

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry

Bioorganic & Medicinal Chemistry 16 (2008) 4963-4983

Synthesis of glutamic acid analogs as potent inhibitors of leukotriene A_4 hydrolase⁽¹⁾

Thomas A. Kirkland,^{a,*} Marc Adler,^a John G. Bauman,^a Ming Chen,^a Jesper Z. Haeggström,^d Beverly King,^c Monica J. Kochanny,^a Amy M. Liang,^b Lisa Mendoza,^c Gary B. Phillips,^a Marjolein Thunnissen,^e Lan Trinh,^b Marc Whitlow,^a Bin Ye,^a Hong Ye,^a John Parkinson^c and William J. Guilford^a

^aDepartment of Medicinal Chemistry, Berlex Biosciences, 2600 Hilltop Drive, Richmond, CA 94804, United States ^bDepartment of Molecular Pharmacology, Berlex Biosciences, 2600 Hilltop Drive, Richmond, CA 94804, United States ^cDepartment of Immunology, Berlex Biosciences, 2600 Hilltop Drive, Richmond, CA 94804, United States ^dDepartment of Medical Biochemistry and Biophysics, Karolinska Institute, S-171 77 Stockholm, Sweden ^eMolecular Biophysics, Lund University, Getingevägen 60, SE-221 00 Lund, Sweden

> Received 8 January 2008; revised 13 March 2008; accepted 14 March 2008 Available online 20 March 2008

Abstract—Leukotriene B_4 (LTB₄) is a potent pro-inflammatory mediator that has been implicated in the pathogenesis of multiple diseases, including psoriasis, inflammatory bowel disease, multiple sclerosis and asthma. As a method to decrease the level of LTB₄ and possibly identify novel treatments, inhibitors of the LTB₄ biosynthetic enzyme, leukotriene A₄ hydrolase (LTA₄-h), have been explored. Here we describe the discovery of a potent inhibitor of LTA₄-h, arylamide of glutamic acid 4f, starting from the corresponding glycinamide 2. Analogs of 4f are then described, focusing on compounds that are both active and stable in whole blood. This effort culminated in the identification of amino alcohol 12a and amino ester 6b which meet these criteria. © 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Leukotriene B_4 (LTB₄) is a potent pro-inflammatory activator of inflammatory cells, including neutrophils, eosinophils, monocytes, macrophages, T cells and B cells that is a functional link between early innate and late adaptive immune responses.¹ There is substantial evidence that LTB₄ plays a significant role in the amplification of many inflammatory disease states² including asthma,³ inflammatory bowel disease (IBD),⁴ chronic obstructive pulmonary disease (COPD),⁵ arthritis,⁶ psoriasis,⁷ and atherosclerosis.⁸ LTB₄ also stimulates the production of various cytokines and may play a role in immunoregulation.⁹ Therefore, a therapeutic agent that inhibits the response of cells to LTB₄ or inhibits the biosynthesis of LTB_4 may be useful for the treatment of these inflammatory conditions.

Two pharmacologically distinct human LTB₄ receptors, BLT1¹⁰ and BLT2,¹¹ have recently been described. BLT1 is a high affinity LTB₄ receptor ($K_d = 0.1-0.7$ nM) with a restricted expression in inflammatory cells, for example, neutrophils, monocytes, thymus, and spleen. BLT2 has a wider tissue expression profile but a 20-fold lower affinity for LTB₄ ($K_d = 23$ nM) than BLT1. Although the presence of two receptors can provide for a graded immune response, it makes antagonism of a LTB₄ receptor a more difficult therapeutic target. Therefore, we focused on the reduction of LTB₄ production as a therapeutic approach.

The biosynthesis of LTB₄ from arachidonic acid (AA) involves the action of three enzymes: phospholipase A_2 (PLA₂), to release AA from the membrane lipids; 5-lipoxygenase (5-LO), to form the unstable epoxide leukotriene A₄ (LTA₄); and leukotriene A₄ hydrolase (LTA₄-h), to form LTB₄.¹² In addition to being the

Keywords: Leukotriene A4; Inhibitor; Crystal structure.

^{*} *Note to the editor:* The atomic coordinates described in this paper have been deposited with the Protein Data Bank.

^{*} Corresponding author. Tel.: +1 805 544 8524x692; fax: +1 805 543 1531; e-mail: Thomas.kirkland@promega.com

^{0968-0896/\$ -} see front matter @ 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmc.2008.03.042

precursor to LTB₄, LTA₄ is a precursor of the pro-inflammatory cysteinyl leukotrienes LTC₄, LTD₄, and LTE₄¹³ via LTC₄ synthase and a precursor of lipoxygenases to give the anti-inflammatory mediators, lipoxins A₄ (LXA₄) and B₄ (LXB₄).¹⁴ Thus the targeting of LTA₄h would leave other immune response pathways intact.

LTA₄-h is a monomeric, soluble 69 kD enzyme.¹⁵ LTA₄-h is a bifunctional zinc-dependent metalloenzyme of the M1 class of metallohydrolases which catalyzes two reactions at the same active site: a stereospecific epoxide hydrolase reaction and a non-specific peptidase reaction. Based on biochemical studies, mutational analysis, and X-ray crystallography,16 the two enzyme-catalyzed reactions are exerted via distinct and yet overlapping active sites.¹⁷ The bifunctional nature of LTA₄-h allows for the determination of inhibition constants using either the hydrolase or peptidase activity using either LTA₄ or L-alanine-p-nitroanilide as substrates, respectively. The differences in the binding and kinetic constants for the two substrates¹⁸ make direct comparison of inhibitor data from the hydrolase and peptidase assays problematic, but comparison of inhibition data within either assay can be used to rank compounds.

High resolution crystal structures of recombinant human LTA₄-h with bound inhibitors have been reported in the literature.¹⁹ The hydroxamic acid 1 ($K_i = 1.6$ nM) bound in a LTA₄-h crystal structure is believed to make many of the same interactions as LTA₄ (Fig. 1). As can be seen in Figure 1, the interaction between LTA₄-h and molecule 1 can be divided into four distinct regions. A hydrophobic pocket containing the two aromatic rings of inhibitor 1 in Figure 1 is the proposed binding site of the long alkyl tail of LTA₄. Just outside the hydrophobic pocket are Glu271 and Gln136 which form a salt bridge with the free amine on 1. The zinc atom which chelates to the hydroxamic acid would bind to the epoxide of LTA₄. Basic residue Arg563, which forms a salt bridge with the terminal carboxylic acid of 1, could make a similar interaction with LTA₄.

Since LTA₄-h is considered a drugg able target with available functional and PD assays, and plays a role in inflammatory diseases,²⁰ several companies have reported programs designed to discover a potent and selective LTA_4 -h inhibitor.^{20b,21} Our goal at the start of the Berlex program was to identify a non-hydroxamic acid containing inhibitor using the peptidase assay. The peptidase assay is more suitable for high-throughput screening than the hydrolase assay and was used during the early stage of the project described here. Compound 2 was identified through high-throughput screening as an inhibitor of the peptidase activity of recombinant human LTA_4 -h (peptidase assay)²² with an IC_{50} of 280 nM. The secondary assay for this project was inhibition of LTB₄ synthesis in human whole blood (the whole blood assay),²³ and compound **2** was weakly active in this assay with a potency of 7 μ M. The whole blood assay gave insights into cell permeability and protein binding, and high potency in this assay was the ultimate goal for inhibitors.

Compound 2 was chemically simple and easy to derivatize, and thus was an attractive lead compound. Following is a description of the efforts to optimize this lead into novel, potent and cell-permeable inhibitors of LTA_4 -h.

2. Chemistry

The synthesis of compounds 2–12 was carried out in the following manner. Compound 2 was synthesized through carbonyl diimidazole (CDI) mediated coupling of 13 and Boc-glycine followed by acidic deprotection (Scheme 1). Coupling of other simple amino acids to benzyloxyaniline was done in a similar manner.

Figure 1. A hydroxamic based inhibitor bond to rhLTA4-h (PDB entry 2VJB). Green is used for the inhibitor's carbon atoms. H-bonds are depicted as green lines. The zinc is displayed as a peach colored sphere that is chelated to His295, His299, and Glu318 (gold atoms). The hydroxamic acid also chelates the zinc and the carboxylic acid forms H-bond with Arg563 (2.6 Å) and Gly268 (2.4 Å).

Scheme 1. General synthesis of amino acid analogs. Reagents and condition: (a) CDI, Boc-Gly, CH₂Cl₂, reflux; (b) TFA, CH₂Cl₂.

Synthesis of aspartic acid and glutamic acid derivatives was accomplished using isobutyl chloroformate (IBC) coupling conditions followed by sequential deprotection as shown for the synthesis of compound **4f** (Scheme 2). The same conditions were used successfully to couple anilines with both the alpha carboxylic acid and the sidechain carboxylic acid. During the process of varying the aniline portion of the lead series, it was found that standard peptide coupling agents such as HATU or EDC/ HOBt were also effective in coupling to glutamic acid derivatives. Initial modification of the glutamic acid portion of **4f** focused on ester and amide derivatives. Some of these derivatives could be synthesized simply by beginning with the appropriate glutamic esters and glutamines (Scheme 2). Amides **11a–e** were synthesized through coupling the appropriate amine with intermediate **14** using EDC/ HOBt conditions, followed by deprotection if necessary.

Replacement of the carboxylic acid of **4f** with a heterocycle was accomplished through the following sequence (Scheme 3). Aminonitrile **15** was synthesized through

Scheme 2. Synthesis of γ -glutamic acid analogs. Reagents and condition: (a) IBC, *N*-methylmorpholine, THF, -20 °C; (b) NaOH, MeOH; (c) TFA, CH₂Cl₂; (d) NH₂R, EDC, HOBt, DMF.

Scheme 3. Synthesis of acid replacement analogs of 4f. Reagents and condition: (a) IBC, *N*-methylmorpholine, THF, -20 °C; (b) cyanuric chloride, DMF; (c) formic hydrazide, K₂CO₃, EtOH; (d) TFA, CH₂Cl₂.

dehydration of the glutamide formed through coupling 4-phenoxyaniline and Boc-Gln, and then conversion to the triazole and deprotection led to compound **12e**.

Other intermediates were used to synthesize extended inhibitors. Reduction of the protected amino ester and sulfonylation provided the versatile mesylate 16 (Scheme 4). This mesylate could be displaced by a variety of heterocycles using similar conditions to those shown for the phthalimide for compound 12h. Deprotection of the amine provided the final class of inhibitors in this series.

3. Results and discussion

The strategy for altering **2** was based on interactions observed in the crystal structure (Fig. 2). The interaction of this compound with the enzyme appears to be mostly hydrophobic, with the two phenyl rings extending into the presumed binding site for the aliphatic chain of LTA_4 .¹⁶ The amine of **2** forms the only direct hydrogen bond (H-bond) to the protein through the carbonyl of Gly269 (2.9 Å). The amine is also the closest inhibitor atom to the active site zinc (5.5 Å) and there are several waters that fill the gap between the two atoms. The initial plan was to probe the binding site through the use of amino acids having hydrophobic, basic, and acidic side chains with the ultimate goal of making a positive interaction with the zinc ion by displacing the water molecules.

Substitution on the glycine portion of 2 with hydrophobic groups was explored first (Table 1). The decrease in the inhibitory activity of analogs with an increase in the size of the hydrophobic group, analogs **3a–c**, confirmed the prediction based on the analysis of Figure 2 that the binding pocket is compact and disfavors non-polar groups. The lack of inhibitory activity with the proline analog 3d can be explained by both the increase in non-polar groups and the loss of a hydrogen bond between LTA₄-h and the secondary amine. Next we explored the glycine analogs with polar side chains with the anticipation of filling the polar pocket and having a positive interaction with the zinc. However, substitution of glycine with an amino acid having a polar side chain, glutamine (Gln, 3e), or a basic side chain, lysine and histamine (Lys and His, 3f-g), or acidic side chain, glutamic acid or aspartic acid (Glu or Asp, 4a-b) all showed reduced activity.

A crystal structure of **4b** bound to the enzyme (Fig. 3) shows the side-chain carboxylic acid interacting with the zinc (2.8 Å), although not within the chelation

Scheme 4. Synthesis of extended analogs of 4f. Reagents and condition: (a) IBC, *N*-methylmorpholine, THF, -20 °C; (b) NaBH₄, MeOH/THF; (c) MsCl, pyridine; (d) potassium phthalimide, DMF; (e) TFA, CH₂Cl₂.

Figure 2. Compound 2 bound to rhLTA₄ (PDB entry 3CHO).

Table 1. Amino acid analogs

 IC_{50} values (nM) are means of at least two independent determinations. ND = Not determined.

sphere (<2.4 A). The loss of potency may be explained by observation that the amine does not form any Hbonds with the protein. This implies that there is an energetic penalty for desolvating the basic amine when it binds to the protein. It was anticipated that simple modifications of these Glu and Asp derivatives would improve interactions with the protein and increase the binding affinity.

Following this logic, we explored the orientation of the amine group using D-Glu and D-Asp (4c-d) without

improvement in potency (Table 2). Shifting the position of the amino substitution on the chain by coupling to the aniline through the side-chain carboxylic acid provided a breakthrough. Compound **4f** was 40 times more potent than **4a**, and over 10 times more potent than our lead compound **2**. The specificity of the binding was shown with the decrease in potency by shortening the carbon chain, **4e**, or inverting the configuration at the amino group, **4g**.

Examining the crystal structure of **4f** gives some rationale for this potency increase (Fig. 4). The carboxylic acid binds to the zinc (2.1 Å) and becomes the fourth member of the chelation sphere. The carboxylic acid also forms H-bonds to the side chains of Glu296 (2.6 Å) and Tyr383 (2.8 Å), two residues that have been shown to be catalytically active.¹⁶ In addition, the amine forms H-bonds to Gln136 (2.7 Å) and Glu271 (2.9 Å). A similar interaction was observed with the free amine in the hydroxamic acid based inhibitor of LTA4-h (Fig. 1). Based on the proposed model of the enzyme's peptidase activity,¹⁷ the glutamic acid portion of **4f** fills the same pocket as the N-terminal residue of the substrate peptide.

However, compound 4f was 400-fold less active in the whole blood assay than in the peptidase assay. There are many possible reasons for this significant drop in activity, but lack of cell permeability caused by the zwitterionic nature of the alpha amino acid was considered the most likely. With the interaction between the zinc and carboxylic acid observed in the crystal structure, we felt the amino group might not be critical for binding of the inhibitor. However, the simple carboxylic acid, 5, was completely inactive in the peptidase assay (Table 3). Analogs of 4f, both ester 6a or 6b and amide 6c have similar activity to 4f in the peptidase assay but are significantly more potent than 4f in the whole blood activity. The hydroxamic acid **6d** has a similar profile. The potency difference in the whole blood assay can be attributed to an improvement in cell permeability of the ester and amide analogs over the zwitterion 4f, but the similar potency in the peptidase assay suggests that the amides and esters are cleaved by LTA₄-h during binding. Unfortunately due to technical difficulties, we were unable to confirm that analogs **6a–d** are acting as pro-drugs and more importantly if binding of the acid to the zinc is critical for potency.

Removal of the carboxylic acid from **4f** yielded **7a** which is threefold less potent in the peptidase assay, but 20fold more potent in the whole blood assay than **4f**. As can be seen in Figure 5, the crystal structure **7a** with LTA4-h can be superimposed on the corresponding structure with **4f** with the exception for chelation to the zinc. In retrospect, the minimal increase in binding affinity associated with the carboxylic acid to zinc interaction is consistent with the fact that a free carboxylic acid is the product of LTA₄-h acting as a peptidase. According to the Circe effect,²⁴ the enzyme is designed to have reduced affinity for the products versus the reactants. The relative unimportance of the carboxylic acid to binding affinity has been observed earlier.²⁵ For our

Figure 3. Compound 4b bound to rhLTA4-h (PDB entry 3CHP).

Table 2. Glu/Asp analogs

 IC_{50} values (nM) are means of at least two independent determinations. ND = Not determined.

inhibitors, the carboxylic acid of 4f appears to be tolerated, but it does not noticeably improve binding. The significant decrease in affinity upon the addition of one or two methyl groups to the amine (7b-c) can be explained by the loss of a hydrogen bond, but modeling

With the glutamic acid on the right side of the molecule, we explored modification to the arvl region (Table 4). For this set of analogs, no significant difference in potency in the peptidase assay was observed between the corresponding primary amide, the ester or the carboxvlic acid. Removal of the benzyl group, 8a, or removal of a flexible tether, 8b, gave inactive analogs. Substitution of pyridine for benzene, 8d, or changing the substitution pattern on the central ring to meta, 8c, resulted in a significant loss in potency. The linker between the two aryl groups could be shortened to an oxygen, 8e, or carbon, 8f, without loss in potency. A secondary amine, 8g, was tolerated as a linker but not a tertiary amine, 8h. Lengthening the tether to a three or four atom chain (8i-j) or placing substituents on the tether (8k-l) was tolerated.

The deep, relatively narrow pocket accessed by these flexible, hydrophobic moieties was predicted from the crystal structure. As shown in the structure of **81** (Fig. 6), the second aromatic unit simply extends down into the pocket of the enzyme. This pocket is believed to bind the long hydrophobic tail of the natural substrate LTA_4 ,¹⁷ and the best binding results were always achieved with hydrophobic residues in this region that possessed some flexibility.

For analogs of the terminal aryl group, the simple ether linkage was preferred for its potency and ease of synthesis (Table 5). Changing the terminal aryl group to an alkyl group such as methyl or cyclohexyl (9a-b) removed potency altogether. A methyl scan on the terminal phenyl ring (9c-e) showed that ortho and meta substituents reduced activity, while the para substituent was well tolerated. Introduction of heterocyclic substituents in the para position such as pyrrole or furan (9f-g) is tolerated, but does not improve the potency relative to the simple phenoxyphenyl substitution (8e). There was a potency difference in the WBA.

With the selection of the phenoxyphenyl group on the left-hand side, modification of the glutamic acid portion

Figure 4. The rhLTA4/4f crystal structure (PDB entry 3CHQ).

Table 3. Initial acid modification

Number	\mathbf{R}^1	\mathbf{R}^2	Peptidase IC ₅₀	WBA IC ₅₀
4f	CO ₂ H	NH ₂	20	8000
5	CO_2H	Н	>18,000	ND
6a	CO ₂ Me	NH ₂	39	48
6b		NH ₂	60	27
6с	NH ₂	NH ₂	23	85
6d	O N H OH	NH ₂	25	130
7a	Н	NH_2	61	380
7b	Н	NHMe	11,000	>10,000
7c	Н	NMe ₂	9400	ND

 IC_{50} values (nM) are means of at least two independent determinations. ND = Not determined.

of **8e** was investigated. The initial goal was to extend the inhibitor in order to make a strong interaction with Arg563. This interaction was intended to mimic the natural interaction of LTA₄ with this amino acid, and the interaction is shown clearly with the structure of hydroxamic acid **1** with LTA₄-h in Figure 1. Modifying compound **8e** by extending the acid one carbon gave **10**, the most potent compound in the peptidase assay (Table 6). However, the carboxylic acid is still interacting with the zinc rather than the arginine according to the crystal structure (not shown PDB entry XXX7).

Seeking a simple way to further separate the carboxylic acid from the hydrophobic tail, a series of amido acids was synthesized (**11a–c**). Although these compounds were all potent in the primary assay, they were uniformly weak in the whole blood assay. In addition, no change in potency was observed on variation of the chain length, a clear sign that no specific interaction was being made with the terminal acid. Furthermore, none of these compounds were more potent than our benchmark compound, **8e**, in either assay. Even more compelling, replacing the carboxylic acid with a hydroxyl group (**11d**) or an amine (**11e**) provided compounds that were equipotent. Once again, these compounds could all be pro-drugs, in which the amide bond is

Figure 5. 7a (cyan atoms) superimposed on the crystal structure of 4f (green atoms) bound to rhLTA4-h (PDB entries 3CHR and 3CHQ, respectively).

Table 4. Central ring and aryl tether modifications

$R^1 N H^2$				
Number	R ¹	R^2	Peptidase IC ₅₀	WBA IC ₅₀
4f		CO ₂ H	20	8000
8a		O NH ₂	>18,000	ND
8b		O NH ₂	9700	ND
8c		CO ₂ Me	730	1300
8d	O N	O NH ₂	2600	ND
8e		CO ₂ H	19	3300
8f		O NH ₂	21	110
8g	C H C	CO ₂ H	210	180
8h	Me	CO ₂ Me	8000	ND
8i		CO ₂ H	46	>10,000
8j		CO ₂ H	31	>10,000
8k		CO ₂ H	18	>10,000
81	OH OH	CO ₂ H	17	>10,000

 IC_{50} values (nM) are means of at least two independent determinations. ND = Not determined.

Figure 6. The rhLTA4-h/8l complex (PDB entry 3CHS). The view emphasizes the hydrophobic pocket that binds the aromatic rings of the inhibitors. The figure includes several residues that were omitted from previous figures in order to simplify the view. These include Ala137, Trp311, and Tyr378.

Table 5. Terminal aromatic ring modifications

 IC_{50} values (nM) are means of at least two independent determinations. ND = Not determined.

cleaved by LTA_4 -h resulting in the formation of **8e**. Compound **11d** even had excellent whole blood potency, a property not shared by any of the extended acids. Therefore, attempts to make a positive interaction with Arg563 with a terminal carboxylic acid were abandoned.

Instead, attention was turned to replacing the carboxylic acid in order to improve the whole blood potency. It was

Table 6. Attempts to extend the acid

ZK Number	R	Peptidase IC ₅₀	WBA IC ₅₀
8e	CO ₂ H	19	3300
10	∕_CO₂H	6	7000
11a	H,_CO₂H O	22	>1000
11b		17	3400
11c	M O CO ₂ H	19	>1000
11d	Ч М ОН	20	72
11e		22	3100

 IC_{50} values (nM) are means of at least two independent determinations. ND = Not determined.

felt that removing the zwitterionic character of these compounds would improve their cell permeability, and thus bring the whole blood potency closer to the peptidase potency. This theory was supported by the high whole blood activity of esters and amides such as compound **6b**. Converting the carboxylic acid to a primary alcohol (**12a**) or an amine (**12b**) provided some of the most potent compounds in the whole blood assay (Table 7). However, a compound with a methoxy group in this position (**12c**) had low activity in the peptidase assay, perhaps due to the lack of a hydrogen donating group. The sulfonic acid analog of compound **10** (**12d**) was a Table 7. Attempts to replace the acid

Number	R	Peptidase IC ₅₀	WBA IC ₅₀
12a	∕∩н	14	110
12b	MH ₂	21	440
12c	ОМе	5600	ND
12d	∕SO3H	130	>10,000
12e		740	2000
12f	S N-N N-N	350	ND
12g		390	ND
12h		85	7000

 IC_{50} values (nM) are means of at least two independent determinations. ND = Not determined.

relatively potent compound, but had no activity in whole blood. A number of heterocyclic replacements for the acid were also synthesized (12e-h). However, all of these compounds had lower activity than the simple hydroxyl or amine containing compounds.

4. Conclusion

A series of glutamic acid based compounds that are potent inhibitors of LTA₄-h has been identified. Starting from the weakly active HTS hit **2**; compound **4f** was identified with excellent activity in the primary peptidase assay. The poor activity of this compound in the secondary whole blood assay was believed to be caused by poor cell permeability. Several derivatives of this compound were quite active in suppressing LTB₄ production in whole blood, particularly the amino alcohol **12a** and the *tert*-butyl ester **6b**.

5. Experimental

5.1. Biological methods

5.1.1. Peptidase assay. This assay was modified from the previously described protocol²⁰ as described: Compound potency against the peptidase activity of LTA4

hydrolase was measured by inhibition of the hydrolysis of L-alanine-p-nitroanilide to L-alanine and highly colored nitroaniline. In brief, LTA₄-h (29 nM) was incubated with L-alanine-*p*-nitroanilide $(1 \text{ mM} = K_m)$ in 50 mM HEPES (pH 7.5), 100 mM KCl, 1% DMSO in the absence or presence of test compound for 1 h at ambient temperature. Eight concentrations (at 1:3.16 dilution) of test compound were run for IC50 determination. Reaction was terminated by addition of acetic acid (final concentration 1%). Formation of colored nitroaniline was measured by the increase in absorbance at 405 nm in a Victor 2 plate reader (Wallac). Spontaneous hydrolysis of the substrate was corrected for by subtracting the absorbance of control incubations without enzyme. A standard compound was included in each assay plate. The IC₅₀ values were determined from dose-response curves by non-linear fit of data to the 4-parameter fit equation. At least two independent determinations were made for each IC₅₀ value.

5.1.2. Whole blood assay. The whole blood assay was performed as described previously.²¹

5.1.3. Crystallography. The protein was purified and crystallized according to the previously established protocols.¹⁶ Protein crystallization was performed in melting point capillaries using liquid-liquid diffusion. Shortly for this $5 \,\mu\text{L}$ protein $5 \,\text{mg/mL}$ in 10 mm Tris buffer, pH 7.5 was layered on top of 5 µL precipitate solution containing 28% (w/v) polyethylene glycol (MW 8000), 100 mM imidazole pH 7.2 and 5 mM YbCl3. Capillaries were closed and equilibrated at room temperature. Plate-like crystals appear within one to three weeks. The space group of these crystals is $P2_12_12$ with cell dimensions a = 67 Å, b = 133 Å, and c = 84 Å. The inhibitors were introduced to the crystals by using soaking experiments. The synthesized compounds were dissolved in 100% DMSO to make stock solutions with a concentration of 10 mM or 20 mM. The crystals were soaked overnight in 1 mM inhibitor. 10 or 5% DMSO, 50 mM imidazole, pH 7.2 and 2.5 mM YbCl3. The soaking solution was refreshed three times.

Data for the several inhibitor-LTA₄h complexes were collected at stations I711 or I911-2 at the MaxLab synchrotron, Lund Sweden. Prior to data collection crystals were briefly soaked in 1 mM inhibitor, 10 or 5% DMSO, 50 mM imidazole pH 7.2, 2.5 mM YbCl₃ and 25% glycerol and flash cooled in a cooled nitrogen gas-stream at 100 K. Data were collected on a 165 mm Mar-research CCD detector at 100 K. Data processing was done by using Mosflm²⁶ and subsequent scaling and merging of the data were performed by using programs from the CCP4 software package.²⁷ Coordinates were refined using Refmac²⁸ using the LTA4-h bestatin complex (PDB entry 1HS6) as a starting model with water molecules and inhibitor removed but not the coordinates for the co-crystallized Yb ions or a bound imidazole molecule. In each case about 2000 reflections were used for monitoring $(R_{\rm free})$ during the refinement cycles. Dictionaries for the different inhibitors were created using the 'monomer library sketcher' in the CCP4 suite. Water

Table 8. Crystallographic data and refinement statistics

Compound	2	4b	4f	7a	8i
A (Å)	67.37	67.77	67.23	67.35	67.62
B (Å)	133.18	133.57	133.26	133.21	133.27
C(Å)	84.18	83.63	84.59	83.10	83.64
Resolution (Å)	1.8	2.1	2.09	2.2	2.55
Completeness %	99.1 (99.6)	99.8 (99.8)	99.7 (99.8)	99.6 (99.6)	99.9 (100)
R_{merge} (%)	5.8 (25.2)	5.1 (27.5)	8.2 (30.6)	7.1 (33.2)	6.9 (30.9)
Ι/σΙ	10.4 (2.9)	11.0 (2.4)	13.1 (4.4)	6.9 (2.0)	
Multiplicity	3.9 (3.7)	4 (3.8)	3.6 (3.7)	4.1 (3.9)	
R_{factor} (%)	18.81	23.2	20.6	20.68	21.12
$R_{\rm free}$ (%)	22.32	27.8	24.0	26.69	24.75
Rsmd bonds (Å)	0.014	0.007	0.005	0.015	0.008
Rsmd angles (°)	1.68	0.80	0.80	1.41	1.05
No. of water molecules	541	430	344	360	68

molecules were added by using Arp/wArp.²⁹ Manual model building as well as interpretation of electron density maps was performed using the program XtalView (McRee, 1999).³⁰ Details on the processing and refinement of the data can be found in Table 8. The occupancies of the various inhibitors were judged by a comparison between the B-factors of the inhibitors and those of the surrounding protein atoms.

5.2. Chemistry

5.2.1.2-Amino-N-[4-(phenylmethoxy)phenyl]-acetamide (2). To a solution of Boc-Gly (6.7 g, 29 mmol) in CH₂Cl₂ was added carbonyl diimidazole (4.6 g, 1 equiv). After stirring for 1 h, 4-benzyloxyaniline hydrochloride (5 g, 1 equiv) was added and the reaction was heated to reflux. After 16 h, the reaction was brought to room temperature, washed with K_2CO_3 (satd aq), dried and concentrated to give a brown solid. This crude product was dissolved in CH₂Cl₂ and TFA (10 equiv) was added. After stirring for 16 h, solvent was removed and the residue was partitioned between NaOH (1 M aq) and CH₂Cl₂. The layers were separated, the aqueous layers were extracted with $2 \times CH_2Cl_2$, and the combined organic layers were dried and concentrated. The resulting brown solid was recrystallized from EtOAc/hexanes to provide 2 (2.1 g, 29%) as a white solid: ¹H NMR (400 MHz, CDCl₃) δ 9.23 (s, 1 H), 7.49 (dt, $J_1 = 9.2$ Hz, $J_2 = 2.4$ Hz, 2H), 7.42–7.30 (m, 5H), 6.93 (dt, $J_1 = 8.8$ Hz, $J_2 = 2.4$ Hz, 2H), 5.03 (s, 2H), 3.44 (s, 2H); Anal. (C₁₅H₁₆N₂O₂) C, H, N.

5.2.2. 2S-2-Amino-*N***-[4-(phenylmethoxy)phenyl]-propanamide hydrochloride (3a).** The synthesis of **3a** was carried out in an analogous manner to **2** using Boc-Ala and deprotection with 4 M hydrogen chloride in dioxane: ¹H NMR (400 MHz, DMSO- d_6) δ 10.51 (s, 1H), 8.25 (br s, 2H), 7.51 (dt, $J_1 = 9.1$ Hz, $J_2 = 3.3$ Hz, 2H), 7.41 (dd, $J_1 = 8.5$ Hz, $J_2 = 1.9$ Hz, 2H), 7.36 (t, J = 7.0 Hz, 2H), 7.29 (tt, $J_1 = 7.0$ Hz, $J_2 = 1.4$ Hz, 1H), 6.97 (dt, $J_1 = 8.8$ Hz, $J_2 = 3.7$ Hz, 2H), 5.04 (s, 2H), 3.98 (q, J = 7.3 Hz, 1H), 1.42 (d, J = 6.9 Hz, 3H); Anal. (C₁₆H₁₈N₂O₂·1HCl) C, H, N, Cl.

5.2.3. 2*S*,3*S*-2-Amino-3-methyl-*N*-[4-(phenylmethoxy)-phenyl]pentanamide (3b). The synthesis of 3b was carried out in an analogous manner to 2 using Boc-Ile: ¹H NMR (400 MHz, DMSO- d_6) δ 7.50 (dt, $J_1 = 9.1$ Hz,

 $J_2 = 3.7$ Hz, 2 H), 7.40 (dd, $J_1 = 8.4$ Hz, $J_2 = 1.8$ Hz, 2H), 7.35 (t, J = 6.9 Hz, 2H), 7.29 (tt, $J_1 = 6.9$ Hz, $J_2 = 2.9$ Hz, 1 H), 6.92 (dt, $J_1 = 9.2$ Hz, $J_2 = 3.3$ Hz, 2 H), 5.03 (s, 2H), 3.06 (d, J = 5.8 Hz, 1H), 1.75 (br s, 1H), 1.63–1.58 (m, 1H), 1.49–1.41 (m, 1H), 1.12–1.06 (m, 1H), 0.84 (d, J = 6.9 Hz, 3H), 0.80 (t, J = 7.3 Hz, 3H); Anal. (C₁₉H₂₄N₂O₂) C, H, N.

5.2.4. 2S-2-Amino-*N***-[4-(phenyImethoxy)phenyI]benzenepropanamide hydrochloride (3c).** The synthesis of **3c** was carried out in an analogous manner to **2** using Boc-Phe and deprotection with 4 M hydrogen chloride in dioxane: ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.41 (s, 1H), 8.01 (br s, 2 H), 7.41 (dt, *J*₁ = 8.8 Hz, *J*₂ = 3.7 Hz, 4H), 7.36 (tt, *J*₁ = 7.0 Hz, *J*₂ = 1.8 Hz, 2H), 7.32–7.19 (m, 6H), 6.95 (dt, *J*₁ = 9.1 Hz, *J*₂ = 2.2 Hz, 2H), 5.03 (s, 2H), 4.09 (t, *J* = 7.3 Hz, 1H), 3.12 (dd, *J*₁ = 13.6 Hz, *J*₂ = 6.2 Hz, 1H), 3.04 (dd, *J*₁ = 13.5 Hz, *J*₂ = 7.3 Hz, 1H); Anal. (C₂₂H₂₂N₂O₂:0.4 H₂O·1HCl) C, H, N, Cl.

5.2.5. 2*S*-*N*-[4-(Phenylmethoxy)phenyl]-2-pyrrolidinecarboxamide hydrochloride (3d). The synthesis of 3d was carried out in an analogous manner to 2 using Boc-Pro and deprotection with 4 M hydrogen chloride in dioxane: ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.61 (s, 1H), 7.50 (dt, *J*₁ = 9.1 Hz, *J*₂ = 3.3 Hz, 2H), 7.41 (dd, *J*₁ = 8.4 Hz, *J*₂ = 1.8 Hz, 2H), 7.36 (t, *J* = 7.0 Hz, 2H), 7.29 (tt, *J*₁ = 7.0 Hz, *J*₂ = 2.9 Hz, 1H), 6.98 (dt, *J*₁ = 9.1 Hz, *J*₂ = 3.3 Hz, 2H), 5.05 (s, 2H), 4.29 (t, *J* = 7.0 Hz, 1H), 3.26–3.17 (m, 1H), 2.39–2.32 (m, 1H), 1.94–1.86 (m, 4H); Anal. (C₁₈H₂₀N₂O₂·1HCl) C, H, N, Cl.

5.2.6. N^{1} -[4-(Phenylmethoxy)phenyl]-L-glutamamide hydrochloride (3e). The synthesis of 3e was carried out in an analogous manner to 2 using Boc-Gln and deprotection with 4 M hydrogen chloride in dioxane: ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.63 (s, 1H), 8.36 (br s, 2H), 7.52 (dt, $J_1 = 9.2$ Hz, $J_2 = 3.3$ Hz, 2 H), 7.46 (br s, 1H), 7.42 (d, J = 6.6 Hz, 2H), 7.36 (t, J = 7.3 Hz, 2H), 7.30 (tt, $J_1 = 7.4$ Hz, $J_2 = 2.6$ Hz, 1H), 6.98 (dt, $J_1 = 9.1$ Hz, $J_2 = 3.3$ Hz, 2H), 5.06 (s, 2H), 3.96 (br s, 1H), 2.21 (t, J = 7.7 Hz, 2H), 2.06–1.96 (m, 2H); Anal. (C₁₈H₂₁N₃O₃·0.9H₂O·1.5HCl) C, H, N, Cl.

5.2.7. 2S-2-Amino-N-[4-(phenylmethoxy)phenyl]-3-[4-(1Himidazole)]propanamide dihydrochloride (3f). The synthesis of 3f was carried out in an analogous manner to 2 using Boc-His and deprotection with 4 M hydrogen chloride in dioxane: ¹H NMR (400 MHz, DMSO- d_6) δ 10.81 (s, 1H), 8.99 (s, 1H), 8.55 (br s, 2H), 7.49 (d, J = 8.8 Hz, 2H), 7.41 (dt, $J_1 = 6.8$ Hz, $J_2 = 1.6$ Hz, 2H), 7.37 (tt, $J_1 = 7.2$ Hz, $J_2 = 1.6$ Hz, 2H), 7.30 (tt, $J_1 = 7.2$ Hz, $J_2 = 2.8$ Hz, 1H), 6.98 (dt, $J_1 = 9.2$ Hz, $J_2 = 2.4$ Hz, 2H), 5.05 (s, 2H), 4.37 (br s, 1H), 3.32–3.20 (m, 2H); Anal. (C₁₉H₂₀N₄O₂·0.4H₂O·2HCl) C, H, N, Cl.

5.2.8. 2S-2,6-Diamino-N-[4-(phenylmethoxy)phenyl]hexanamide dihvdrochloride (3g). To a solution of Diboc-Lys (1.7 g, 5 mmol) and N-methylmorpholine (1.1 mL, 2 equiv) in THF (10 mL) at -20 °C was added isobutyl chloroformate (0.65 mL, 1 equiv). After stirring at this temperature for 30 min, 4-benzyloxyaniline (1 g, 1 equiv) was added and the turbid reaction was allowed to warm to room temperature over 16 h. The reaction was filtered and concentrated. The residue was dissolved in EtOAc, washed with NaHSO₄ (satd aq), NaHCO₃ (satd aq) and brine, dried and concentrated. The crude coupled product was dissolved in CH2Cl2 and HCl (4 M in dioxane, 10 equiv) was added. After stirring for 24 h, solvent was removed. The resulting pink solid was washed with EtOAc/MeOH (4:1) to provide pure 3g (10%) as a white solid: ${}^{1}H$ NMR (400 MHz, DMSO-d₆) δ 10.76 (s, 1H), 8.36 (br s, 2H), 7.92 (br s, 2H), 7.55 (d, d, J = 8.8 Hz, 2H), 7.41 (d, J = 6.8 Hz, 2H), 7.37 (tt, $J_1 = 6.8$ Hz, $J_2 = 1.2$ Hz, 2H), 7.30 (tt, $J_1 = 7.2$ Hz, $J_2 = 1.6$ Hz, 1H), 6.98 (d, J = 9.2 Hz, 2H), 5.05 (s, 2H), 3.97 (br s, 1H), 2.74 (br s, 2H), 1.87-1.75 (m, 2H), 1.60–1.53 (m, 2H), 1.43–1.35 (m, 2H); Anal. (C₁₉H₂₅N₃O₂·0.6 EtOAc·2HCl) C, H, N, Cl.

5.2.9. N^{1} -[4-(Phenylmethoxy)phenyl]-L-glutamine trifluoroacetate (4a). To a solution of Boc-Glu(OBn)-OH (1.7 g, 5 mmol) and N-methylmorpholine (1.1 mL, 2 equiv) in THF (10 mL) at -20 °C was added isobutyl chloroformate (0.65 mL, 1 equiv). After stirring at this temperature for 30 min, 4-benzyloxyaniline (1 g. 1 equiv) was added and the turbid reaction was allowed to warm to room temperature over 16 h. The reaction was filtered and concentrated. The residue was dissolved in EtOAc, washed with NaHSO₄ (satd aq), NaHCO₃ (satd aq) and brine, dried and concentrated. The coupled product was dissolved in MeOH and NaOH (1 M, aq) was added. After stirring for 24 h, the solvent was removed and the residue was partitioned between CH₂Cl₂ and NaHSO₄ (satd aq) and the layers were separated. The aqueous layers were extracted with 2× CH₂Cl₂ and the combined organic layers were dried (MgSO₄) and concentrated to give the free carboxylic acid. This acid was dissolved in CH₂Cl₂ and TFA (10 equiv) was added. After stirring for 4 days, solvent was removed. The resulting residue was purified by reverse phase HPLC using a gradient of MeCN in water to provide pure 4a (13%) as a white solid: ¹H NMR (400 MHz, DMSO- d_6) δ 6.66 (d, J = 7,6 Hz, 2H), 6.62– 6.58 (m, 2H), 6.54 (t, J = 7.6 Hz, 2H), 6.50–6.46 (m, 1H), 6.16 (d, J = 8.0 Hz, 2H), 4.26 (s, 2H), 3.19 (t, J = 6.4 Hz, 1H), 1.71 (t, J = 7.2 Hz, 2H), 1.40(hp, J =7.2 Hz, 2H); Anal. $(C_{18}H_{20}N_2O_4 \cdot 0.22H_2O \cdot 1.1CF_3)$ CO₂H) C, H, N, F.

5.2.10. N^{1} -[4-(Phenylmethoxy)phenyl]-L-aspartamine trifluoroacetate (4b). Synthesis of 4b was carried out in an analogous manner to 4a using Boc-Asp(OMe)-OH: ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.09 (s, 1H), 8.21 (br s, 2H), 7.45 (d, *J* = 9.2 Hz, 2H), 7.42–7.34 (m, 4H), 7.30 (t, *J* = 6.8 Hz, 1H), 6.95 (d, *J* = 9.2 Hz, 2H), 5.04 (s, 2H), 4.24 (br s, 1H), 2.96–2.82 (m, 2H); Anal. (C₁₇H₁₈N₂O₄·1.05CF₃CO₂H) C, H, N, F.

5.2.11. N^{1} -[4-(Phenylmethoxy)phenyl]-D-glutamine trifluoroacetate (4c). Synthesis of 4c was carried out in an analogous manner to 4a using D-Boc-Glu(OBn)-OH: ¹H NMR (400 MHz, DMSO- d_{6}) δ 10.31 (s, 1H), 8.20 (br s, 2H), 7.47 (d, J = 8.8 Hz, 2H), 7.43 (t, J = 7.2 Hz, 2H), 7.37 (t, J = 8.0 Hz, 2H), 7.31 (t, J = 6.8 Hz, 1H), 6.99 (d, J = 8.8 Hz, 2H), 5.06 (s, 2H), 3.89 (br s, 1H), 2.34 (t, J = 6.4 Hz, 2H), 2.05–2.00 (m, 2H); Anal. (C₁₈H₂₀N₂O₄·0.5H₂O·1.2CF₃CO₂H) C, H, N, F.

5.2.12. N^{1} -[4-(Phenylmethoxy)phenyl]-D-aspartamine (4d). Synthesis of 4d was carried out in an analogous manner to 4a using Boc-Asp(OBn)-OH: ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.04 (s, 1H), 8.19 (br s, 2H), 7.48–7.36 (m, 4H), 7.28 (t, *J* = 7.6 Hz, 2H), 7.23 (t, *J* = 8.4 Hz, 1H), 6.93 (d, *J* = 7.6 Hz, 2H), 5.02 (s, 2H), 4.24–4.20 (m, 1H), 2.93–2.88 (m, 2H); Anal. (C₁₇H₁₈N₂O₄·0.2CF₃CO₂H) C, H, N, F.

5.2.13. N^4 -[4-(Phenylmethoxy)phenyl]-L-aspartamine trifluoroacetate (4e). Synthesis of 4e was carried out in an analogous manner to 4a using Boc-Asp(OH)-OBn: ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.09 (s, 1H), 8.22 (br s, 2H), 7.45 (d, *J* = 8.8 Hz, 2H), 7.40 (t, *J* = 6.8 Hz, 2H), 7.36 (t, *J* = 7.2 Hz, 2H), 7.30 (t, *J* = 6.8 Hz, 1H), 6.95 (d, *J* = 8.8 Hz, 2H), 5.04 (s, 2H), 4.24 (br s, 1H), 2.96–2.85 (m, 2H); Anal. (C₁₇H₁₈N₂O₄·1.15CF₃CO₂H) C, H, N, F.

5.2.14. N^5 -[4-(Phenylmethoxy)phenyl]-L-glutamine hemitrifluoroacetate (4f)

5.2.14.1. Step 1: Preparation of N^2 -[(1,1-dimethylethoxy)carbonyl]- \overline{N}^5 -[4-(phenylmethoxy)phenyl]-L-glutamine (14). To a solution of Boc-Glu(OH)-OBn (3.5 g, 10 mmol) and N-methylmorpholine (2.2 mL, 2 equiv) in THF (20 mL) at -20 °C was added isobutyl chloroformate (1.2 mL, 1 equiv). After stirring at this temperature for 30 min, 4-benzyloxyaniline (2 g, 1 equiv) was added and the turbid reaction was allowed to warm to room temperature for over 16 h. The reaction was filtered and concentrated. The residue was dissolved in EtOAc, washed with NaHSO₄ (satd aq), NaHCO₃ (satd aq) and brine, dried, and concentrated. The coupled product was dissolved in MeOH and NaOH (1 M, aq) was added. After stirring for 24 h, the solvent was removed and the residue was partitioned between CH₂Cl₂ and NaHSO₄ (satd aq) and the layers were separated. The aqueous layers were extracted with $2 \times CH_2Cl_2$ and the combined organic layers were dried (MgSO₄) and concentrated. The residue was recrystallized from EtOAc/hexanes to provide compound 14 (56%) as a pale pink solid: ¹H NMR (400 MHz, DMSO- d_6) δ 9.73 (s, 1H), 7.45 (d, J = 9.1 Hz, 2H), 7.41 (d, J = 6.6 Hz, 2H), 7.36 (t, J = 7.0 Hz, 2H), 7.29 (tt, $J_1 = 6.9$ Hz,

 $J_2 = 2.5$ Hz, 1H), 7.08 (d, J = 8.1 Hz, 1H), 6.91 (dt, $J_1 = 9.1$ Hz, $J_2 = 2.2$ Hz, 2H), 5.03 (s, 2H), 3.92–3.86 (m, 1H), 2.33 (t, J = 7.6 Hz, 2H), 2.03–1.95 (m, 1H), 1.82–1.74 (m, 1H), 1.35 (s, 9H).

5.2.14.2. Step 2: Preparation of N^5 -[4-(phenylmethoxy)phenyl]-L-glutamine hemitrifluoroacetate (4f). Compound 14 was slurried in CH₂Cl₂ and TFA (10 equiv) was added to give a clear solution. After stirring for 16 h, solvent was removed. The resulting oil was triturated with EtOAc/hexanes and washed with MeOH to provide pure 4f (69%) as a white solid: ¹H NMR (400 MHz, DMSO-d₆) δ 9.82 (s, 1H), 8.22 (d, J = 4.4 Hz, 2H), 7.44 (dt, $J_1 = 9.2$ Hz, $J_2 = 2.0$ Hz, 2H), 7.37 (d, J = 6.8 Hz, 2H), 7.31 (t, J = 6.8 Hz, 2H), 7.24 (t, J = 7.2 Hz, 1H), 6.88 (d, J = 8.8 Hz, 2H), 5.00 (s, 2H), 3.96–3.90 (m, 1H), 2.54–2.39 (m, 2H), 2.06 (hp, J = 7.6 Hz, 2H); Anal. (C₁₈H₂₀N₂O₄·1H₂O·0.5CF₃CO₂H) C, H, N, F.

5.2.15. N^5 -[4-(Phenylmethoxy)phenyl]-D-glutamine hydrochloride (4g). Synthesis of 4g was carried out in an analogous manner to 4a using D-Boc-Glu(OH)-OBn and deprotection with 4 M hydrogen chloride in dioxane: ¹H NMR (400 MHz, DMSO- d_6) δ 9.95 (s, 1H), 8.33 (s, 2H), 7.46 (dt, $J_1 = 9.2$ Hz, $J_2 = 2.0$ Hz, 2H), 7.42–7.4 (m, 2H), 7.38–7.34 (m, 2H), 7.29 (tt, $J_1 = 7.6$ Hz, $J_2 = 1.2$ Hz, 1H), 6.92 (dt, $J_1 = 8.8$ Hz, $J_2 = 3.6$ Hz, 2H), 5.03 (s, 2H), 3.91 (t, J = 6.4 Hz, 1H), 2.56–2.39 (m, 2H), 2.11–1.96 (m, 2H); Anal. (C₁₈H₂₀N₂O₄·0.5H₂O·0.9HCl) C, H, N, Cl.

5.2.16. 5-Oxo-5-[[4-(phenylmethoxy)phenyl]amino]pentanoic acid (5). Synthesis of 5 was carried out in an analogous manner to 14 using monomethyl glutaric acid: ¹H NMR (400 MHz, DMSO- d_6) δ 9.72 (s, 1H), 7.45 (d, J = 9.2 Hz, 2H), 7.41 (d, J = 6.8 Hz, 2H), 7.36 (tt, $J_1 = 6.8$ Hz, $J_2 = 1.2$ Hz, 2H), 7.30 (tt, $J_1 = 7.2$ Hz, $J_2 = 1.6$ Hz, 1H), 6.91 (d, J = 9.2 Hz, 2H), 2.28 (t, J = 7.2 Hz, 2H), 2.24 (t, J = 7.6 Hz, 2H), 1.76 (tt, $J_1 =$ 8.0 Hz, $J_2 = 7.2$ Hz, 2H); Anal. (C₁₈H₁₉NO₄·0.1H₂O) C, H, N.

5.2.17. N^5 -[4-(Phenylmethoxy)phenyl]-L-glutamine methyl ester hydrochloride (6a)

5.2.17.1. Step 1: Synthesis of N^2 -[(1,1-dimethylethoxy)carbonyl]-N⁵-[4-(phenylmethoxy)phenyl]-L-glutamine methyl ester (17). To a solution of Boc-Glu(OH)-OMe (1.7 g, 5 mmol) and N-methylmorpholine (1.1 mL, 2 equiv) in THF (20 mL) at -20 °C was added isobutyl chloroformate (0.65 mL, 1 equiv). After stirring at this temperature for 30 min, 4-benzyloxyaniline (1 g, 1 equiv) was added and the turbid reaction was allowed to warm to room temperature for over 16 h. The reaction was filtered and concentrated. The residue was dissolved in EtOAc, washed with NaHSO₄ (satd aq), NaHCO₃ (satd aq) and brine, dried and concentrated. The resulting solid was recrystallized from EtOAc/hexanes to provide compound 17 (54%) as a white solid: ¹H NMR (400 MHz, DMSO- d_6) 9.73 (s, 1H), 7.45 (d, J = 9.2 Hz, 2H), 7.41 (d, J = 7.0 Hz, 2H), 7.36 (t, J = 7.3 Hz, 2H), 7.31–7.26 (m, 1H), 6.91 (dt, $J_1 = 9.2$ Hz, $J_2 = 3.3$ Hz, 2H), 5.03 (s, 2H), 4.00-3.95 (m, 1H), 3.60 (s, 3H), 2.33 (t, *J* = 7.3 Hz, 2H), 2.03–1.96 (m, 1H), 1.83–1.75 (m, 1H), 1.35 (s, 9H).

5.2.17.2. Step 2: Synthesis of N^5 -[4-(phenylmethoxy)phenyl]-L-glutamine methyl ester hydrochloride (6a). Compound 17 was slurried in CH₂Cl₂ and HCl (4 M in dioxane, 10 equiv) was added to give a clear solution. After stirring for 16 h, solvent was removed. The resulting solid was washed with EtOAc/MeOH (4:1) to provide pure 6a (59%) as a white solid: ¹H NMR (400 MHz, DMSO-d₆) δ 9.95 (s, 1H), 8.51 (s, 2H), 7.47 (dt, $J_1 = 9.2$ Hz, $J_2 = 2$ Hz, 2H), 7.42–7.34 (m, 4H), 7.29 (tt, $J_1 = 7.6$ Hz, $J_2 = 1.2$ Hz, 1H), 6.92 (dt, $J_1 = 6.8$ Hz, $J_2 = 2$ Hz, 2H), 5.03 (s, 2H), 4.05 (t, J = 6.4 Hz, 1H), 3.71 (s, 3H), 2.55–2.39 (m, 2H), 2.12–2.01 (m, 2H); Anal. (C₁₉H₂₂N₂O₄·1HCl) C, H, N, Cl.

5.2.18. N^5 -[4-(Phenylmethoxy)phenyl]-L-glutamine 1,1dimethylethyl ester (6b). Synthesis of 6b was carried out in an analogous manner to 3g using Boc-Glu(OH)-OtBu: ¹H NMR (400 MHz, CDCl₃) δ 8.49 (s, 1H), 7.44–7.30 (m, 6H), 7.25 (d, J = 4.4 Hz, 1H), 6.91–6.87 (m, 2H), 5.01 (d, J = 3.2 Hz, 2H), 3.52–3.49 (m, 1H), 2.58- 2.48 (m, 2H), 1.93–1.89 (m, 2H), 1.44 (d, J = 3.6 Hz, 9H); Anal. (C₂₂H₂₈N₂O₄) C, H, N.

5.2.19. N^5 -[4-(Phenylmethoxy)phenyl]-L-glutamamide trifluoroacetate (6c). To a solution of 14 (0.3 g) in acetonitrile (10 mL) were added Boc anhydride (0.18 g, 1.2 equiv), pyridine (0.05 mL, 1 equiv), and (NH₄)₂CO₃ (0.2 g, 3 equiv). After stirring for 3 h, the reaction was partitioned between EtOAc and water and the layers were separated. The aqueous layer was extracted with 2× EtOAc and the combined organic layers were washed with HCl (1N, aq), water, and brine, then dried (MgSO₄), and concentrated. This product was dissolved in CH₂Cl₂ and TFA (10 equiv) was added. After stirring for 2 h, solvent was removed. The resulting white solid was recrystallized from MeOH/Et₂O to provide 6c (0.2g, 62%) as a white solid: ¹H NMR (400 MHz, DMSO- d_6) δ 9.88 (s, 1H), 8.06 (s, 2H), 7.85 (s, 1H), 7.62 (s, 1H), 7.45 (dt, $J_1 = 8.8$ Hz, $J_2 = 2.0$ Hz, 2H), 7.40 (dt, J_1 = 6.4 Hz, J_2 = 2.0 Hz, 2H), 7.38–7.34 (m, 2H), 7.29 (tt, $J_1 = 7.6$ Hz, $J_2 = 1.2$ Hz, 1H), 6.92 (dt, $J_1 = 8.8$ Hz, $J_2 = 2.0$ Hz, 2H), 5.03 (s, 2H), 3.75 (t, J = 6.4 Hz, 1H), 2.24-2.30 (m, 2H), 2.03-1.97(m, 2H); Anal. (C₁₈H₂₁N₃O₃·0.5H₂O·1.1CF₃CO₂H) C, H, N, F.

5.2.20. N^{1} -Hydroxy- N^{5} -[4-(phenylmethoxy)phenyl]-L-glutamamide trifluoroacetate (6d). To a solution of 17 (1 g) in MeOH (25 mL) was added hydroxylamine (50% in water, 4 mL, 20 equiv) over four days of stirring. Solvent was removed, and the resulting white solid was washed with EtOAc, water, and NaHSO₄ (satd aq) and dried to provide the desired product as a mixture with 4-benzyloxyaniline sulfate. This mixture was slurried in CH₂Cl₂ and TFA (10 equiv) was added. After stirring for 4 h, the solid was filtered off and the mother liquor was concentrated. The resulting white solid was purified by reverse phase HPLC using a gradient of MeCN in water to provide 6d (1%) as a white solid: ¹H NMR (400 MHz, CD₃OD) δ 7.44–7.40 (m, 4H), 7.34 (t, J = 7.2 Hz, 2H), 7.30–7.27 (m, 1H), 6.93 (d, J = 7.6 Hz, 2H), 5.04 (s, 2H), 3.84 (t, J = 5.2 Hz, 1H), 2.63–2.49 (m, 2H), 2.25–2.13 (m, 2H); Anal. (C₁₈H₂₁N₃O₄·1.1H₂O·1CF₃CO₂H) C, H, N, F.

5.2.21. 4-Amino-*N***-[4-(phenylmethoxy)phenyl]butanamide** hydrochloride (7a). Synthesis of 7a was carried out in an analogous manner to 3g using *N*-Boc-4-aminobutanoic acid: ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.00 (s, 1H), 7.98 (s, 2H), 7.49 (dt, *J*₁ = 9.2 Hz, *J*₂ = 2 Hz, 2H), 7.42– 7.33 (m, 4H), 7.29 (tt, *J*₁ = 7.2 Hz, *J*₂ = 1.6 Hz, 1H), 6.91 (dt, *J*₁ = 9.2 Hz, *J*₂ = 2.4 Hz, 2H), 5.02 (s, 2H), 2.79 (t, *J* = 7.6 Hz, 2H), 2.38 (t, *J* = 7.6 Hz, 2H), 1.87–1.79 (m, 2H); Anal. (C₁₇H₂₀N₂O₂·1HCl) C, H, N, Cl.

5.2.22. 4-Methylamino-*N*-[**4**-(phenylmethoxy)phenyl]butanamide trifluoroacetate (7b). Synthesis of 7b was carried out in an analogous manner to **3g** using *N*-Boc-*N*-methyl-4-aminobutanoic acid with purification by preparative HPLC: ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.84 (s, 1H), 8.38 (s, 2H), 7.46 (d, *J* = 7.6 Hz, 2H), 7.40 (d, *J* = 7.2 Hz, 2H), 7.36 (tt, *J*₁ = 6.0 Hz, *J*₂ = 1.6 Hz, 2H), 7.30 (tt, *J*₁ = 5.6 Hz, *J*₂ = 2.4 Hz, 1H), 6.92 (dt, *J*₁ = 6.4 Hz, *J*₂ = 2.8 Hz, 2H), 5.03 (s, 2H), 2.90 (t, *J* = 6.4 Hz, 2H), 2.54 (d, *J* = 3.2 Hz, 3H), 2.36 (t, *J* = 5.6 Hz, 2H), 1.87–1.79 (m, 2H); Anal. (C₁₈H₂₂N₂O₂·1CF₃CO₂H) C, H, N, F.

5.2.23. 4-Dimethylamino-*N***-[4-(phenylmethoxy)phenyl]butanamide trifluoroacetate (7c).** Synthesis of 7c was carried out in an analogous manner to 17 using *N*,*N*-dimethyl-4-aminobutanoic acid hydrochloride and purification by preparative HPLC: ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.87 (s, 1H), 9.50 (br s, 1H), 7.46 (d, J = 5.2 Hz, 2H), 7.40 (d, J = 6.4 Hz, 2H), 7.36 (tt, $J_1 = 6.0$ Hz, $J_2 = 1.6$ Hz, 2H), 7.30 (t, 5.6 Hz, 1H), 6.93 (d, J = 5.6 Hz, 2H), 5.03 (s, 2H), 3.08–3.02 (m, 2H), 2.76 (s, 6H), 2.38–2.32 (m, 2H), 1.93–1.85 (m, 2H); Anal. (C₁₉H₂₄N₂O₂·0.2H₂O·0.1CH₂Cl₂·1.4CF₃CO₂H) C, H, N, F.

5.2.24. N^5 -phenyl-L-glutamamide dihydrochloride (8a). To a solution of Boc-Gln-OH (246 mg, 1 mmol) and HATU (456 mg, 1.2 mmol) in DMF (10 mL) was added Et3N (152 mg, 1.5 mmol) at rt. After 30 min, aniline (93 mg, 1 equiv) was added. The reaction was stirred at rt overnight, and quenched with water. The reaction mixture was extracted with EtOAc, washed with brine, dried and concentrated. To a solution of this residue in CH₂Cl₂ was added HCl (4 M in dioxane, 10 equiv). After stirring for 16 h, the resulting white solid was filtered off, washing with water, to provide 8a (87%) as a white solid: ¹H NMR (400 MHz, DMSO- d_6) δ 10.18 (s, 1H), 8.29 (br s, 3H), 7.99 (s, 1H), 7.60–7.56 (m, 3H), 7.26 (t, J = 7.3 Hz, 2H), 7.00 (t, J = 7.7 Hz, 1H), 3.77 (br s, 1H), 2.51–2.40 (m, 2H), 2.10–1.99 (m, 2H); Anal. (C₁₁H₁₅N₃O₂·0.07 H₂O·2.1HCl) C, H, N.

5.2.25. N^{5} -[4-(1H-pyrrol-1-yl)phenyl]-L-glutamamide hydrochloride (8b). Synthesis of 8b was carried out in an analogous manner to 8a using 4-(1H-pyrrol-1-yl)-aniline: ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.17 (s, 1H), 8.17 (br s, 3H), 7.92 (br s, 1H), 7.67–7.63 (m, 3H), 7.48 (d, *J* = 8.8 Hz, 2H), 7.27 (t, *J* = 2.1 Hz, 2H), 6.21 (t, *J* = 2.2 Hz, 1H), 3.77 (br s, 1H), 2.46–2.38 (m, 2H), 2.07–2.01 (m, 2H); Anal. ($C_{15}H_{18}N_4O_2$ ·1.45HCl) C, N, H.

5.2.26. N^5 -[**3**-(phenylmethoxy)phenyl]-L-glutamine, methyl ester (8c). Synthesis of 8c was carried out in an analogous manner to 3g using Boc-Glu(OH)-OMe and 3-benzyloxy-aniline: ¹H NMR (400 MHz, CDCl₃) δ 8.37 (s, 1H), 7.43–7.39 (m, 4H), 7.37 (t, J = 8.0 Hz, 2H), 7.31 (tt, $J_1 = 7.2$ Hz, $J_2 = 2.8$ Hz, 1H), 7.18 (t, J = 8.0 Hz, 1H), 6.99 (d, J = 8.0 Hz, 1H), 6.70 (dd, $J_1 = 8.0$ Hz, $J_2 = 2.0$ Hz, 1H), 5.29 (s, 2H), 3.71 (s, 3H), 3.57 (dd, $J_1 = 8.8$ Hz, $J_2 = 4.8$ Hz, 1H), 2.61–2.45 (m, 2H), 2.27–2.19 (m, 1H), 1.96–1.87 (m, 1H); Anal. (C₁₉H₂₂N₂O₄·0.8H₂O) C, H, N.

5.2.27. N^5 -[(4-Phenoxy)-3-pyridyl]-L-glutamamide tristrifluoroacetate (8d)

5.2.27.1. Step 1: Synthesis of 2-Phenyloxy-5-nitropyridine (18). To a solution of phenol (2 g, 21.2 mmol) in DMSO (20 mL) was added KOtBu (2.4 g, 21.2 mmol) at rt. After 30 min, 2-chloro-5-nitropyridine (2.1 g, 19.3 mmol) was added. The reaction was heated to 120 °C, then after 2 h of stirring the heat was removed. The reaction mixture was poured into ice water and the resulting solid was collected by filtration. This solid was purified by column chromatography using a gradient of MeOH in CH₂Cl₂ to afford **18** (96%) as a yellow solid: ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.03 (1H, s), 8.45 (d, J = 3.2 Hz, 1H), 7.54 (m, 2H), 7.36 (m, 1H), 7.18 (m, 2H), 7.06 (d, J = 8.8 Hz, 1H).

5.2.27.2. Step 2: Synthesis of N^5 -[(4-phenoxy)-3-pyridyll-L-glutamamide (8d). To a solution of SnCl₂ H₂O (16.7 g, 74 mmol) in EtOAc (250 mL) was added 19 (4 g, 8.1 mmol) in EtOAc (10 mL). The reaction mixture was kept at reflux for 3 h, and cooled. The reaction mixture was quenched with 50% NaOH to pH 12, and resulting solid was filtered off. The solution phase was extracted with ether, dried, and concentrated to provide the aminopyridine. To a solution of Boc-Gln (505 mg, 3 mmol) and HOBt (460 mg, 3 mmol) in DMF (10 mL) was added EDC (593 mg, 3 mmol) at rt. After 30 min, the aminopyridine (465.2 mg, 2.5 mmol) was added. The reaction mixture was stirred at rt overnight, and quenched with water. The reaction mixture was extracted with EtOAc, washed with brine, dried, and concentrated. The residue was slurried in CH₂Cl₂ and TFA (10 equiv) was added to give a clear solution. After stirring for 16 h, solvent was removed. The resulting solid was purified by reverse phase HPLC using a gradient of MeCN in water to provide pure **8d** (33%) as a white solid: ¹H NMR (400 MHz, DMSO- d_6) δ 10.23 (s, 1H), 8.32 (d, J = 2.7 Hz, 1H), 8.17 (br s, 3H), 8.03 (dd, $J_1 = 9.2$ Hz, $J_2 = 2.9$ Hz, 1H), 7.91 (s, 1H), 7.62 (s, 1H), 7.37 (t, J = 7.4 Hz, 2H), 7.15 (t, J = 7.4 Hz, 1H), 7.05 (d, J = 7.7 Hz, 2H), 6.98 (d, J = 9.1 Hz, 1H), 3.79 (q, J = 5.5 Hz, 1H), 2.50-2.36 (m, 2H), 2.07-1.98(m, 2H); Anal. (C₁₆H₁₈N₄O₃·2.65CF₃CO₂H) C, H, N.

5.2.28. N⁵-(4-Phenoxyphenyl)-L-glutamine (8e)

5.2.28.1. Step 1: N^2 -[(1,1-dimethylethoxy)carbony]]- N^5 -(4-phenoxyphenyl)-L-glutamine (19). Synthesis of 19 was carried out in an analogous manner to 14 using Boc-Glu(OH)-OMe and 4-phenoxyaniline: ¹H NMR (400 MHz, DMSO- d_6) δ 9.90 (s, 1H), 7.56 (d,

J = 8.8 Hz, 2H), 7.32 (tt, $J_1 = 7.3$ Hz, $J_2 = 2.0$ Hz, 2H), 7.05 (tt, $J_1 = 7.3$ Hz, $J_2 = 1.1$ Hz, 1H), 6.92 (t, J = 8.9 Hz, 4H), 3.91–3.86 (m, 1H), 2.35 (t, 7.5 Hz, 2H), 2.06–1.96 (m, 1H), 1.83–1.72 (m, 1H), 1.34 (s, 9H).

5.2.28.2. Step 2: N^5 -(4-Phenoxyphenyl)-L-glutamine trifluoroacetate (8e). Compound 19 was dissolved in CH₂Cl₂ and TFA (10 equiv) was added. After stirring for 16 h the reaction was concentrated. The residue was purified by reverse phase HPLC using a gradient of MeCN in water to provide 8e (29%) as a white solid: ¹H NMR (400 MHz, DMSO) δ 10.04 (s, 1H), 8.26 (s, 2H), 7.57 (dt, J_1 = 8.8 Hz, J_2 = 2.4 Hz, 2H), 7.36–7.31 (m, 2H), 7.09–7.05 (m, 1H), 6.98–6.90 (m, 2H), 3.95 (t, J = 6 Hz, 1H), 2.57–2.42 (m, 2H), 2.13–1.99 (m, 2H); Anal. (C₁₇H₁₈N₂O₄·1.05CF₃CO₂H) C, H, N, F.

5.2.29. N^{5} -[4-Benzylphenyl]-L-glutamamide trifluoroacetate (8f). To a solution of Boc-Gln-OH (784 mg, 3 mmol) and HOBt (552 mg, 1.2 equiv) in DMF (10 mL) was added EDC (712 mg, 1.2 equiv) at rt. After 30 min, 4-benzyl aniline (550 mg, 1 equiv) was added. The reaction was stirred at rt overnight, and guenched with water. The reaction mixture was extracted with EtOAc, washed with 0.1N HCl, NaHCO₃ (satd aq), and brine. The organic layer was dried and concentrated. To a solution of this residue in CH₂Cl₂ was added TFA (10 equiv). After stirring for 16 h, reaction was concentrated. The residue was suspended in cold ether and filtered to provide 8f (76%) as a white solid: ¹H NMR (400 MHz, DMSO- d_6) δ 9.97 (s, 1H), 8.13 (br s, 3H), 7.87 (s, 1H), 7.61 (s, 1H), 7.47 (d, J = 8.4 Hz, 2H), 7.25 (t, J = 7.3 Hz, 2H), 7.18–7.11 (m, 5H), 3.85 (s, 2H), 3.76 (t, J = 6.2 Hz, 1H), 2.44–2.34 (m, 2H), 2.01 (q, J = 7.0 Hz, 2H); Anal. (C₁₈H₂₁N₃O₂· 0.5H2O·1.23CF3CO2H) C, H, N.

5.2.30. N^5 -[4-(*N*-Phenylamino)phenyl]-L-glutamine bistrifluoroacetate (8g). Synthesis of 8g was carried out in an analogous manner to 8f using *N*-phenyl-*p*-phenylenediamine: ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.84 (s, 1H), 8.27 (br s, 3H), 7.47–7.39 (m, 2H), 7.18–7.12 (m, 2H), 7.01–6.93 (m, 5H), 6.76–6.69 (m, 1H), 3.95 (br s, 1H), 2.49–2.36 (m, 2H), 2.06–2.02 (m, 2H); Anal. (C₁₇H₁₉N₃O₃·1.9CF₃CO₂H) C, H, N.

5.2.31. N⁵-[4-(N-Methyl-N-phenylamino)phenyl]-L-glutamine methyl ester trifluoroacetate (8h). To a solution of Boc-Glu(OH)-OMe (260 mg, 1 mmol) and HOBt (200 mg, 1 equiv) in DMF (10 mL) was added EDC (210 mg, 1.1 equiv). After stirring for 30 min, N-phenylp-phenylenediamine (184 mg, 1 equiv) was added. The reaction was stirred for 16 h and then guenched with water. The reaction mixture was extracted with EtOAc, washed with 0.1 N HCl, NaHCO₃ (satd aq), and brine. The organic layer was dried and concentrated. To a solution of the coupled product in CH₂Cl₂/MeOH/ AcOH (10 mL, 5:1:0.2) were added formaldehyde (40% in water, 10 equiv) and NaBH₃CN (4 equiv). The cloudy reaction was stirred for 1 h, then diluted with EtOAc, and washed with brine. The organic layer was dried and concentrated. To a solution of this residue in CH₂Cl₂ was added HCl (4 M in dioxane, 10 equiv). After stirring for 16 h, reaction was concentrated. The resulting solid was purified by reverse phase HPLC using a gradient of MeCN in water to provide **8h** (40%) as a white solid: ¹H NMR (400 MHz, DMSO- d_6) δ 9.94 (s, 1H), 8.38 (br s, 3H), 7.50 (d, J = 8.8 Hz, 2H), 7.19 (t, J = 8.8 Hz, 2H), 7.00 (d, J = 8.8 Hz, 2H), 6.84 (d, J = 7.7 Hz, 2H), 6.81 (t, J = 7.3 Hz, 1H), 4.10 (br s, 1H), 3.74 (s, 3H), 3.19 (s, 3H), 2.53–2.40 (m, 2H), 2.10–2.03 (m, 2H); Anal. (C₁₉H₂₃ N₃O₃·1.35CF₃CO₂H) C, N, H.

5.2.32. N⁵-[4-(2-Phenylethoxy)phenyl]-L-glutamine (8i)

5.2.32.1. Step 1: Synthesis of N^2 -[(1,1-dimethylethoxy) carbonyl]-N⁵-(4-hydroxyphenyl)-L-glutamine, 1,1-dimethylethyl ester (20). To a solution of Boc-Glu(OH)-OtBu (1.7 g, 5 mmol) and N-methylmorpholine (1.1 mL, 2 equiv) in THF (20 mL) at -20 °C was added isobutyl chloroformate (0.65 mL, 1 equiv). After stirring at this temperature for 30 min, 4-benzyloxyaniline (1 g, 1 equiv) was added and the turbid reaction was allowed to warm to room temperature over 16 h. The reaction was filtered and concentrated. The residue was dissolved in EtOAc, washed with NaHSO₄ (satd aq), NaHCO₃ (satd aq), and brine, dried and concentrated. The coupled product was dissolved in THF, 10% Pd/C (5 mol%) was added, and the reaction mixture stirred under 40 psi H₂ overnight. The reaction mixture was then filtered over Celite and concentrated. The resulting white solid was purified by silica gel chromatography using a gradient of EtOAc in hexanes to provide 20 (27%) as a white solid: ¹H NMR (400 MHz, DMSO d_6) δ 9.58 (s, 1 H), 9.10 (s, 1 H), 7.34 (d, J = 9.0 Hz, 2H), 7.15 (d, J = 6.4 Hz, 1H), 6.65 (d, J = 7.0 Hz, 2H), 3.85-3.76 (m, 1H), 2.34 (t, J = 8.1 Hz, 2H), 1.98-1.90(m, 1H), 1.81–1.74 (m, 1H), 1.41 (s, 9H), 1.39 (s, 9H).

5.2.32.2. Step 2: Synthesis of N^5 -[4-(2-phenylethoxy)phenyl]-L-glutamine (8i). To a solution of 20 (600 mg, 1.52 mmol) in DMF (10 mL) was added K₂CO₃ (525 mg, 4 equiv). After stirring for 30 min phenethyl bromide (310 mg, 1.67 mmol) was added. The reaction mixture was kept at rt overnight, and quenched with water. The reaction mixture was extracted with EtOAc, washed with brine, and dried and concentrated. The residue was dissolved in CH₂Cl₂ and HCl (4 M in dioxane, 10 equiv) was added. After stirring for 16 h, solvent was removed. The resulting solid was purified by reverse phase HPLC using a gradient of MeCN in water to provide pure **8i** (21%) as a white solid: ¹H NMR (400 MHz, DMSO- d_6) δ 9.89 (s, 1H), 7.44 (d, J = 8.8 Hz, 2H), 7.38–7.30 (m, 5H), 6.85 (d, J = 8.5 Hz, 2H), 4.12 (t, J = 6.3 Hz, 2H), 3.79 (br s, 1H), 2.97 (t, J = 6.5 Hz, 2H), 2.38–2.33 (m, 2H), 2.06–1.95 (m, 2H); Anal. $(C_{19}H_{22}N_2O_4 \cdot 0.4CF_3CO_2H)$ C. H. N.

5.2.33. N^5 -[4-(3-Phenylpropoxy)phenyl]-L-glutamine (8j). Synthesis of **8j** was carried out in an analogous manner to **8i** using 1-phenyl-3-bromopropane: ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.91 (s, 1H), 7.46 (d, *J* = 8.8 Hz, 2H), 7.28– 7.13 (m, 5H), 6.82 (d, *J* = 8.7 Hz, 2H), 3.86 (t, *J* = 7.0 Hz, 2H), 3.76 (br s, 1H), 2.71 (t, *J* = 6.2 Hz, 2H), 2.30–2.21 (m, 2H), 2.04–1.95 (m, 4H); Anal. (C₂₀H₂₄N₂O₄·0.18CF₃CO₂H) C, H, N. **5.2.34.** N^5 -[4-(2-Oxo-3-phenylpropoxy)phenyl]-L-glutamine trifluoroacetate (8k). Synthesis of 8k was carried out in an analogous manner to 8i using phenacetyl bromide: ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.89 (s, 1H), 8.27 (br s, 3H), 7.93 (d, *J* = 7.2 Hz, 2H), 7.67 (t, *J* = 7.0 Hz, 1H), 7.55 (t, *J* = 7.2 Hz, 2H), 7.46 (d, *J* = 8.8 Hz, 2H), 6.88 (d, *J* = 9.1 Hz, 2H), 5.51 (s, 2H), 3.94 (br s, 1H), 2.54–2.41 (m, 2H), 2.09–2.00 (m, 2H); Anal. (C₁₉H₂₀N₂O₅·1.4CF₃CO₂H) C, H, N.

5.2.35. N^5 -[4-(2-Hydroxy-3-phenylpropoxy)phenyl]-L-glutamine trifluoroacetate (81). To a solution of 20 (3 g, 7.6 mmol) in DMF (40 mL) was added K_2CO_3 (2.6 g, 2.5 equiv). After stirring for 30 min, phenacetyl bromide (1.7 g, 1.1 equiv) was added. The reaction mixture was kept at rt overnight, and quenched with water. The reaction mixture was extracted with EtOAc, washed with brine, and dried and concentrated. The residue was dissolved in MeOH. cooled to 0 °C. and NaBH₄ was added. After stirring for 30 min the reaction was guenched with brine, extracted with EtOAc, and the organic layer was dried and concentrated. The residue was dissolved in CH₂Cl₂ and HCl (4 M in dioxane, 10 equiv) was added. After stirring for 16 h, solvent was removed. The resulting solid was purified by reverse phase HPLC using a gradient of MeCN in water to provide pure 81 (30%) as a white solid: ¹H NMR (400 MHz, DMSO- d_6) δ 9.88 (s, 1H), 8.33 (br s, 3H), 7.48–7.40 (m, 4H), 7.36 (t, J = 7.4 Hz, 2H), 7.26 (t, J = 7.1 Hz, 1H), 6.85 (d, J = 8.2 Hz, 2H), 4.86 (t, J = 2.6 Hz, 1H), 3.99–3.92 (m, 3H), 2.55-2.42 (m, 2H), 2.12-2.03 (m, 2H); Anal. (C₁₉H₂₂N₂O₅·0.6H₂O·1.3CF₃CO₂H) C, H, N.

5.2.36. N^{5} -[4-Methoxyphenyl]-L-glutamine methyl ester trifluoroacetate (9a). To a solution of Boc-Glu(OH)-OMe (940 mg, 1.2 equiv) and HOBt (552 mg, 1.2 equiv) in DMF (10 mL) was added EDC (710 mg, 1.2 equiv) at rt. After 30 min, *p*-methoxyaniline (370 mg, 3 mmol) was added. The reaction was stirred at rt for 16 h, and then quenched with water. The reaction mixture was extracted with EtOAc, washed with 0.1 N HCl, NaHCO₃ (satd aq), and brine. The organic layer was dried and concentrated. To a solution of this residue in CH₂Cl₂ was added TFA (10 equiv). After stirring for 1 h, the reaction mixture was concentrated. The residue was purified by reverse phase HPLC using a gradient of MeCN in water to provide 9a (92%) as a white solid: ¹H NMR (400 MHz, DMSO- d_6) δ 9.85 (s, 1 H), 8.42 (br s, 3H), 7.46 (d, J = 9.2 Hz, 2H), 6.84 (d, J = 9.1 Hz, 2H), 4.08 (br s, 1H), 3.72 (s, 3H), 3.68(s, 3H), 2.52-2.40 (m, 2H), 2.10-2.03 (m, 2H); Anal. (C₁₃H₁₈N₂O₄·1.32CF₃CO₂H) C, H, N.

5.2.37. N^5 -[4-(Cyclohexyloxy)phenyl]-L-glutamamide (9b). To a solution of cyclohexylamine (2.1 g, 21.2 mmol) and 4-fluoronitrobenzene (3 g, 1 equiv) in DMSO (30 mL) was added K₂CO₃ (5.8 g, 2 equiv). The reaction mixture was heated to 110 °C, then after 3 h of stirring the heat was removed. The reaction mixture was poured into ice water and the water was extracted with EtOAc. The organic layer was dried and concentrated to provide the crude nitro compound. This product was dissolved in MeOH/EtOAc (60 mL, 2/1), 10% Pd/C (5 mol%) was added, and the reaction mixture stirred under 40 psi H₂ for 3 h. The reaction

mixture was then filtered over Celite and concentrated to provide the desired 4-cyclohexyloxyaniline. To a solution of Cbz-Gln (505 mg, 1.2 equiv) and HOBt (280 mg, 1.2 equiv) in DMF (10 mL) was added EDC (360 mg, 1.2 equiv) at rt. After 30 min, the cyclohexyloxyaniline (287 mg, 1.5 mmol) was added. The reaction mixture was stirred at rt for 16 h, and quenched with water. The reaction mixture was extracted with EtOAc, washed with 0.1 NHCl, NaHCO₃ (satd aq) and brine. The organic layer was dried and concentrated. This product was dissolved in MeOH (10 mL), 10% Pd/C (5 mol%) was added and the reaction stirred under 40 psi H₂ for 2 h. The reaction mixture was then filtered over Celite and concentrated to provide pure **9b** (65%) as a white solid: ¹H NMR (400 MHz, DMSO- d_6) δ 9.72 (s, 1H), 7.43 (d, J = 9.2 Hz, 2H), 7.38 (s, 1H), 7.00 (s, 1H), 6.82 (d, J = 9.2 Hz, 2H), 4.23-4.17(m, 1H), 3.01 (t, J = 7.7 Hz, 1H), 2.65-2.56 (m, 1H), 2.39-2.23 (m, 2H), 1.88-1.61 (m, 3H), 1.50-1.30 (m, 3H), 0.94–0.88 (m, 5H); Anal. (C₁₇H₂₅N₃O₃·0.8H₂O) C, H, N.

5.2.38. N^5 -[4-(2-methylphenoxy)phenyl]-L-glutamamide hydrochloride (9c). Synthesis of 9c was carried out in an analogous manner to 9b using *o*-cresol: ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.12 (s, 1H), 8.20 (br s, 3H), 7.94 (s, 1H), 7.60 (s, 1H), 7.55 (dt, *J*₁ = 9.2 Hz, *J*₂ = 2.8 Hz, 2H), 7.27 (d, *J* = 7.6 Hz, 1H), 7.16 (td, *J*₁ = 7.6 Hz, *J*₂ = 1.6 Hz, 1H), 7.04 (td, *J*₁ = 7.2 Hz, *J*₂ = 1.2 Hz, 1H), 6.84 (dt, *J*₁ = 9.2 Hz, *J*₂ = 2.4 Hz, 2H), 6.78 (d, *J* = 7.2 Hz, 1H), 3.79–3.74 (m, 1H), 2.45–2.34 (m, 2H), 2.16 (s, 3H), 2.06–2.00 (m, 2H); Anal. (C₁₈H₂₁N₃O₃·0.6H₂O·1HCl) C, H, N.

5.2.39. N^5 -[4-(3-methylphenoxy)phenyl]-L-glutamamide hydrochloride (9d). Synthesis of 9d was carried out in an analogous manner to 9b using *m*-cresol: ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.31 (s, 1H), 8.37 (br s, 3H), 8.06 (s, 1H), 7.66–7.54 (m, 3H), 7.19 (s, 1H), 6.94–6.72 (m, 5H), 3.79 (br s, 1H), 2.54–2.40 (m, 2H), 2.23 (s, 3H), 2.10–2.00 (m, 2H); Anal. (C₁₈H₂₁N₃O₃·0.6H₂O· 1HCl·0.25Et₂O) C, H, N.

5.2.40. N^5 -[4-(4-methylphenoxy)phenyl]-L-glutamamide hydrochloride (9e). Synthesis of 9e was carried out in an analogous manner to 9b using *p*-cresol: ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.12 (s, 1H), 8.20 (br s, 3H), 7.93 (s, 1H), 7.61 (s, 1H), 7.57 (d, *J* = 9.2 Hz, 2H), 7.14 (d, *J* = 8.0 Hz, 2H), 6.91 (d, *J* = 9.2 Hz, 2H), 6.83 (d, *J* = 8.4 Hz, 2H), 3.76 (br s, 1H), 2.46–2.39 (m, 2H), 2.25 (s, 3H), 2.06–2.00 (m, 2H); Anal. (C₁₈H₂₁N₃O₃·0.7-H₂O·1HCl·0.25Et₂O) C, H, N.

5.2.41. N^5 -[4-[4-(1H-pyrrol-1-yl)phenoxy]phenyl]-)-L-glutamine hemitrifluoroacetate (9f). Synthesis of 9f was carried out in an analogous manner to 9b using 4-(1Hpyrrol-1-yl)-phenol: ¹H NMR (400 MHz, DMSO) δ 10.10 (s, 1H), 8.11 (s, 2H), 7.59–7.51 (m, 4H), 7.26 (t, J = 2 Hz, 2H), 7.00 (t, J = 9.2 Hz, 4H), 6.22 (t, J = 2 Hz, 2H), 3.78 (s, 1H), 2.48–2.46 (m, 2H), 2.04–2.02 (m, 2H); Anal. (C₂₁H₂₁N₃O₄·0.5H₂O·0.5CF₃CO₂H) C, H, N, F.

5.2.42. N^5 -[4-(4-(3-Furyl)phenoxy)phenyl]-L-glutamamide trifluoroacetate (9g). A mixture of 4-(4-bromophenoxy)-aniline (2.2 g, 8.2 mmol), 3-furylboronic acid (915 mg, 1

4979

equiv), Pd(PPh₃)₂Cl₂ (576 mg, 10 mol%), and Na₂CO₃ (2N ag, 9 mL) in *i*-PrOH (30 mL) was kept at 80 °C overnight. The reaction mixture was cooled to rt, diluted with water, and extracted with EtOAc. The organic phase was washed with brine, dried, and concentrated to provide crude aniline which was carried on to the next step. To a solution of Boc-Gln-OH (296 mg, 1.2 equiv) and HOBt (184 mg, 1.2 equiv) in DMF (5 mL) was added EDC (238 mg, 1.2 equiv) at rt. After 30 min, the aniline (250 mg, 1 mmol) was added. The reaction mixture was stirred at rt overnight, and quenched with water. The reaction mixture was extracted with EtOAc, and the organic layer was washed with brine. The organic layer was dried and concentrated. To a solution of this residue in CH₂Cl₂ was added HCl (4 M in dioxane, 10 equiv). After stirring for 16 h, reaction mixture was concentrated. The resulting solid was purified by reverse phase HPLC using a gradient of MeCN in water to provide 9g (36%) as a white solid: ¹H NMR (400 MHz. DMSO- d_6) δ 10.07 (s, 1H), 8.14 (br s, 3H), 7.89 (s, 1H), 7.70-7.57 (m, 5H, 6.99-6.77 (m, 6H), 3.77 (br s, 1H), 2.45–2.33 (m, 2H), 2.05–1.98 (m, 2H); Anal. (C₂₁H₂₁N₃O₄·1.48CF₃CO₂H) C, H, N.

5.2.43. N⁶-[4-(4-methylphenoxy)phenyl]-L-homoglutamine trifluoroacetate (10). To a solution of Boc-homoglu(OBz)-OH (1 g, 2.8 mmol) in MeOH/PhCH₃ (1/1, 30 mL) was added TMSCHN₂ (2 M in hexanes, 10 mL total) dropwise until bubbling was not observed and the yellow color persisted for more than 1 minute. The solution was then concentrated. A slurry of this product and Pd/C (0.2 g, 20 w/w%) in MeOH (100 mL) was stirred under 40 psi H₂ for 24 h. The reaction mixture was filtered over Celite and the mother liquor was concentrated to give the desired acid as a yellow oil. To a solution of this acid (0.8 g, 2.5 mmol) and N-methylmorpholine (0.7 mL, 2 equiv) in THF (10 mL) at -20 °C was added isobutyl chloroformate (0.33 mL, 1 equiv). After stirring at this temperature for 30 min, 4-phenoxvaniline (0.5 g, 1 equiv) was added and the turbid reaction mixture was allowed to warm to room temperature for over 16 h. The reaction mixture was filtered and concentrated. The residue was dissolved in EtOAc, washed with NaHSO₄ (satd aq), NaHCO₃ (satd aq) and brine, dried and concentrated. The coupled product was dissolved in MeOH and NaOH (1 M, aq) was added. After stirring for 24 h, the solvent was removed and the residue was partitioned between CH₂Cl₂ and NaHSO₄ (satd aq), and the layers were separated. The aqueous layers were extracted with $2 \times CH_2Cl_2$ and the combined organic layers were dried (MgSO₄) and concentrated to give the free carboxylic acid. This acid was slurried in CH₂Cl₂ and HCl (4 M in dioxane, 10 equiv) was added to give a clear solution. After stirring for 16 h, solvent was removed. The resulting solid was purified by reverse phase HPLC using a gradient of MeCN in water to provide pure 10 (22%) as a white solid: ¹H NMR (400 MHz, DMSO-d₆) δ 10.03 (s, 1H), 7.91 (br s, 3H), 7.58 (d, J = 8.8 Hz, 2H), 7.34 (t, J = 7.3 Hz, 2H), 7.08 (t, J = 7.3 Hz, 1H), 6.97 (d, J = 8.8 Hz, 2H), 6.93 (d, J = 8.4 Hz, 2H), 3.64–3.58 (m, 1H), 2.68–2.41 (m, 4H), 1.92–1.83 (m, 2H); Anal. (C₁₈H₂₀N₂O₄·1H₂O·1.1CF₃ CO₂H) C, H, N, F.

5.2.44. N^{1} -(2-Carboxyethyl)- N^{5} -(4-Phenoxyphenyl)-L-glutamamide trifluoroacetate (11a). To a solution of 18 (0.83 g, 2.0 mmol) and HOBt hydrate (0.4 g, 1.5 equiv) in DMF (10 mL) were added EDC (0.4 g, 1.1 equiv) and triethylamine (1 mL, 1.5 equiv). After stirring for 30 min, H-Gly-OMe (0.18 g, 1 equiv) was added and the reaction mixture was stirred overnight. Partitioned the reaction between EtOAc and water, separated the layers, washed the organic layer with NaHSO₄ (satd aq), NaHCO₃ (satd aq) and brine, dried (MgSO₄) and concentrated. The residue was dissolved in MeOH and NaOH (1 M, aq) was added. After stirring for 24 h, the solvent was removed, the residue was partitioned between CH₂Cl₂ and NaHSO₄ (satd aq), and the layers were separated. The aqueous layers were extracted with $2\times$ CH₂Cl₂ and the combined organic layers were dried $(MgSO_4)$ and concentrated to give the free carboxylic acid This acid was slurried in CH₂Cl₂ and HCl (4 M in dioxane. 10 equiv) was added to give a clear solution. After stirring for 16 h, solvent was removed. The resulting solid was purified by reverse phase HPLC using a gradient of MeCN in water to provide pure 11a (36%) as a white solid: ¹H NMR (400 MHz, DMSO- d_6) δ 10.02 (s, 1H), 8.80 (t, J = 5.9 Hz, 1H), 8.18 (br s, 3H), 7.58 (d, J = 9.1 Hz, 2H), 7.34 (t, J = 8.8 Hz, 2H), 7.08 (t, J = 7.3 Hz, 1H), 6.96 (d, J = 8.8 Hz, 2H), 6.93 (d, J = 7.7 Hz, 2H), 3.93–3.86 (m, 3H), 2.50–2.43 (m, 2H), 2.04 (q, J = 6.6 Hz, 2H); Anal. (C₁₉H₂₁N₃O₅·0.5-H₂O·1.4CF₃CO₂H) C, H, N, F.

5.2.45. *N*¹-(**3-Carboxypropyl**)-*N*⁵-(**4-phenoxyphenyl**)-**L**-glutamamide trifluoroacetate (11b). Synthesis of 11b was carried out in an analogous manner to 11a using β-alanine ethyl ester: ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.96 (s, 1H), 8.54 (s, 1H), 8.20–8.08 (m, 2H), 7.56 (d, *J* = 7.2 Hz, 2H), 7.34 (t, *J* = 8.4 Hz, 2H), 7.08 (t, *J* = 6.8 Hz, 1H), 6.97 (d, *J* = 8.0 Hz, 2H), 6.92 (d, *J* = 7.2 Hz, 2H), 3.77 (br s, 1H), 3.55–3.45 (m, 4H), 2.38–2.33 (m, 2H), 2.06–1.95 (m, 2H); Anal. (C₂₀H₂₃N₃O₅·1H₂O·1.25CF₃-CO₂H) C, H, N, F.

5.2.46. N^{1} -(4-Carboxybutyl)- N^{5} -(4-phenoxyphenyl)-L-glutamamide bistrifluoroacetate (11c). Synthesis of 11c was carried out in an analogous manner to 11a using ethyl 3-aminopropionate: ¹H NMR (400 MHz, DMSO- d_{6}) δ 10.04 (s, 1H), 8.48 (t, J = 5.5 Hz, 1H), 8.17 (br s, 3H), 7.58 (d, J = 9.2 Hz, 2H), 7.34 (t, J = 7.3 Hz, 2H), 7.07 (t, J = 7.3 Hz, 1H), 6.96 (d, J = 9.1 Hz, 2H), 6.92 (d, J = 7.7 Hz, 2H), 3.76 (br s, 1H), 3.17–3.11 (m, 2H), 2.37 (q, J = 7.7 Hz, 2H), 2.25 (t, J = 7.4 Hz, 2H), 2.03–1.97 (m, 2H), 1.66 (t, J = 7.3 Hz, 2H); Anal. (C₂₁H₂₅N₃O₅0.3H₂O·1.6CF₃CO₂H) C, H, N, F.

5.2.47. N^1 -(2-Hydroxyethyl)- N^5 -(4-phenoxyphenyl)-L-glutamamide trifluoroacetate (11d). A solution of 18 (2.7 g, 6.5 mmol) and HOBt hydrate (1.3 g, 1.5 equiv) in DMF (30 mL) was cooled to 0 °C and EDC (1.4 g, 1.1 equiv) and triethylamine (1 mL, 1.1 equiv) were added. After stirring for 30 min, 2-aminoethanol (0.4 g, 1 equiv) was added and the reaction mixture was allowed to warm to rt overnight. Partitioned the reaction mixture between EtOAc and water, separated the layers, washed the organic layer with NaHSO₄ (satd aq), NaHCO₃ (satd aq) and brine, dried (MgSO₄) and concentrated. The resulting solid was purified by reverse phase HPLC using a gradient of MeCN in water to provide pure **11d** (16%) as a white solid: ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.00 (s, 1H), 8.47 (t, *J* = 5.6 Hz, 1H), 8.18 (d, *J* = 10.8 Hz, 2H), 7.58–7.56 (m, 2H), 7.36–7.32 (m, 2H), 7.07 (t, *J* = 7.6 Hz, 1H), 6.97–6.91 (m, 4H), 3.79 (s, 1H), 3.45– 3.42 (m, 2H), 3.24–3.17 (m, 2H), 2.40–2.33 (m, 2H), 2.00–1.98 (m, 2H); Anal. (C₁₉H₂₃N₃O₄·1.5CF₃CO₂H) C, H, N, F.

5.2.48. N^1 -(2-Aminoethyl)- N^5 -(4-phenoxyphenyl)-L-glutamamide hydrochloride (11e). A solution of 18 (0.52 g, 1.2 mmol) and HOBt hydrate (0.25 g, 1.5 equiv) in DMF (10 mL) was cooled to 0 °C and EDC (0.26 g, 1.1 equiv) and triethylamine (0.19 mL, 1.1 equiv) were added. After stirring for 30 min, N-Boc ethylenediamine (0.2 g, 1 equiv) was added and the reaction was allowed to warm to rt overnight. Partitioned the reaction mixture between EtOAc and water, separated the layers, washed the organic layer with NaHSO₄ (satd aq), NaH-CO₃ (satd aq) and brine, dried (MgSO₄) and concentrated. The residue was dissolved in CH₂Cl₂ and HCl (4 M in dioxane, 10 equiv) was added to give a clear solution. After stirring for 48 h, the precipitated solid was filtered to provide pure 11 e (2%) as a white solid: ¹H NMR (400 MHz, DMSO- d_6) δ 10.01 (s, 1H), 8.60 (t, J = 3.2 Hz, 1H), 8.17 (br s, 3H), 7.75 (br s, 2H), 7.58 (d, J = 7.2 Hz, 2H), 7.28 (t, J = 8.0 Hz, 2H), 7.03 (t, J = 7.2 Hz, 1H), 6.95 (d, J = 8.4 Hz, 2H), 6.89 (d, J = 7.6 Hz, 2H), 3.82-3.77 (m, 1H), 3.41-3.34(m, 2H), 2.94–2.85 (m, 2H), 2.42–2.39 (m, 2H), 2.08– 2.01 (m, 2H); Anal. (C₁₉H₂₄N₄O₃·0.2EtOAc·0.8HCl) C, H, N.

5.2.49. 4*S*-4-Amino-5-hydroxy-*N*-(4-phenoxyphenyl)pentanamide (12a)

5.2.49.1. Step 1: Synthesis of S-4-(1,1-dimethylethylcarbamoylamino)-5-hydroxy-N-(4-phenoxyphenyl)pentanamide (21). To a solution of Boc-Glu(OH)-OBn (8 g, 25 mmol) and N-methylmorpholine (7 mL, 2 equiv) in THF (100 mL) at -20 °C was added isobutyl chloroformate (3.3 mL, 1 equiv). After stirring at this temperature for 30 min, 4-phenoxyaniline (5 g, 1 equiv) was added and the turbid reaction mixture was allowed to warm to room temperature for over 16 h. The reaction mixture was filtered and concentrated. The residue was dissolved in EtOAc, washed with NaHSO₄ (satd aq), NaHCO₃ (satd aq) and brine, dried and concentrated. This product was dissolved in MeOH/THF (3/1) and heated to 50 °C. NaBH₄ (4 equiv) was added and the reaction was allowed to self-reflux for 20 min. The reaction was stirred for another 4 h, then it was poured into iced HCl (0.5 M, aq). The resulting solid was filtered, then recrystallized from MeOH/water to provide compound 21 (80%) as a white solid: ¹H NMR (400 MHz, DMSO d_6) δ 9.88 (s, 1 H), 7.58 (d, J = 8.8 Hz, 2H), 7.33 (tt, $J_1 = 8.8$ Hz, $J_2 = 2.2$ Hz, 2H), 7.08 (t, J = 7.3 Hz, 1H), 6.96-6.90 (m, 4H), 6.48 (d, J = 8.5 Hz, 1H), 4.61 (t, J = 5.9 Hz, 1H), 3.38–3.28 (m, 1H), 3.25–3.19 (m, 1H), 2.31-2.25 (m, 2H), 1.86-1.80 (m, 1H), 1.55-1.50 (m, 1H), 1.35 (s, 9H).

5.2.49.2. Step 2: Synthesis of 4S-4-amino-5-hydroxy-N-(4-phenoxyphenyl)pentanamide (12a). Compound 21 was slurried in CH₂Cl₂ and HCl (4 M in dioxane, 10 equiv) was added to give a clear solution. After stirring for 16 h, solvent was removed. The resulting solid was partitioned between EtOAc and NaOH (1M aq), the layers were separated, the aqueous layer was extracted with EtOAc, and the combined organic layers were dried (MgSO₄) and concentrated. The resulting solid was purified by silica gel chromatography using a gradient of MeOH in CH_2Cl_2 to provide pure 12a (30%) as a white solid: ¹H NMR (400 MHz, DMSO- d_6) δ 10.02 (s, 1H), 7.82 (br s, 2H), 7.58 (d, J = 9.2 Hz, 2H), 7.33 (tt, $J_1 = 8.7$ Hz, $J_2 = 2.2$ Hz, 2H), 7.07 (t, J = 7.4 Hz, 1H), 6.96 (d, J = 9.2 Hz, 2H), 6.92 (d, J = 7.7 Hz, 2H), 3.60 (dd, $J_1 = 11.3$ Hz, $J_2 = 3.6$ Hz, 1H), 3.44 (dd, $J_1 =$ 11.4 Hz, $J_2 = 6.2$ Hz, 1H), 3.17–3.11 (m, 1H), 2.42 (q, J = 7.7 Hz, 2H), 1.84–1.78 (m, 2H); Anal. (C₁₇H₂₀N₂O₃· 0.6CH₂Cl₂) C, H, N.

5.2.50. 4*S*-4,5-Diamino-*N*-(4-phenoxyphenyl)pentanamide (12b)

5.2.50.1. Step 1: Synthesis of 4S-4-(1,1-dimethylethylcarbamoylamino)-5-methansulfonyloxy-N-(4-phenoxyphenyl)pentanamide (16). To a solution of 21 (3.6 g, 9 mmol) in pyridine (60 mL) was added MsCl (3.5 mL, 5 equiv) which caused a substantial exotherm and a precipitate formed. The reaction mixture was stirred for 1 h, then MeOH (20 mL) was added until all of the solid dissolved. The reaction mixture was poured into iced HCl (0.5 M aq) and the resulting solid was filtered to provide pure 16 (99%) as a white solid: ¹H NMR (400 MHz, $CDCl_3$) δ 8.42 (br s, 1H), 7.54 (d, J = 8.9 Hz, 2H), 7.33 (tt, $J_1 = 8.8$ Hz, $J_2 = 3.1$ Hz, 2H), 7.09 (t, J = 7.8 Hz, 1H), 6.99-6.94 (m, 4H), 5.01 (d, J = 8.1 Hz, 1H), 4.27 (dd, $J_1 = 11.0$ Hz, $J_2 = 3.2$ Hz, 1H), 4.22 (dd, $J_1 = 11.5$ Hz, $J_2 = 4.9$ Hz, 1H), 4.01–3.96 (m, 1H), 3.04 (s, 3H), 2.45 (t, J = 8.1 Hz, 2H), 1.97-1.91 (m, 2H), 1.43 (s, 9H).

5.2.50.2. Step 2: Synthesis of 4S-4-(1.1-dimethylethylcarbamovlamino)-5-amino-N-(4-phenoxyphenyl)pentanamide trifluoroacetate (22). To a solution of 16 (0.48 g, 1.0 mmol) in DMF (5 mL) was added NaN₃ (0.2 g, 3 equiv). This reaction mixture was stirred at 60 °C for 6 h, and then poured into ice water. The water was extracted with $2 \times$ EtOAc and the combined organic layers were dried (MgSO₄) and concentrated to give the azide as a white solid. This azide (0.1 g) was dissolved in MeOH/EtOAc (1/1, 10 mL) and Pd/C was added. The black suspension was agitated under 50 psi H₂ pressure for 2.5 h. The reaction mixture was filtered over Celite and concentrated. This residue was purified by reverse phase HPLC using a gradient of MeCN in H₂O to provide **22** (60%) as a white solid: ¹H NMR (400 MHz, $CDCl_3$) δ 8.61 (br s, 1 H), 7.47 (d, J = 9.1 Hz, 2H), 7.29 (tt, $J_1 = 8.7$ Hz, $J_2 = 2.3$ Hz, 2H), 7.06 (t, J = 7.6 Hz, 1H), 6.96–6.91 (m, 4H), 5.86 (d, J = 8.1 Hz, 1H), 3.88–3.81 (m, 1H), 3.18-3.02 (m, 2H), 2.44 (t, J = 9.1 Hz, 2H), 2.01–1.94 (m, 2H), 1.37 (s, 9H).

5.2.50.3. Step 3: Synthesis of 4S-4,5-diamino-N-(4phenoxyphenyl)pentanamide bistrifluoroacetate (12b). Compound 22 was dissolved in CH₂Cl₂ and TFA (10 equiv) was added. After stirring for 4 h the reaction mixture was concentrated. The resulting yellow oil was purified by reverse phase HPLC using a gradient of MeCN in water to provide **12b** (16%) as a white solid: ¹H NMR (400 MHz, CD₃OD) δ 7.55–7.53 (m, 2H), 7.32 (t, J = 7.6 Hz, 2H), 7.07 (t, J = 7.6 Hz, 1H), 6.94 (d, J = 8.8 Hz, 4H), 3.687–3.624 (m, 1H), 3.30–3.26 (m, 2H), 2.70–2.66 (m, 2H), 2.18–1.98 (m, 2H); Anal. (C₁₇H₂₁N₃O₂·2.3CF₃CO₂H) C, N, F. H: Calcd, 4.18, found, 3.50.

5.2.51. 4S-4-Amino-5-methoxy-N-(4-phenoxyphenyl)-pentanamide (12c). Compound 21 (0.5 g, 1.3 mmol) was dissolved in MeCN/THF (3/1, 20 mL) and Ag₂O (1.5 g, 5 equiv) and MeI (1.2 mL, 10 equiv) were added to give a black suspension. After stirring for 7 days, the reaction was filtered over Celite and the mother liquor was concentrated. This product was dissolved in CH₂Cl₂ and TFA (10 equiv) was added. After stirring for 2 h, solvent was removed. The residue was partitioned between NaOH (1 M aq) and CH₂Cl₂. The layers were separated, the aqueous layers were extracted with $2 \times CH_2Cl_2$, and the combined organic layers were dried and concentrated. The resulting solid was purified by silica gel chromatography using a gradient of MeOH in CH₂Cl₂ to provide pure **12c** (16%) as a white solid: ¹H NMR (400 MHz, DMSO d_6) δ 9.93 (s, 1H), 7.58 (d, J = 9.1 Hz, 2H), 7.33 (tt, $J_1 = 7.3$ Hz, $J_2 = 2.2$ Hz, 2H), 7.06 (t, J = 7.3 Hz, 1H), 6.97–6.91 (m, 4H), 3.23 (s, 3H), 3.02 (dd, $J_1 = 9.2$ Hz, $J_2 = 5.2$ Hz, 1H), 3,13 (dd, $J_1 = 9.5$ Hz, $J_2 = 6.6$ Hz, 1H), 2.81-2.75 (m, 1H), 2.44-2.28 (m, 2H), 1.74-1.65 (m, 1H), 1.47-1.38 (m, 1H); Anal. ($C_{18}H_{22}N_2O_3$) 0.1CH₂Cl₂) C, H, N.

5.2.52. 2S-2-Amino-5-oxo-5-[(4-phenoxyphenyl)amino]-1pentanesulfonic acid (12d). A solution of 16 (0.4 g, 0.8 mmol) and potassium thioacetate (0.2 g, 2 equiv) in acetone (10 mL) was stirred for 48 h. The suspension was filtered over Celite and concentrated to provide the thioacetate. To a solution of this product in AcOH (1 mL) was added H₂O₂ (30% in water, 0.5 mL) in AcOH (1 mL). After stirring for 24 h, the reaction mixture was diluted with Et₂O and the resulting precipitate was filtered and washed with MeOH and water to provide 12d (28%) as a white solid: ¹H NMR (400 MHz, DMSO- d_6) δ 9.97 (s, 1H), 7.84 (s, 2H), 7.56 (dt, $J_1 = 8.8$ Hz, $J_2 = 2$ Hz, 2H), 7.36–7.31 (m, 2H), 7.07 (tt, $J_1 = 7.2$ Hz, $J_2 = 1.2$ Hz, 1H), 6.97-6.91 (m, 4 H), 3.38 (s, 1H), 2.84 (dd, $J_1 = 12$ Hz, $J_2 = 2.4$ Hz, 1H), 2.65–2.59 (m, 1H), 2.48– 2.29 (m, 2H), 1.99-1.79 (m, 2H); Anal. (C₁₇H₂₀N₂O₅ S·0. 15H₂O·0.1 CH₂Cl₂) C, H, N, S.

5.2.53. 4S-4-Amino-4-(2-(1,3,4-triazolyl))-*N*-(4-phenoxy-phenyl)butanamide (12e)

5.2.53.1. Step 1: Synthesis of 4*S*-4-(1,1-dimethylethylcarbamoylamino)-4-cyano-*N*-(4-phenoxyphenyl)butanamide (15). To a solution of Boc-Gln (8 g, 25 mmol) and *N*methylmorpholine (7 mL, 2 equiv) in THF (100 mL) at -20 °C was added isobutyl chloroformate (3.3 mL, 1 equiv). After stirring at this temperature for 30 min, 4phenoxyaniline (5 g, 1 equiv) was added and the turbid reaction mixture was allowed to warm to room temperature for over 16 h. The reaction mixture was filtered and concentrated. The residue was dissolved in EtOAc, washed with NaHSO₄ (satd aq), NaHCO₃ (satd aq) and brine, dried and concentrated. A solution of the resulting amide (6 g, 13 mmol) in DMF (250 mL) was cooled to 0 °C and cyanuric chloride (2.5 g, 1 equiv) was added. The reaction mixture was allowed to warm to room temperature and stirred for 16 h, and then the reaction was poured into water. The solid was filtered off to provide **15** (66%) as a pale yellow solid: ¹H NMR (400 MHz, CDCl₃) δ 7.86 (br s, 1H), 7.45 (d, *J* = 9.0 Hz, 2H), 7.26 (tt, *J*₁ = 8.4 Hz, *J*₂ = 2.1 Hz, 2H), 7.05 (t, *J* = 7.8 Hz, 1H), 6.96–6.91 (m, 4H), 5.6 (br s, 1H), 4.64 (br s, 1H), 2.65–2.53 (m, 2H), 2.30–2.23 (m, 2H), 1.43 (s, 9H).

5.2.53.2. Step 2: Synthesis of 4S-4-amino-4-(2-(1,3,4triazolyl))-N-(4-phenoxyphenyl)butanamide trifluoroacetate (12e). A slurry of cyanide (2 g, 4.7 mmol), formic hydrazide (0.56 g, 2 equiv) and K_2CO_3 (0.14 g, 0.2 equiv) in EtOH was stirred at reflux for 24 h. The reaction mixture was then poured into water and the resulting solid was isolated by filtration. This product was slurried in CH₂Cl₂ and TFA (10 equiv) was added to give a solution. After stirring for 2 h, solvent was removed. The residue was purified by reverse phase HPLC using a gradient of MeCN in H₂O to provide 12e (12%) as a white solid: ¹H NMR (400 MHz, DMSO- d_6) δ 9.93 (s, 1H), 8.70 (d, J = 2.5 Hz, 1H), 8.50 (br s, 2H), 7.55 (d, J = 9.1 Hz, 2H), 7.34 (t, J = 7.3 Hz, 2H), 7.07 (t, J =7.3 Hz, 1H), 6.95 (d, J = 9.2 Hz, 2H), 6.92 (d, J =7.7 Hz, 2H), 4.47 (br s, 1H), 2.35 (t, J = 6.9 Hz, 2H), 2.27–2.11 (m, 2H); Anal. (C₁₈H₁₉N₅O₂·0.2H₂O·1CF₃CO₂H) C, H, N, F.

5.2.54. 4S-4-Amino-5-(2-thio-5-amino-1,3,4-thiadiazol-2yl)-N-(4-phenoxyphenyl)pentanamide bistrifluoroacetate (12f). To a solution of 5-amino-1,3,4-thiadiazole-2-thiol (0.06 g, 1.1 equiv) in DMF (5 mL) was added NaH (0.02 g, 1.1 equiv) giving a strong exotherm. After stirring for 3 h, compound 16 (0.2 g, 0.4 mmol) was added. This reaction mixture was stirred for 16 h. and then poured into ice water. The solid was filtered off and the mother liquor was concentrated to provide crude product. This product was dissolved in CH2Cl2 and HCl (4 M in dioxane, 10 equiv) was added. After stirring for 24 h the reaction mixture was concentrated. The resulting yellow oil was purified by reverse phase HPLC using a gradient of MeCN in water to provide 12f(11%) as a yellow oil: ¹H NMR (400 MHz, CD₃OD) δ 7.52 (dd, $J_1 = 8.8$ Hz, $J_2 = 2.2$ Hz, 2H), 7.32 (tt, $J_1 = 7.3$ Hz, $J_2 = 2.2$ Hz, 2H), 7.08 (t, J = 7.4 Hz, 1H), 6.96–6.92 (m, 4H), 3.68–3.64 (m, 3H), 3.56 (dd, $J_1 = 14.6$ Hz, $J_2 = 4.8$ Hz, 1H), 3.34 $(J_1 = 15.0 \text{ Hz}, J_2 = 9.8 \text{ Hz}, 1\text{H}), 2.68-2.57 \text{ (m, 2H)},$ 2.13-2.08 (m, 2H); Anal. (C₁₉H₂₁N₅O₂S₂·2.5CF₃CO₂H) C, H, N, S.

5.2.55. 4S-4-Amino-5-(1H-pyrrol-1-yl)-N-(4-phenoxyphenyl)pentanamide bistrifluoroacetate (12g). A solution of compound 22 (0.3 g, 0.75 mmol) and NaOAc (0.06 g, 1 equiv) in AcOH (250 mL) was heated to 80 °C and 2,5-dimethoxytetrahydrofuran (0.13 mL, 1.3 equiv) was added dropwise to the solution. After stirring for 2 h, the reaction was diluted with water and washed with $2\times$ CH₂Cl₂. The water layer was then brought to pH 13 with K₂CO₃ (satd aq) and extracted with 2× CH₂Cl₂. The organic fractions were dried and concentrated to provide crude pyrrole. This pyrrole was dissolved in CH₂Cl₂ and HCl (4 M in dioxane, 10 equiv) was added. After stirring for 6 h the reaction mixture was concentrated. The residue was purified by reverse phase HPLC using a gradient of MeCN in water to provide **12g** (1%) as a yellow oil: ¹H NMR (400 MHz, CD₃OD) δ 7.53 (d, J = 8.8 Hz, 2 H), 7.32 (t, J = 7.3 Hz, 2H), 7.08 (t, J = 7.4 Hz, 1H), 6.94 (d, J = 8.8 Hz, 4H), 6.76 (t, J = 1.8 Hz, 2H), 6.16 (t, J = 1.8 Hz, 2H), 4.22 (dd, $J_1 = 14.6$ Hz, $J_2 = 4.8$ Hz, 1H), 4.12 ($J_1 = 14.7$ Hz, $J_2 = 7.3$ Hz, 1H), 2.66–2.51 (m, 2H), 1.96 (q, J = 6.6 Hz, 2H); Anal. (C₂₁H₂₃N₃O₂·2.1CF₃CO₂H) C, N. H: Calcd, 4.30, found, 3.83.

5.2.56. 4S-4-Amino-5-(1-phthalimido)-N-(4-phenoxyphenyl)pentanamide trifluoroacetate (12h). To a solution of 16 (1.2 g, 2.5 mmol) in DMF (25 mL) was added potassium phthalimidate (0.5 g, 1.1 equiv). This slurry was stirred at 100 °C for 4 h, and then poured into NaHCO₃ (satd aq). The water layer was extracted with 2× EtOAc and the combined organic layers were dried (MgSO₄) and concentrated to give the phthalimide as a white solid. This product was dissolved in CH₂Cl₂ and TFA (10 equiv) was added. After stirring for 16 h the reaction was concentrated. The residue was purified by reverse phase HPLC using a gradient of MeCN in water to provide 12h (14%) as a white solid: ¹H NMR (400 MHz, DMSO-d₆) & 9.93 (s, 1H), 7.86–7.80 (m, 4H), 7.56 (d, J = 9.1 Hz, 2H), 7.33 (t, J = 8.8 Hz, 2H), 7.06 (t, J = 7.3 Hz, 1H), 6.96–6.91 (m, 4H), 3.50 (dd, $J_1 = 7.4$ Hz, $J_2 = 2.2$ Hz, 2H), 2.98–2.91 (m, 1H), 2.45– 2.33 (m, 2H), 1.77-1.68 (m, 1H), 1.51-1.44 (m, 1H); Anal. (C25H23N3O4·0.51CF3CO2H) C, H, N, F.

References and notes

- (a) Goodarzi, K.; Goodarzi, M.; Tager, A. M.; Luster, A. D.; von Andrian, U. H. *Nat. Immunol.* 2003, *4*, 965; (b) Ott, V. L.; Cambier, J. C.; Kappler, J.; Marrack, P.; Swanson, B. J. *Nat. Immunol.* 2003, *4*, 974; (c) Tager, A. M.; Bromley, S. K.; Medoff, B. D.; Islam, S. A.; Bercury, S. D.; Friedrich, E. B.; Carafone, A. D.; Gerszten, R. E.; Luster, A. D. *Nat. Immunol.* 2003, *4*, 982.
- (a) Lewis, R. A.; Austen, K. F.; Soberman, R. J. N. Engl. J. Med. 1990, 323, 645; (b) Henderson, W. R. Ann. Intern. Med. 1994, 121, 684.
- Munafo, D. A.; Shindo, K.; Baker, J. R.; Bigby, T. D. J. Clin. Invest. 1994, 93, 1042.
- 4. Sharon, P.; Stenson, W. F. Gastroenterology 1984, 86, 453.
- 5. Barnes, P. J. Respiration 2001, 68, 441.
- (a) Griffiths, R. J.; Pettipher, E. R.; Koch, K.; Farrell, C. A.; Breslow, R.; Conklyn, M. J.; Smith, M. A.; Hackman, B. C.; Wimberly, D. J.; Milici, A. J.; Scampoli, D. N.; Cheng, J. B.; Pillar, J. S.; Pazoles, C. J.; Doherty, N. S.; Melvin, L. S.; Reiter, L. A.; Biggars, M. S.; Falkner, F. C.; Mitchell, D. Y.; Liston, T. E.; Showell, H. J. *Proc. Natl. Acad. Sci. U.S.A.* 1995, *92*, 517; (b) Tsuji, F.; Oki, K.; Fujisawa, K.; Okahara, A.; Horiuchi, M.; Mita, S. *Life Sci.* 1998, *64*, PL51.
- (a) Ikai, K. J. Dermatol. Sci. 1999, 21, 135; (b) Zhu, Y. I.; Stiller, M. J. Skin Pharmacol. Appl. Skin Physiol. 2000, 13, 235.

- 8. (a) Friedrich, E. B.; Tager, A. M.; Liu, E.; Pettersson, A.; Owman, C.; Munn, L.; Luster, A. D.; Gerstzen, R. E. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 1761; (b) Subbarao, K.; Jala, V. R.; Mathis, S.; Suttles, J.; Zacharias, W.; Ahamed, J.; Ali, H.; Tseng, M. T.; Haribabu, B. Arterioscler. Thromb. Vasc. Biol. 2004, 24, 369; (c) Helgadóttir, A.; Manolescu, A.; Thorleifsson, G.; Gretarsdóttir, S.; Jonsdóttir, H.; Thorsteinsdóttir, U.; Samani, N. J.; Gudmundsson, G.; Grant, S. F. A.; Thorgeirsson, G.; Sveinbjornsdóttir, S.; Valdimarsson, E. M.; Matthiasson, S. E.; Johannsson, H.; Gudmundsdóttir, O.; Gurney, M. E.; Sainz, J.; Thorhallsdóttir, M.; Andresdóttir, M.; Frigge, M. L.; Topol, E. J.; Kong, A.; Gudnason, V.; Hakonarson, H.; Gulcher, J. R.; Stefansson, K. Nat. Genet. 2004, 36, 233; (d) Jala, V. R.; Haribabu, B. Trends Immun. 2004, 25, 315.
- 9. Ford-Hutchinson, A. W. Crit. Rev. Immunol. 1990, 10, 1.
- 10. Yokomizo, T.; Izumi, T.; Chang, K.; Takuwa, Y.; Shimizu, T. *Nature* **1997**, *387*, 620.
- 11. Yokomizo, T.; Kato, K.; Terawaki, K.; Izumi, T.; Shimizu, T. J. Exp. Med. 2000, 192, 421.
- 12. Ford-Hutchinson, A. W.; Gresser, M.; Young, R. N. Annu. Rev. Biochem. 1994, 63, 383.
- Aharony, D. Am. J. Respir. Crit. Care Med. 1998, 157, S214.
- 14. Serhan, C. N. Prostaglandins 1997, 53, 107.
- 15. Haeggström, J. Z. Am. J. Respir. Crit. Care Med. 2000, 161, S25.
- Thunnissen, M. M.; Nordlund, P.; Haeggström, J. Z. Nat. Struct. Biol. 2001, 8, 131.
- 17. Haeggstroem, J. Z. J. Biol. Chem. 2004, 279, 50639.
- Orning, L.; Gierse, J. K.; Fitzpatrick, F. A. J. Biol. Chem. 1994, 269, 11269.
- Thunnissen, M. M.; Andersson, B.; Samuelsson, B.; Wong, C.-H.; Haeggström, J. Z. *FASEB J.* 2002, 16, 1648.
- (a) Penning, T. D. *Curr. Pharm. Des.* 2001, 7, 163; (b) Penning, T. D.; Russell, M. A.; Chen, B. B.; Chen, H. Y.; Liang, C.-D.; Mahoney, M. W.; Malecha, J. W.; Miyashiro, J. M.; Yu, S. S.; Askonas, L. J.; Gierse, J. K.; Harding, E. I.; Highkin, M. K.; Kachur, J. F.; Kim, S. H.; Villani-Price, D.; Pyla, E. Y.; Ghoreishi-Haack, N. S.; Smith, W. G. J. Med. Chem. 2002, 45, 3482.
- Sandanayaka, V.; Mamat, B.; Yu, P.; Zhao, L.; Bedell, L.; Bhagat, N.; Winger, J.; Keyvan, M.; Bock, B.; Krohn, M.; Chandrasekar, P.; Mo, X.; Zhou, L.; Mishra, R.; Onua, E.; Zhang, J.; Porsteinsdóttir, M.; Halldorsdóttir, G.; Sigporsdóttir, H.; Friedman, M.; Zembower, D.; Andresson, P.; Singh, J.; Gurney, M. *Abstracts of Papers*, 233rd National Meeting of the American Chemical Society, Chicago, IL, March 25–29, 2007; American Chemical Society: Washington, DC, 2007; MEDI 236.
- Ollmann, I. R.; Hogg, J. H.; Muñoz, B.; Haeggström, J. Z.; Samuelsson, B.; Wong, C.-H. *Bioorg. Med. Chem.* 1995, *3*, 969.
- Askonas, L. J.; Kachur, J. F.; Villani-Price, D.; Liang, C.-D. D.; Russell, M.; Smith, W. G. J. Pharmacol. Exp. Ther. 2002, 300, 577.
- 24. Jenks, W. P. Adv. Enzymol. Areas Mol. Biol. 1975, 43, 219.
- Penning, T. D.; Chandrakumar, N. S.; Chen, B. B.; Chen, H. Y.; Desai, B. N.; Djuric, S. W.; Docter, S. H.; Gasiecki, A. F.; Haack, R. A.; Miyashiro, J. M.; Russell, M. A.; Yu, S. S.; Corley, D. G.; Durley, R. C.; Kilpatrick, B. F.; Parnas, B. L.; Askonas, L. J.; Gierse, J. K.; Harding, E. I.; Highkin, M. K.; Kachur, J. F.; Kim, S. H.; Krivi, G. G.; Villani-Price, D.; Pyla, E. Y.; Smith, W. G.; Ghoreishi-Haack, N. S. J. Med. Chem. 2000, 43, 721.
- Leslie, A. G. W. Joint CCP4 + ESF-EAMCB Newsletter on Protein Crystallography, No. 26, 1992.

- 27. Collaborative Computational Project, Number 4 Acta *Crystallogr., Sect. D* 1994, 50, 760–763.
 28. Murshudov, G. N.; Vagin, A. A.; Dodson, E. J. Acta
- Crystallogr., Sect. D 1997, 53, 240.
- 29. Perrakis, A.; Sixma, T. K.; Wilson, K. S.; Lamzin, V. S. Acta Crystallogr., Sect. D 1997, 53, 448.
 30. McRee, D. E. Practical Protein Crystallography, 2nd ed.;
- Academic Press: New York, 1999.