020, SFRH/BSAB/-150368/2019). The publication was also prepared with the support of the RUDN University Program 5-100.

#### Notes and references

- 95 a State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China. E-mail: gujzh@lzu.edu.cn
- 100 <sup>b</sup>Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal. E-mail: kirillov@tecnico.ulisboa.pt

<sup>c</sup>Research Institute of Chemistry, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya st., Moscow, 117198, Russian Federation.

- s †Electronic Supplementary Information (ESI) available: synthesis and analytical data for **1–9**, additional structural representations (Figs. S1–S3), PXRD patterns (Fig. S3), catalysis data (Fig. S4–S8), and bonding parameters (Tables S1 and S2). CCDC-1984462– 1984470.
- 1 (a) S. R. Batten, S. M. Neville, D. R Turner, Coordination Polymers: Design, Analysis and Application, RSC Publ., 2009. (b) The Chemistry of Metal-Organic Frameworks: Synthesis, Characterization, and Applications (Ed. S. Kaskel), John Wiley & Sons, 2016.
- 2 L. N. McHugh, M. J. McPherson, L. J. McCormick, S. A. Morris, P. S. Wheatley, S. J. Teat, D. McKay, D. M. Dawson, C. E. F. Sansome, S. E. Ashbrook, C. A. Stone, M. W. Smith and R. E. Morris, *Nature Chem.*, 2018, **10**, 1096.
- 20 3 R. E. Morris and L. Brammer, Chem. Soc. Rev., 2017, 46, 5444.
- A. Tabacaru, C. Pettinari and S. Galli, *Coord. Chem. Rev.*, 2018, 372, 1.
   L. N. McHugh, A. Terracina, P. S. Wheatley, G. Buscarino, M. W. Smith and R. E. Morris, *Angew. Chem. Int. Ed.*, 2019, 58, 11747.
- 6 J. H. Lee, S. Jeoung, Y. G. Chung and H.R. Moon, *Coord. Chem. Rev.*, 2019, **389**, 161.
- 7 Gas Adsorption in Metal-Organic Frameworks: Fundamentals and Applications (Eds. T. Grant Glover and B. Mu), , CRC Press, 2018.
- 8 K. Jayaramulu, F. Geyer, A. Schneemann, Š. Kment, M. Otyepka, R. Zboril, D. Vollmer and R. A. Fischer, *Adv. Mater.*, 2019, **31**, 1900820.
- 9 A. A. Lysova, D. G. Samsonenko, P. V. Dorovatovskii, V. A. Lazarenko, V. N. Khrustalev, K. A. Kovalenko, D. N. Dybtsev and V. P. Fedin, J. Am. Chem. Soc., 2019, 141, 17260.
- 10 C. Gu, N. Hosono, J. J. Zheng, Y. Sato, S. Kusaka, S. Sakaki and S. 5 Kitagawa, *Science*, 2019, **363**, 387.
- 11 S. L. Hanna, X. Zhang, K. Otake, R. J. Drout, P. Li, T. Islamoglu and O. K. Farha, *Cryst. Growth Des.*, 2019, **19**, 506.
- 12 (a) J. Z. Gu, M. Wen, Y. Cai, Z. F. Shi, A. S. Arol, M. V. Kirillova and A. M. Kirillov, *Inorg. Chem.*, 2019, **58**, 2403. (b) T. A.
- Fernandes, C. I. M. Santos, V. André, J. Kłak, M. V. Kirillova, A. M. Kirillov, *Inorg. Chem.* 2016, 55, 125.
- (a) H. Tabe, M. Matsushima, R. Tanaka and Y. Yamada, *Dalton Trans.*, 2019, **48**, 17063. (b) A. N. Bilyachenko, M. S. Dronova, A. I. Yalymov, F. Lamaty, X. Bantrei, J. Martinez, C. Bizet, L. S. Shul'pina, A. A. Korlyukov, D. E. Arkhipov, M. M. Levitsky, E. S. Shubina, A. M. Kirillov and G. B. Shul'pin, *Chem. Eur. J.* 2015, **21**,
- 8758.
  14 (a) J. Z. Gu, M. Wen, Y. Cai, Z. F. Shi, D. S. Nesterov, M. V. Kirillova and A. M. Kirillov, *Inorg. Chem.*, 2019, 58, 5875. (b) A.
- 50 M. Kirillov, J. A. S. Coelho, M. V. Kirillova, M. F. C. G. da Silva, D. S. Nesterov, K. R. Gruenwald, M. Haukka and A. J. L. Pombeiro, *Inorg. Chem.*, 2010, 49, 6390.
- 15 (a) Z. H. Li, L. P. Xue, Q. P. Qin and Y. J. Zhao, J. Solid State Chem., 2019, 278, 120908. (b) A. M. Kirillov, Y. Y. Karabach, M. V.
- 55 Kirillova, M. Haukka and A. J. L. Pombeiro, *Cryst. Growth Des.* 2012, **12**, 1069. (c) S. A. Sotnik, R. A. Polunin, M. A. Kiskin, A. M. Kirillov, V. N. Dorofeeva, K. S. Gavrilenko, I. L. Eremenko, V. M. Novotortsev and S. V. Kolotilov, *Inorg. Chem.* 2015, **54**, 5169.
- 16 Y. L. Cui, Y. F. Yue, G. D. Qian and B. L. Chen, *Chem. Rev.*, 2012, 112, 1126.
- 17 H. Kaur, S. Sundriyal, V. Pachauri, S. Ingebrandt, K. Kim, A. L. Sharma and A. Deep, *Coord. Chem. Rev.*, 2019, **401**, 213077.
- E. Y. Semitut, T. S. Sukhikh, E. Y. Filatov, G. A. Anosova, A. A. Ryadun, K. A. Kovalenko and A. S. Potapov, *Cryst. Growth Des.*, 2017, 17, 5559.
- 19 S. I. Vasylevskyi, D. M. Bassani and K. M. Fromm, *Inorg. Chem.*, 2019, 58, 5646.
- 20 W. Liu, C. D. Liu, C. Y. Chen, X. Huang and W. S. Liu, *Dalton Trans.*, 2019, 48, 17349.
- 70 21 Q. Q. Xiao, G. Y. Dong, Y. H. Li and G. H. Cui, *Inorg. Chem.*, 2019, 58, 15696.

- 22 G. M. Espallargas and E. Coronado, Chem. Soc. Rev., 2018, 47, 533.
- 23 S. M. Elahi, Q. H. Lai, M. Ren, S. S. Bao, M. Kurmoo and L. M. Zheng, *Inorg. Chem.*, 2019, **58**, 14034.
- 75 24 (a) C. F. Wang, W. Zhang, W. W. Li, Y. Y. Zhang, X. D. Tang and M. Hu, *Chinese Chem. Lett.*, 2019, **30**, 1390. (b) X. Y. Ling, J. Wang, C. H. Gong, L. Lu, A. K. Singh, A. Kumar, H. Sakiyama, Q. Q. Yang and J. Q. Liu, *J. Solid State Chem.*, 2019, **277**, 673. (c) J.-Z. Gu, Y.-H. Cui, J. Wu and A. M. Kirillov, *RSC Adv.*, 2015, **5**, 78889.
- 80 25 (a) S. S. P. Dias, M. V. Kirillova, V. André, J. Kłak and A. M. Kirillov. Inorg. Chem. Front. 2015, 2, 525. (b) Y. Y. Karabach, A. M. Kirillov, M. Haukka, J. Sanchiz, M. N. Kopylovich and A. J. L. Pombeiro, Cryst. Growth Des. 2008, 8, 4100.
- 26 P. Li, F. F. Cheng, W. W. Xiong and Q. C. Zhang, *Inorg. Chem.* 85 Front., 2018, **5**, 2693.
- 27 R. Antwi-Baah and H. Y. Liu, Materials, 2018, 11, 2250.
- 28 J. Z. Gu, Y. H.Cui, X. X. Liang, J. Wu, D. Y. Lv and A. M. Kirillov, *Cryst. Growth Des.*, 2016, 16, 4658.
- 29 F. Fernandez-Palacio, J. Restrepo, S. Galvez, P. Gomez-Sal and M. E. G. Mosquera, *CrystEngComm*, 2014, **16**, 3376.
- 30 E. Loukopoulos and G. E. Kostakis, Coord. Chem. Rev., 2019, 395, 193.
- 31 Z. W. Zhai, S. H.Yang, P. Luo, L. K. Li, C. X. Du and S. Q. Zang, *Eur. J. Inorg. Chem.*, 2019, 2725.
- 95 32 E. Baladi, V. Nobakht, A. Tarassoli, D. M. Proserpio and L. Carlucci, *Cryst. Growth Des.*, 2018, 18, 7207.
  - 33 C. Chen, W. W. Zhang, M. X. Zhang and J. F. Bai, *Inorg. Chem.*, 2019, 58, 13836.
- 34 Y. Wang, H. F. Cao, B. S. Zheng, R. F. Zhou and J, G. Duan, *Cryst. Growth Des.*, 2018, **18**, 7674.
  - 35 F. Sánchez-Férez, L. Bayés, M. Font-Bardia and J. Pons, *Inorg. Chim.* Acta, 2019, 494, 112..
  - 36 B. Ramezanpour, M. Mirzaei, V. Jodaian, M. N. Shahrak, A. Frontera and E. Molins, *Inorg. Chem. Acta*, 2019, 484, 264.
- <sup>105</sup> 37 Y. B. Dong, Y. Y. Jiang, J. Li, J. P. Ma, F. L. Liu, B. Tang, R. Q. Huang and S. R. Batten, J. Am. Chem. Soc., 2007, **129**, 4520.
  - 38 X. Z. Zou, J. Wu, J. Z. Gu, N. Zhao, A. S. Feng and Y. Li, *Chin. J. Inorg. Chem.*, 2019, **35**, 1705.
- 39 (*a*) J. Wan, S. L. Cai, K. Zhang, C. J. Li, Y. Feng, J. Fan, S. R. Zheng and W. G. Zhang, *CrystEngComm*, 2016, **18**, 5164. (*b*) J.-Z. Gu, M.
  - Wen, X. Liang, Z.-F. Shi, M. V. Kirillova and A. M. Kirillov, Crystals, 2018, 8, 83.
  - 40 J. X. Ruan, Y. H. Yu, Y. F. Liu, G. Wu, J. S. Gao and D. S. Ma, *Polyhedron*, 2019, **163**, 114.
- <sup>115</sup> 41 J. Z. Gu, Z. Q. Gao and Y. Tang, *Cryst. Gorwth Des.*, 2012, **12**, 3312.
   42 Y. J. Zhang, J. D. Yang, D. S. Zhao, Z. J. Liu, D. C. Li, L. M. Fan and T. P. Hu, *CrystEngComm*, 2019, **21**, 6130.
  - 43 X. J. Zhou, X. L. Guo, L. L. Liu, Z. Shi, Y. Pang and X. S. Tai, Crystals, 2019, 9, 166.
- 120 44 W. J. Gu and J. Z. Gu, Chin, J. Inorg. Chem., 2017, 33, 227.
  - The Cambridge Structural Database (CSD, 2016): C. R. Groom, I. J. Bruno, M. P. Lightfoot and S. C. Ward, *Acta Cryst.*, 2016, **B72**, 171.
     A.L. Spek, *Acta Crystallogr., Sect. C: Struct. Chem.*, 2015, **71**, 9.
  - 47 V. A. Blatov, *IUCrCompComm Newsletter*,2006, 7, 4.
- 125 48 V. A. Blatov, A. P. Shevchenko and D. M. Proserpio, Cryst. Growth Des., 2014, 14, 3576.
  - 49 L. F. Zou, J. Q. Yuan, Y. Yuan, J. M. Gu, G. H. Li, L. R. Zhang and Y. L. Liu, *CrystEngComm*, 2019, 21, 3289.
  - 50 L. Infantes and S. Motherwell, CrystEngComm, 2002, 4, 454.
- <sup>130</sup> 51 M. V. Kirillova, A. M. Kirillov, M. F. C. Guedes da Silva, M. N. Kopylovich, J. J. R. Fraústo da Silva and A. J. L. Pombeiro, *Inorg. Chim. Acta*, 2008, **361**, 1728.
- 52 (a) M. N. Kopylovich, E. A. Tronova, M. Haukka, A. M. Kirillov, V. Yu. Kukushkin, J. J. R. Fraústo da Silva and A. J. L. Pombeiro, *Eur. J. Inorg. Chem.*, 2007, 4621. (b) R. R. Fernandes, A. M. Kirillov, M.
  - F. C. Guedes da Silva, Z. Ma, J. A. L. da Silva, J. J. R. Fraústo da Silva and A. J. L. Pombeiro, *Cryst. Growth Des.*, 2008, **8**, 782.
  - 53 J. Z. Gu, Y. Cai, Z. Y. Qian, M. Wen, Z. F. Shi, D. Y. Lv and A. M. Kirillov, *Dalton Trans.*, 2018, **47**, 7431.
- 140 54 Y. Y. Xue, S. N. Li, Y. C. Jiang, M. C. Hu and Q. G. Zhai, J. Mater. Chem. A, 2019, 7, 4640.

**Dalton Transactions Accepted Manuscript** 

- 55 N. Zhao, Y. Li, J. Z. Gu, M. V. Kirillova and A. M. Kirillov, *Crystals*, 2019, 9, 369.
- 56 W.G. Lu, J. Z. Gu, L. Jiang, M. Y. Tan and T. B. Lu, *Cryst. Growth Des.*, 2008, 8, 192.
- <sup>5</sup> 57 J. Z. Gu, Y. Cai, X. X. Liang, J. Wu, Z. F. Shi and A. M. Kirillov, *CrystEngComm*, 2018, **20**, 906.
- 58 K. F. Hsu and S. L. Wang, Inorg. Chem., 2000, 39, 1773.
- 59 O. Kahn, *Molecular Magnetism*; VCH Publishers Inc.: New York, 1993.
- <sup>10</sup> 60 J. J. Du, X. Zhang, X. P. Zhou and D. Li, *Inorg. Chem. Front.*, 2018, 5, 2772.
- 61 X. C. Lu, H. L. Wang, X. Wang, Q. Z. Li and L. Liao, J. Cluster Sci., 2019, 30, 1673.
- 62 Sustainable Catalysis: Energy-Efficient Reactions and Applications
- 15 (Eds. R. Luque, F. L.-Y. Lam), John Wiley & Sons, 2018.



2,5-di(4-carboxylphenyl)nicotinic acid was explored as a novel building block for assembling nine metal(II) coordination compounds; these were fully characterized and their structural features and functional properties were investigated.