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To further optimize a clinical candidate 5 (EW-7197), a series of 5-(3-, 4-, or 5-fluoro-substituted-6-
methylpyridin-2-yl)-4-([1,2,4]triazolo[1,5-a]pyridin-6-yl)imidazoles 19a–l have been synthesized and
evaluated for their TGF-b type I receptor kinase (ALK5) and p38a MAP kinase inhibitory activity in an
enzyme assay. The 5-(5-fluoro-substituted-6-methylpyridin-2-yl)-4-([1,2,4]triazolo[1,5-a]pyridin-6-yl)-
imidazoles 19h–l displayed the similar level of potency to that of 5 against both ALK5 (IC50 = 7.68–
13.70 nM) and p38aMAP kinase (IC50 = 1240–3370 nM). Among them, 19j inhibited ALK5 with IC50 value
of 7.68 nM in a kinase assay and displayed 82% inhibition at 100 nM in a luciferase reporter assay.

� 2015 Elsevier Ltd. All rights reserved.
The transforming growth factor-b (TGF-b) is a member of a
large family of dimeric polypeptide growth factors that include
TGF-bs (TGF-b1, TGF-b2, TGF-b3), activins, inhibins, and bone mor-
phogenetic proteins. TGF-b signals through heteromeric complexes
of type I and type II TGF-b receptors (TbR-I and TbR-II, respec-
tively). The signaling cascade is initiated by the binding of ligand
to the constitutively active type II receptor. Successively, the type
I receptor (ALK5) is phosphorylated in the juxtamembrane GS
domain, stimulating its kinase activity. The activated ALK5 propa-
gates the signals through phosphorylation of the receptor-regu-
lated Smads, Smad2 and Smad3 that in turn form complexes
with the common mediator Smad, Smad4. These Smad complexes,
when translocated into the nucleus, regulate the expression of sev-
eral hundred genes involved in cell proliferation, differentiation,
growth, migration, adhesion, immune response, apoptosis, and
extracellular matrix production.1–3 TGF-b plays an essential role
in the initiation and progression of fibrosis in various organ sys-
tems such as liver,4 lung,5 kidney,6 and heart.7 Deregulation of
TGF-b signaling has been implicated in various human diseases,
including cancer,8 pancreatic diseases,9 and hematological
malignancies.10
Current studies have shown that blocking the TGF-b signaling
pathway with several small-molecule ATP-competitive ALK5
inhibitors such as 1 (SB-505124),11 2 (SD-208),12 3 (GW6604),13

4 (LY-2157299),14 and 5 (EW-7197)15 inhibited autophosphoryla-
tion of ALK5 and TGF-b-induced transcription of matrix genes in
reporter assays at sub-micromolar concentrations. Among them,
4 and 5 have progressed to phase II and phase I clinical trials for
cancer, respectively.

Previously, we reported a number of the 2-pyridyl-substituted
triazoles,16 thiazoles,17 pyrazoles,18–20 and imidazoles21,22 as poten-
tial ALK5 inhibitors. Very recently, we have prepared a series of
2-substituted-4-([1,2,4]triazolo[1,5-a]pyridin-6-yl)-5-(6-methyl-
pyridin-2-yl)imidazoles and found that 5 is a highly potent, selec-
tive, and orally bioavailable ALK5 inhibitor.15 The 5 has
demonstrated its pronounced anticancer and antifibrotic efficacy
in various animal models.23–25

Recently, Bonafoux et al. reported a series of 2-aminoimidazoles
as ALK5 inhibitors that possessing a F substituent at the 5-position
of the 6-methyl-2-pyridyl moiety.26 They showed that a 5-fluoro-
substituted compound 6 was 1.5-fold more inhibitory in TGF-b-in-
duced PAI-luciferase assay and 2.1-fold less inhibitory in p38a
MAP kinase assay compared to a parent compound, indicating
improved selectivity profile (Fig. 1).

On the basis of this finding, we decided to further investigate
the effect of a F substituent at the three different positions (3, 4,
or 5) of the 6-methyl-2-pyridyl moiety in 5 and its analogues on
ALK5 inhibitory activity and selectivity. The target compounds
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Figure 1. ALK5 inhibitors under development.
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Scheme 1. Reagents and conditions: (a) (i) concn HCl, NaNO2, 0 �C, 10 min; (ii) 65%
HPF6 in H2O, 100 �C, 10 min; (b) n-BuLi (1.6 M in hexane), anhydrous DMF, toluene,
�78 �C, 2 h.
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Scheme 2. Reagents and conditions: (a) TMSCl, NaI, CH3 CN, 90 �C, 2 d; (b) i-PrMgCl
(2.0 M in THF), CH2Cl2, anhydrous DMF, rt, overnight.
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19b–e, 19g, and 19i–l possess a substituent, either o-F, m-CN,
m-CONH2, or m-CH@CH2 in a phenyl ring because they were found
to be the most beneficial to the ALK5 inhibitory activity and selec-
tivity in a previous study.15

The requisite 3-, 4-, and 5-fluoro-6-methyl-2-pyridinecarbox-
aldehydes 9a, 9b, and 12 were prepared as shown in Schemes 1
and 2. Treatment of commercially available 3-amino-2-bromo-6-
methylpyridine (7a) and 4-amino-2-bromo-6-methylpyridine
(7b)27 with aqueous NaNO2 at 0 �C in the presence of concn HCl
and followed by fluorination with 65% aqueous HPF6 solution gave
the corresponding fluoro compounds 8a and 8b in 38% and 44%
yields, respectively. Lithiation of 8a and 8b with n-BuLi at �78 �C
in toluene followed by treatment with anhydrous N,N-dimethylfor-
mamide gave the aldehydes 9a and 9b in 74% and 64% yields,
respectively (Scheme 1).

The attempted conversion of the commercially available 2-
bromo-5-fluoro-6-methylpyridine (10) to the aldehyde 12 under
the similar reaction condition for the 9a and 9b shown in Scheme 1
was failed. Thus, alternatively, the bromo atom of the 10 was
exchanged to the iodo atom with NaI in the presence of
chlorotrimethylsilane (TMSCl) in CH3CN at 90 �C to afford the 11
Please cite this article in press as: Krishnaiah, M.; et al. Bioorg. Med. Ch
in 83% yield, which was subsequently converted to the aldehyde
12 in 70% yield by reaction with i-PrMgCl (2.0 M in THF) in CH2Cl2
and followed by treatment with anhydrous DMF (Scheme 2).

A series of 5-(fluoro-substituted-6-methylpyridin-2-yl)-4-
([1,2,4]triazolo[1,5-a]pyridin-6-yl)imidazoles 19a–l was prepared
as shown in Scheme 3. The aldehydes 9a, 9b, and 12 were treated
with aniline and diphenyl phosphite in i-PrOH at room tempera-
ture to give the (phenylamino)methylphosphonates 13a–c in
65–97% yields. Coupling of the 13a–c with [1,2,4]triazolo[1,5-a]
pyridine-6-carbaldehyde28 in a mixture of THF and i-PrOH (4:1)
at room temperature in the presence of Cs2CO3 and followed by
hydrolysis with 3 N HCl gave the corresponding monoketones
14a–c in 66–87% yields.

Oxidation of the 14a–c with 48% HBr in DMSO at either 40 �C
(for 15b) or 70 �C (for 15a and 15c) afforded the diketones 15a–c
in 31–91% yields. It was found that the 4-fluoro atom in the pyri-
dine ring was rather labile in this strong acidic condition, thus
affording the 15b in much lower yield compared to the 15a and
15c even at a lower reaction temperature. The condensation of
the diketones 15a–c with 60% 2,2-dimethoxyacetaldehyde and
NH4OAc in a mixture of t-BuOMe and MeOH (2:1) at room temper-
ature produced the imidazoles 16a–c in good yields. The acetal
protecting group of the 16a and 16c was cleaved in 1 N HCl solu-
tion at 70 �C to give the imidazole-2-carboxaldehydes 17a and
17c in 92% and 90% yields, respectively. But, in the same reaction
condition, the 16b gave the 17b along with the inseparable mix-
ture of by-products as major products in which a F atom in the
17b was replaced with a Cl atom or a OH group (determined by
HRMS). Thus, deprotection of the acetal group in the 16b was
accomplished in a mild condition with p-toluenesulfonic acid
monohydrate in anhydrous DMF at 50 �C to give the 17b in 61%
yield. Coupling of the 17a–c with appropriately substituted
anilines 18a–d in 1,2-dichloroethane in the presence of AcOH
and followed by reduction of the resulting imines with NaBH4 in
a mixture of THF and MeOH (1:3) gave the target compounds
19a–c, 19e–j, and 19l in good yields (77–90%). Conversion of the
nitrile functionality in compounds 19c and 19j to the correspond-
ing carboxamide was achieved by treatment with 34.5% H2O2 and
1 N NaOH in EtOH to afford the 19d and 19k in 61% and 47% yields,
respectively.
em. Lett. (2015), http://dx.doi.org/10.1016/j.bmcl.2015.09.058
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Scheme 3. Reagents and conditions: (a) aniline, diphenyl phosphite, i-PrOH, rt,
12–19 h; (b) (i) [1,2,4]triazolo[1,5-a]pyridine-6-carbaldehyde, Cs2CO3, THF/i-PrOH
(4:1), rt, 24 h; (ii) 3 N HCl, rt, 1 h; (c) 48% HBr in H2O, DMSO, 40 �C (for 15b), 1.5 h or
70 �C (for 15a and 15c), 2 h; (d) 60% 2,2-dimethoxyacetaldehyde in H2O, NH4OAc,
t-BuOMe/MeOH (2:1), rt, 4–6 h; (e) 1 N HCl, 70 �C, 2 h (for 17a and 17c) or
PTSA�H2O, anhydrous DMF, 50 �C, 24 h (for 17b); (f) (i) 18a–d, AcOH, 1,2-
dichloroethane, reflux, 3–12 h; (ii) NaBH4, MeOH/THF (3:1), rt, 0.5–4 h; (g) 34.5%
H2O2, 1 N NaOH, EtOH, rt, 2.5–4 h.

Table 1
ALK5 and p38a inhibitory activity of 5-(fluoro-substituted-6-methylpyridin-2-yl)-4-
([1,2,4]triazolo[1,5-a]pyridin-6-yl)imidazoles 19a–l in kinase assay

N

N

N

N

N
H

N HN

R1

R2

19a-l

Compd R1 R2 IC50 (nM) Selectivity indexc

ALK5a p38ab

19a 3-F H 9.76 399 41
19b 3-F o-F 12.10 766 63
19c 3-F m-CN 9.23 209 23
19d 3-F m-CONH2 11.00 251 23
19e 3-F m-CH@CH2 9.81 171 17
19f 4-F H 72.50 >10000 >137
19g 4-F o-F 41.90 >10000 >238
19h 5-F H 9.23 2040 221
19i 5-F o-F 12.50 3370 267
19j 5-F m-CN 7.68 1240 161
19k 5-F m-CONH2 10.80 1480 137
19l 5-F m-CH@CH2 13.70 1810 132
1 (SB-505124) 34.90 668 19
4 (LY-2157299) 69.40 405 6
5 (EW-7197) 9.67 2180 225

a ALK5 was expressed in Sf9 insect cells as human recombinant GST-fusion
protein by means of the vaculovirus expression system. A proprietary radioisotopic
protein kinase assay (33PanQinase� Activity Assay) was performed at ProQinase
GmbH (Freiburg, Germany) using casein as a substrate.

b p38a MAP kinase was expressed as untagged human recombinant protein in
E. coli. The enzyme was purified by Ni–NTH–agarose (Qiagen). A proprietary
radioisotopic protein kinase assay (33PanQinase� Activity Assay) was performed at
ProQinase GmbH (Freiburg, Germany) using ATF2 as a substrate.

c IC50 of p38a/IC50 of ALK5.

Table 2
ALK5 inhibitory activity of 19j, 1, 4, and 5 in luciferase assay

Compd p3TP-luciferase activitya,b (% control)

Mockc 3 ± 0.3
TGF-b 100 ± 10.3
19j 18 ± 4.3
1 (SB-505124) 45 ± 1.3
4 (LY-2157299) 140 ± 3.8
5 (EW-7197) 35 ± 4.5

a Luciferase activity was determined at a concentration of 100 nM of inhibitor.
b Activity is given as the mean ± SD of three independent experiments run in

triplicate relative to control incubations without DMSO vehicle.
c Luciferase activity was determined without treatment of TGF-b and inhibitor.
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To evaluate whether these potential inhibitors 19a–l could inhi-
bit ALK5, a kinase assay was performed using the purified human
ALK5 kinase domain produced in Sf9 insect cells and casein as a
substrate (Table 1). Because the kinase domain of p38aMAP kinase
is known to be one of the most homologous to that of ALK5,29 it
was also chosen for a kinase assay to study the selectivity profile
of this series of compounds.

All the imidazoles having a fluoro-substituent at the 3-position
in the pyridine ring, 19a–e (IC50 = 9.23–12.10 nM) showed the sim-
ilar level of potency against ALK5 to that of 5 (IC50 = 9.67 nM). But,
19a–e (IC50 = 171–766 nM) were 2.8–12.7-fold more potent in
Please cite this article in press as: Krishnaiah, M.; et al. Bioorg. Med. Ch
p38aMAP kinase inhibition than 5 (IC50 = 2180 nM), thus showing
that the selectivity indices of the former (17–63) were much lower
than that of the latter (225). Introduction of a fluoro-substituent at
the 4-position in the pyridine ring had negative impact on ALK5
inhibition, thus, 19f (R2 = H, IC50 = 72.50 nM) and 19g (R2 = o-F,
IC50 = 41.90 nM) displayed 7.5- and 4.3-fold lower ALK5 inhibitory
activity than 5, respectively. They also did not inhibit p38a MAP
kinase up to a concentration of 10 lM. The imidazoles having a
fluoro-substituent at the 5-position in the pyridine ring, 19h–l dis-
played the similar level of potency to that of 5 against both ALK5
(IC50 = 7.68–13.70 nM) and p38a MAP kinase (IC50 = 1240–
3370 nM) regardless of R2 substituent. Consequently, the selectiv-
ity indices of the compounds (132–267) were comparable to that
of 5. All the 3- and 5-fluoro-substituted compounds were more
potent in ALK5 inhibition than the competitors 1 (IC50 = 34.90 nM)
and 4 (IC50 = 69.40 nM). And, the 4- and 5-fluoro-substituted
em. Lett. (2015), http://dx.doi.org/10.1016/j.bmcl.2015.09.058
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compounds showed much higher selectivity indices against p38a
MAP kinase than 1 (19) and 4 (6).

Because 19j showed slightly higher level of potency in ALK5
inhibition in a kinase assay (IC50 = 7.68 nM) than 5, a cell-based
luciferase assay was performed using HaCaT cells permanently
transfected with p3TP-luciferase reporter construct30 at a concen-
tration of 100 nM to compare their ALK5 inhibitory activity with
competitors 1 and 4 (Table 2). Similar to the kinase assay, 19j
(82% inhibition) was more inhibitory than 1 (55% inhibition), 4
(no inhibition), and 5 (65% inhibition) in a cell-based luciferase
assay.

In this letter, we have synthesized and evaluated a series of
5-(3-, 4-, or 5-fluoro-substituted-6-methylpyridin-2-yl)-4-([1,2,4]-
triazolo[1,5-a]pyridin-6-yl)imidazoles 19a–l to further optimize an
ALK5 inhibitor 5. The 3-fluoro-substituted compounds showed the
similar level of potency against ALK5 to that of 5, but were much
less selective against p38aMAP kinase than 5. The 4-fluoro-substi-
tuted compounds were chemically rather unstable and displayed
much lower ALK5 and p38a MAP kinase inhibitory activity than
5. The 5-fluoro-substituted compounds displayed the similar level
of potency to that of 5 against both ALK5 and p38a MAP kinase.
One of the 5-fluoro-substituted compounds, 19j was found to be
more inhibitory than the parent compound 5 in ALK5 inhibition
in both kinase assay and cell-based luciferase assay with a high
selectivity index of 161 against p38a.
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