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Amide Bond Formation Catalyzed by Recyclable Copper 
Nanoparticles Supported on Zeolite Y under Mild Conditions 

Yanina Moglie,*[a] Eduardo Buxaderas,[a] Agustina Mancini,[a] Francisco Alonso,[b] and Gabriel 

Radivoy*[a]   

 

A series of catalysts based on supported copper nanoparticles 

have been prepared and tested in the amide bond formation 

from tertiary amines and acid anhydrides, in the presence of 

tert-butyl hydroperoxide as an oxidant. Copper nanoparticles 

on zeolite Y (CuNPs/ZY) was found to be the most efficient 

catalyst for the synthesis of amides, working in acetonitrile as 

solvent, under ligand- and base-free conditions in air. The 

products were obtained in good to excellent yields and in short 

reaction times. The CuNPs/ZY system also exhibited higher 

catalytic activity than some commercially available copper and 

iron sources and it was reused in ten reaction cycles without 

any further pre-treatment. This methodology has been 

successfully scaled-up to a gram scale with no detriment to the 

yield. 

Introduction 

Amide bond forming reactions[1] are among the most 

important tools in synthetic organic chemistry since they allow 

access to relevant fine chemicals such as peptides, proteins and 

synthetic polymers.[2] Amides are also present in a large number 

of other biologically important compounds, pharmaceuticals and 

synthetic materials,[3] and they are used as ligands for stabilizing 

various metal centers.[4]  

Traditionally, the amide synthesis involve the reaction 

between carboxylic acids, or their activated species, and amines, 

usually primary or secondary ones.[5] On the other hand, tertiary 

amines, which are commonly present in various natural products, 

are highly stable and easily available compounds, making their 

transformation into amides an interesting alternative.[6] Since 

tertiary amines are less nucleophilic, amidation of these 

substrates usually requires harsh conditions and/or metal 

catalysis. The catalytic oxidative amidation of tertiary amines 

with different acylating agents, mainly aldehydes and carboxylic 

acids, has been accomplished by using different copper or iron 

sources as metal catalysts. In 2013, Li and co-workers reported 

a new and efficient method for the FeCl2-catalyzed oxidative 

amidation of tertiary amines with aldehydes, using tert-butyl 

hydroperoxide (TBHP) as oxidant.[6a] Right after, they improved 

their own method by using anhydrides as acylating agents, 

avoiding some of the disadvantages of the use of aldehydes, 

however, the use of pyridine as base was necessary to increase 

the reaction yield.[6b] More recently, Guan and co-workers[6c] 

extended the use of anhydrides as acylating agents in the 

amidation of tertiary amines, catalyzed by Cu(OAc)2 in the 

presence of molecular oxygen, leading to the corresponding 

amides in good yields but in much longer reaction times. 

The use of heterogeneous catalysis in organic 

transformations is favored in terms of the ease of handling, 

simple workup, recyclability and reusability.[7] The possibility of 

catalyst recovery is not only beneficial from an economic point of 

view, but also decreases the risk of contamination of the 

reaction products with transition metals. To the best of our 

knowledge, there is only one example in the literature 

concerning the direct oxidative amidation of tertiary amines by 

means of heterogeneous catalysis. In that paper, Phan and co-

workers, reported on the use of copper-based metal-organic 

framework (MOF) composites for the direct oxidative amidation 

of N,N-dimethylanilines using anhydrides as acylating agents, in 

the presence of pyridine and TBHP as an oxidant.[8] The metal-

organic framework [Cu2(EDB)2(BPY)] demonstrated to be an 

efficient heterogeneous catalyst, and robust enough to be 

recycled and reused, but its synthesis is time-demanding and 

the scope of the method was tested with only four substrates 

(Figure 1a). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Heterogeneous copper catalysts for the direct amidation of tertiary 

amines. 
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Following our research on catalysis by metal nanoparticles 

(supported or unsupported) and its application in useful synthetic 

transformations,[9] we now focused our attention on the direct 

oxidative amidation of tertiary amines by acid anhydrides, using 

inexpensive and easy to prepare catalysts based on supported 

copper nanoparticles. We want to present herein, our results on 

the direct amidation of a wide range of tertiary amines with a 

variety of anhydrides, catalyzed by a highly efficient and 

recyclable CuNPs/ZY heterogeneous catalyst with low copper 

loading, using TBHP as oxidant and in the absence of any 

added base (Figure 1b). 

Results and Discussion 

The catalysts were readily prepared by addition of the 

support to a suspension of freshly prepared copper 

nanoparticles (CuNPs). The CuNPs were generated by fast 

reduction of anhydrous copper(II) chloride, using lithium sand 

and a catalytic amount of DTBB (4,4’-di-tert-butylbiphenyl, 10 

mol %) as reducing system, in THF at room temperature. The 

catalysts were ready for use as prepared, after filtration and 

drying, without any pre-treatment. Different inorganic materials 

such as activated carbon, Celite, zeolite Y and ZnO were tested 

as supports for the CuNPs. 

N,N-Dimethylaniline (1a) and acetic anhydride (2a) were 

used as model substrates in order to test the activity of different 

catalysts in the direct oxidative amidation reaction (Table 1). The 

reactions were performed under mild conditions, at 70 ºC, using 

acetonitrile as solvent and tert-butyl hydroperoxide (TBHP, 70% 

in water) as oxidant. As shown in Table 1, along with the desired 

N-methyl-N-phenylacetamide (3aa), the formation of minor 

amounts of formyl amide (4a) was observed as the only by-

product in all cases. It is noteworthy that working under the 

present reaction conditions the use of a base as additive was 

not necessary. 

As can be seen from the results in Table 1, a substantial 

difference was observed in terms of conversion and selectivity, 

depending on the catalyst support. Thus, CuNPs supported on 

activated carbon (C) or Celite (Table 1, entries 1 and 2) gave 

modest conversions and high selectivities towards the 

acetamide 3aa, after 1 h of reaction time. When ZnO was tested 

as support, a detrimental effect in the Cu-catalyzed amide bond 

formation was observed, leading to 57% of acetamide 3aa after 

10 h of reaction (Table 1, entry 3). The use of zeolite Y (ZY) as 

support for the CuNPs, proved to be the best choice for the 

desired transformation, giving quantitative conversion and 

excellent selectivity towards 3aa in only 20 min of reaction time 

(Table 1, entry 4).  

We then studied the effect of different oxidizing agents in 

the course of the amidation reaction. When TBHP was replaced 

by O2 (1 atm, balloon), quantitative conversion of 1a was 

achieved but longer reaction time (120 min) and lower selectivity 

towards 3aa was observed (Table 1, entry 5). Also H2O2 was 

tested as oxidant, however almost no conversion of the starting 

materials was observed after 24 h of reaction (Table 1, entry 6). 

With the optimized conditions in hand, some control experiments 

were carried out. When the reaction was conducted under N2 

atmosphere, high conversion and selectivity values were 

maintained but the reaction was thrice slower (Table 1, entry 7). 

Finally, very low conversions and selectivities were observed in 

the absence of the catalyst or in the presence of the support 

alone (Table 1, entries 8 and 9). 

 

Table 1. Screening of catalysts and optimization of reaction conditions
[a]

 

 

 

 

 

 

Entry Catalyst Time (min) X (%)
[b]

 S (%)
[c]

 

1 CuNPs/C 60 82
 

94 

2 CuNPs/Celite 60 72 94 

3 CuNPs/ZnO 240 52 97 

4 CuNPs/ZY 20 100 99 

5 CuNPs/ZY
[d] 

120 100 82 

6 CuNPs/ZY
[e]

 24h 5 --- 

7 CuNPs/ZY
[f]
 60 100 99 

8 --- 120 46 57 

9 ZY 120 19 60 

[a] Conditions: 1a (0.5 mmol), 2a (0.6 mmol), catalyst (20 mg, 1.0 mol% Cu), 

TBHP (1.6 equiv.), MeCN (2 mL), 70 ºC under air. [b] Conversion determined 

by GC-MS using dodecane as internal standard. [c] Selectivity expressed as 

(moles of 3aa / moles converted of 1a) x 100, determined by GC-MS. [d] 

Reaction carried out using O2 as oxidant. [e] Reaction carried out using H2O2 

(1.6 equiv.) as oxidant. [f] Reaction carried out under N2 atmosphere. 

The full characterization of the CuNPs/ZY catalyst was 

reported by some of us elsewhere[10] (see also Supporting 

Information). Analysis by transmission electron microscopy 

(TEM) revealed the presence of well dispersed spherical 

nanoparticles, with diameters of ca. 1.7 ± 0.7 nm. Energy-

dispersive X-Ray (EDX) analysis on various regions confirmed 

the presence of copper with energy bands of 8.04, 8.90 keV (K 

lines) and 0.92 keV (L line). X-ray diffraction (XRD) was 

consistent with the presence of zeolite Y in the catalyst, but no 

diffraction peaks owing to copper species were detected. XPS 

analysis showed four Cu 2p3/2 peaks at 932.6, 934.6, 941.5 and 

944.1 eV. These peaks could be assigned to Cu2O (932.6 eV) 

and CuO (934.6 eV), with the peaks at 941.5 and 944.1 eV 

being the satellite shake-up features characteristic of Cu2+ 

species. A copper loading of 1.15 wt% was determined by 

atomic absorption spectroscopy (AAS).  

Catalyst recyclability was then tested. After one cycle, the 

CuNPs/ZY catalyst was separated by centrifugation, washed 

with the reaction solvent and reused in further experiments 

under the optimized conditions, without any previous treatment. 

It was found that CuNPs/ZY could be recovered and reused 

several times in the direct amidation of 1a with 2a without any 
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significant decrease in the catalytic activity. As shown in Figure 

2, a slightly lower selectivity towards the formation of the 

acetamide 3aa was observed, while the conversion value 

remained almost constant along ten consecutive cycles. 

 

 

 

 

 

 

  

 

 

Figure 2. Recycling of the CuNPs/ZY catalyst in the synthesis of 3aa. 

Furthermore, the procedure was successfully scaled up to 

a 10 mmol scale, giving 98% conversion into the desired 

acetamide 3aa, using a copper loading of 2.3 mol%. The kinetic 

profile for the amidation reaction of 1a at 10 mmol scale is 

showed in the Figure 3. 

 

Figure 3. Kinetic profile for a 10 mmol scale synthesis of 3aa. 

 

Chemical structure of neat zeolite Y, fresh CuNPs/ZY and 

spent catalyst were characterized by FTIR spectroscopy (see 

Supporting Information). For neat zeolite Y, a broad band 

located around 3500 cm-1 was observed due to stretching 

vibration of O-H groups on the zeolite surface. A band located at 

approximately 1630 cm-1 could be assigned to bending vibration 

of O-H groups. The main characteristic band for zeolite Y was 

observed at 1200-1000 cm-1, which could be ascribed to 

stretching vibrations of Si-O and Al-O groups. The presence of 

copper led to small changes in the chemical structure of the 

support as the main bands were located at the same 

wavenumbers. The appearance of new bands located at 1500-

1400 cm-1 could be assigned to the interaction between Cu and 

Si-O or Al-O bonds. Also, a new band observed at 876 cm-1 

could be assigned to the Cu-O-H stretching. The FTIR spectra of 

spent catalyst showed small differences with the spectra 

corresponding to the fresh catalyst, only a deacrease in the 

bands intensity was observed. 

The optimized conditions for the direct amidation of N,N-

dimethylaniline using acetic anhydride as acylating agent were 

then applied to a range of tertiary amines (Table 2).  

 

Table 2. Scope of the amidation of tertiary amines with acetic anhydride
[a]

 

 

 

 

 

 

Entry Starting amine Time 

(min) 

Product Yield 

(%)
[b]

 

1  
 

20 

 

98 

2  
 

30 

 

81 

3 
 

 

30 

 

92 

4 

 

60 

 

90 

5 

 

120 

 

96 

6 

 

24h 

 

20 

7 

 

24h 

 

17 

8 
 

 

45 

 

78 

9  
 

45 

 

70 

10 

 
 

60 

 

73 

11 
 

 

60 

 

88 

12 

 
 

30 

 

88 

13  
 

120 

 

58 
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14 

 
60 

 

89 

[a] Tertiary amine (1, 0.5 mmol), acetic anhydride (2a, 0.6 mmol), CuNPs/ZY 

catalyst (20 mg, 1.0 mol% Cu), TBHP (1.6 equiv) in MeCN (2 mL) at 70° C 

under air. [b] Determined by GC-MS using dodecane as internal standard. 

As shown in Table 2, both N,N-dimethyl-p-toluidine (1b) 

and 4-bromo-N,N-dimethylaniline (1c) gave the corresponding 

acetamides 3ba and 3ca in good yields after 30 min of reaction 

time (Table 2, entries 2 and 3, respectively). Notably, the 

catalytic system was equally effective when applied to the acidic 

phenolic derivative 1d and the sterically hindered benzidine 1e 

(entries 4 and 5). On the contrary, anilines 1f and 1g, which are 

substituted with electron-withdrawing groups, gave poor yields, 

probably due to the lower electron density of the aniline which 

would suppress the oxidative amidation reaction[6c] (entries 6 

and 7). Not only N-methyl groups but also N-ethyl ones reacted 

under the reaction conditions. Thus, N,N-diethylaniline (1h), 

gave the corresponding amide 3ha in 78% yield (Table 2, entry 

8). Furthermore, in the case of unsymmetrical tertiary anilines 

such as N-ethyl-N-methylaniline, the catalyst showed to be 

highly selective towards the cleavage of the methyl group, as 

acetamide 3ha was formed as the major amidation product 

(Table 2, entry 9). Also naphthylamines could be converted in 

the corresponding tertiary amides, although in longer reaction 

times. As an example, N,N-dimethylnaphthalen-1-amine (1j) was 

transformed into acetamide 3ja in 73% yield, after 60 min of 

reaction (Table 2, entry 10). The non-aromatic tertiary amines 1k 

and 1l also gave the corresponding acetamides in good yields 

(Table 2, entries 11 and 12, respectively). Unexpectedly, N,N-

dimethylhexadecan-1-amine was sluggish to react under the 

optimized conditions giving the corresponding acetamide 3ma in 

low yield (Table 1, entry 13). In contrast, triethylamine (1j) was 

converted into the corresponding acetamide 3na in 89% yield 

(Table 2, entry 14).  

Then, a series of anhydrides other than 2a were tested as 

acylating agents in the amidation of N,N-dimethylaniline (1a). As 

can be seen in Table 3, working under the optimized conditions 

all of the alkyl anhydrides tested (2b-2e) and also benzoic 

anhydride (2f) smoothly reacted with 1a to give the 

corresponding amides 3ab-3af in excellent yields, even though 

in longer reaction times than that of the amidation reaction using 

acetic anhydride as acylating agent. 

 

Table 3. Direct amidation of 1a with different anhydrides
[a]

 

 

 

 

 

 

Entry Anhydride 2 Time 

(min) 

Product Yield 

(%)
[b]

 

1 

 

30 

 

92 

2 

 

45 

 

83 

3 

 

45 

 

88 

4 

 

45 

 

89 

5 

 

60 

 

83 

[a] N,N-dimethylaniline (1a, 0.5 mmol), anhydride (2, 0.6 mmol), CuNPs/ZY 

catalyst (20 mg, 1.0 mol% Cu), TBHP (1.6 equiv) in MeCN (2 mL) at 70° C 

under air. [b] Determined by GC-MS using dodecane as internal standard. 

In view of these results, we decided to test our 

methodology in the synthesis of N,N-diethylbenzamide, a well-

known commercial tertiary amide used in many mosquito 

repellent formulations. As shown in Scheme 1, the CuNPs/ZY-

catalyzed direct amidation of triethylamine with benzoic 

anhydride, quantitatively giving the desired benzamide 3nf in 60 

min of reaction time. 

 

 

 

 

 

Scheme 1. Synthesis of N,N-diethylbenzamide (3nf) from triethylamine and 

benzoic anhydride. 

 

For the sake of comparison, we decided to carry out the 

direct amidation of N,N-dimethylaniline (1a) with acetic 

anhydride (2a) in the presence of a variety of commercial copper 

sources as catalysts. As shown in Table 4, the CuNPs/ZY 

catalyst proved to be more active than any of the commercial 

copper sources tested, at lower metal loading and with the 

possibility of being recovered and reused. On the other hand, it 

can be inferred that the presence of copper(II) species is 

relevant to achieve both high conversions and selectivities to the 

desired amide product 3aa (compare entries 1-3 with entries 4-7 

in Table 4). 

 

Table 4. Comparison of CuNPs/ZY with commercial copper sources as 

catalysts
[a]

 

 

 

 

 

 

Entry Catalyst Conversion (%)
[b]

 Selectivity (%)
[c]

 

1 Cu 30/80 70/73 

2 Cu2O 60/99 50/76 

3 CuI 49/80 55/83 
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4 CuO 70/99 89/93 

5 Cu(OAc)2 60/99 74/81 

6 CuCl2·2H2O 75/82 80/90 

7 CuNPs/ZY
[d]

 100 99/99 

[a] Conditions: 1a (0.5 mmol), 2a (0.6 mmol), catalyst (5 mol% Cu), TBHP (1.6 

equiv) in MeCN (2 mL) at 70 ºC under air. [b] Conversion at 20 min and 2 h of 

reaction, respectively, based on 1a. Determined by GC-MS using dodecane as 

internal standard. [c] Selectivity expressed as (moles of 3aa / moles converted 

of 1a) x 100, determined by GC-MS. [d] Reaction performed using 20 mg of 

catalyst (1.0 mol% Cu). 

In order to get some information about the plausible 

mechanistic pathway, and based on previous reports by other 

authors,[6],[8] we next studied the effect of the addition of TEMPO 

to the reaction mixture as radical scavenger. Thus, the reaction 

of 1a and 2a under the optimized conditions was not affected by 

the presence of TEMPO, giving 3aa with the same rate and yield 

as in the absence of this additive (Scheme 2). It is worthy of note, 

that this experimental evidence is in contrast with the results by 

Phan and co-workers,[8] as they reported that no further reaction 

progress was detected for the same transformation catalyzed by 

the Cu-MOF [Cu2(EDB)2(BPY)], after addition of TEMPO. 

 

 

 

 

Scheme 2. Direct amidation of 1a with 3a in the presence of TEMPO. 

 

In general, it is commonly accepted that tertiary amine 

oxidation occurs via generation of an -amino radical 

intermediate. As exemplified in Scheme 3 for the amidation of 1a, 

this intermediate (A) could be generated through two different 

routes, one of them would involve a single electron transfer 

(SET) catalyzed by Cu(II) to give an aminium radical cation (B) 

followed by a proton transfer (PT) step (Scheme 3, path i 

followed by path iii). Another way in which the intermediate A 

could be formed implies a direct hydrogen atom transfer (HAT) 

from the tertiary amine (Scheme 3, path ii). 

Based on previous literature reports on this subject,[11],[6b] 

path ii in Scheme 3 would be suppressed by the presence of a 

radical scavenger. On this basis, and since the presence of 

TEMPO did not inhibit the reaction under our conditions 

(Scheme 2), we consider that a single electron transfer followed 

by a proton transfer (path i and then path iii) is more likely to 

occur in the formation of intermediate A. A further SET process 

from radical A (path v) would led to iminium cation C which is 

the key intermediate in the way to the desired amide product. 

[6],[8],[12] Alternatively, as depicted in Scheme 3, the formation of C 

through elimination from peroxide intermediate E, or even 

through a direct hydrogen atom transfer (HAT) from B, could not 

be disregarded. Nevertheless, it should be noted that this last 

HAT process (path iv) could be inhibited by the presence of a 

radical scavenger. Finally, hydrolysis of C, via N-

hydroxymethylamine D, would render the corresponding 

secondary amine, which would react with the anhydride to give 

the desired amide 3aa. In order to confirm our assumption, we 

carried out the same reaction but in the absence of the acylating 

agent. Under these conditions, the secondary amine (N-methyl 

aniline) was observed as the major reaction product (63%) 

together with minor amounts of formamide 4a (7%) and the 

unreacted starting amine 1a (30%). This result is concordant 

with the fact that the electron-poor N,N-dimethylanilines 1f and 

1g were reluctant to react, because of the lower nucleophilic 

character of the intermediate secondary amine. Even though the 

specific copper species involved in the reaction pathway remain 

unclear at this stage, we speculate that a Cu(II)/Cu(I) redox 

couple is required.[10a]  With regard to the role of TBHP, by 

reaction with Cu(I) catalyst, it would generate Cu(II) peroxide 

species which would act as an oxidant in the initial SET process 

(Scheme 3, path i).[13]  Besides, TBHP would regenerate the 

Cu(II) species needed to restart the catalytic cycle, and it could 

also be acting as oxidant in the formation of peroxide 

intermediate E and/or formamide by-product 4a. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 3. Plausible mechanistic pathway.  

Conclusions 

In summary, we have developed a highly efficient method for the 

direct amidation of tertiary amines with anhydrides, catalyzed by 

CuNPs supported on zeolite Y. The heterogeneous CuNPs/ZY 

catalyst is easy to prepare and can be recovered and reused 

several times without any pre-treatment. The reported 

methodology has proven to be wide in scope, being applicable 

to the amidation of a range of aryl- and alkyl amines with a 

variety of anhydrides under mild conditions. In addition, the 

procedure could be succesfully scaled up to a gram scale with 
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no detriment to the yield of the desired amide. Further studies 

are now under way to explore other useful synthetic applications 

of this catalytic system.   

Experimental Section 

General 

All moisture sensitive reactions were carried out under a 
nitrogen atmosphere. Anhydrous tetrahydrofuran was freshly 
distilled from sodium/benzophenone ketyl. All starting materials 

were of the best available grade (Aldrich, Merck) and were used 
without further purification. Starting N,N-dimethylanilines 1d, 1e, 
1f and 1g were prepared from the corresponding anilines using 

dimethyl sulfate as methylating agent (See Supporting 
Information). Commercially available copper(II) chloride 
dihydrate was dehydrated upon heating in oven (150 ºC, 45 min) 

prior to use for the preparation of CuNPs. Column 
chromatography was performed with Merck silica gel 60 (0.040–
0.063 m, 240–400 mesh) and hexane/EtOAc as eluent. 

Reactions were monitored by thin-layer chromatography on 
silica gel plates (60F-254) visualized under UV light and/or using 
0.2% ninhydrin in ethanol. Nuclear magnetic resonance (NMR) 

spectra were recorded on a Bruker ARX-300 spectrometer using 
CDCl3 as the solvent and tetramethylsilane (TMS) as internal 
reference. Mass spectra (EI) were obtained at 70 eV on a 

Hewlett Packard HP-5890 GC/MS instrument equipped with a 
HP-5972 selective mass detector. High resolution mass spectra 
were recorded on Thermo Fisher LTQ Orbitrap XL, (for EI) and a 

Finnigen MAT 95 (for ESI). Infrared (FT-IR) spectra were 
obtained on a Nicolet-Nexus spectrophotometer.                                                                     

Preparation of the CuNPs/ZY catalyst  

Anhydrous copper(II) chloride (135 mg, 1 mmol) was added to a 
suspension of lithium (14 mg, 2 mmol) and 4,4'-di-tert-
butylbiphenyl (DTBB, 27 mg, 0.1 mmol) in THF (2 mL) at room 

temperature under a nitrogen atmosphere. The reaction mixture, 
which was initially dark blue, rapidly changed to black, indicating 
that the suspension of copper nanoparticles was formed. This 

suspension was diluted with THF (18 mL) followed by the 
addition of the sodium Y zeolite (1.28 g). The resulting mixture 
was stirred for 1 h at room temperature, filtered, and the solid 

successively washed with THF (5 mL) and diethyl ether (10 mL), 
and then dried under vacuum.  

General procedure for the synthesis of amides catalyzed by 

CuNPs/ZY    

The amine (0.5 mmol), the anhydride (0.60 mmol) and t-BuOOH 
(1 Equiv.) were added to a reactor tube containing CuNPs/ZY 

(20 mg, 1.0 mol% Cu) in MeCN (2 mL) under air. The reaction 
mixture was warmed to 70 ºC and monitored by TLC and/or GLC 
until total conversion of the starting material. The solvent was 

removed in vacuo and the product was purified by flash column 
chromatography (hexane-EtOAc) to give the corresponding 
tertiary amide. Compounds 3aa,[14] 3ba,[15] 3ca,[16] 3ha,[17] 3ja,[18] 

3ka,[19] 3la,[20] 3na,[21] 3ab,[22] 3ac,[23] 3ad,[24] 3ae,[24] 3af[25], 3nf[26], 
3fa[27], 3ga[28] were characterized by comparison of their physical 
and spectroscopic data with those described in the literature. 

Full data for the new compounds 3da, 3ea and 3ma are 
provided below. 

N-Methyl-N-phenylacetamide (3aa): White solid. 68.6 mg, 92% 
yield. 1H NMR (300 MHz, CDCl3) δ 7.40– 7.19 (m, 3H), 7.16 – 
7.07 (m, 2H), 3.20 (s, 3H), 1.80 (s, 3H). 13C NMR (75 MHz, 

CDCl3) δ 170.8, 144.7, 129.8, 127.8, 127.2, 37.3, 22.5.  

N-Methyl-N-(p-tolyl)acetamide (3ba): Pale yellow solid. 63.2 mg, 
78% yield. 1H NMR (300 MHz, CDCl3) δ 7.14 (d, J = 8.0 Hz, 2H), 

6.99 (d, J = 8.2 Hz, 2H), 3.17 (s, 3H), 2.30 (s, 3H), 1.79 (s, 3H). 
13C NMR (75 MHz, CDCl3) δ 170.8, 142.0, 137.6, 130.3, 126.8, 
37.2, 22.3, 21.0.  

N-(4-Bromophenyl)-N-methylacetamide (3ca): Light yellow solid. 
101.0 mg, 89% yield. 1H NMR (300 MHz, CDCl3) δ 7.54 (d, J = 
8.5 Hz, 2H), 7.07 (d, J = 8.5 Hz, 2H), 3.23 (s, 3H), 1.87 (s, 3H). 
13C NMR (75 MHz, CDCl3) δ 170.5, 143.7, 133.1, 128.9, 121.5, 
37.2, 22.5.  

N-(3-hydroxyphenyl)-N-methylacetamide (3da): Red oil. 70.1 mg, 

85% yield. IR (neat) : 3276, 2929, 1696, 1499, 1372, 1213, 
1180, 698 cm-1. 1H NMR (300 MHz, CDCl3) δ 7.47 – 7.37 (m, 
1H), 7.12 – 7.05 (m, 2H), 6.99 – 6.94 (m, 1H), 3.26 (s, 3H), 2.31 

(s, 3H). 13C NMR (75 MHz, CDCl3) δ 170.9, 158.28, 151.4, 130.5, 
124.5, 121.2, 120.8, 37.3, 22.5 ppm. MS m/z 165 (M+, 35), 123 
(100), 122 (33), 94 (12); HRMS (EI) calc. for C9H11NO2 165.0790, 

found 165.0786. 

N,N'-(3,3'-dimethyl-[1,1'-biphenyl]-4,4'-diyl)bis(N-
methylacetamide) (3ea): Orange oil. 142.6 mg, 88% yield. IR 

(neat) : 2966, 2921, 1699, 1495, 1384, 833, 796 cm-1. 1H NMR 
(300 MHz, CDCl3) δ 7.46 – 7.41 (m, 2H), 7.39 – 7.36 (m, 2H), 
7.15 – 7.11 (m, 2H), 3.15 (s, 6H), 2.24 (s, 6H), 1.76 (s, 6H). 13C 

NMR (75 MHz, CDCl3) δ 170.9, 142.7, 140.3, 135.9, 130.2, 
128.4, 126.3, 36.1, 22.1, 17.6 ppm. MS m/z 325 (M+1, 10), 324 
(M+, 44), 281 (15), 227 (29), 165 (16), 56 (100); HRMS (EI) calc. 

for C20H24N2O2 324.1838, found 324.1842. 

N-Ethyl-N-phenylacetamide (3ha): White solid. 60.3 mg, 74% 
yield. 1H NMR (300 MHz, CDCl3) δ 7.46 – 7.34 (m, 3H), 7.20 – 

7.13 (m, 2H), 3.75 (q, J = 7.2 Hz, 1H), 1.83 (s, 3H), 1.11 (t, J = 
7.2 Hz, 1H). 13C NMR (75 MHz, CDCl3) δ 170.1, 142.9, 129.7, 
128.2, 127.9, 43.9, 22.8, 13.1.  

N-Methyl-N-(naphthalen-1-yl)acetamide (3ja): White solid. 67.7 
mg, 68% yield. 1H NMR (300 MHz, CDCl3) δ 7.98 – 7.85 (m, 2H), 
7.84 – 7.78 (m, 1H), 7.60 – 7.47 (m, 3H), 7.40 – 7.33 (m, 1H), 

3.37 (s, 3H), 1.77 (s, 3H). 13C NMR (75 MHz, CDCl3) δ 171.4, 
140.8, 134. 8, 130.1, 128.7, 127.5, 126.8, 125.9, 125.3, 122.3, 
37.0, 21.9.  

N-Benzyl-N-methylacetamide (3ka): Yellow-brown oil. 66.9 mg, 
82% yield. The product was obtained as a mixture of two 
rotamers in its 1H and 13C NMR spectra. 1H NMR (300 MHz, 

CDCl3) δ 7.41 – 7.20 (m, 8H), 7.19 – 7.14 (m, 2H), 4.59 (s, 2H, 
major rotamer), 4.53 (s, 2H, major rotamer), 2.94 (s, 3H, minor 
rotamer), 2.92 (s, 3H, major rotamer), 2.16 (s, 6H). 13C NMR (75 

MHz, CDCl3) δ 171.1, 170.8, 137.3, 136.5, 129.0, 128.6, 128.0, 
127.6, 127.3, 126.3, 54.3, 50.6, 35.5, 33.7, 21.8, 21.4.  

N-Methyl-N-phenethylacetamide (3la): White solid. 70.8 mg, 

80% yield. The product was obtained as a mixture of two 
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rotamers in its 1H and 13C NMR spectra. 1H NMR (300 MHz, 
CDCl3) δ 7.32 – 7.20 (m, 8H), 7.18 – 7.13 (m, 2H), 3.62 – 3.54 

(m, 2H), 3.52 – 3.46 (m, 2H), 2.94 (s, 3H), 2.86 (s, 3H), 2.90 – 
2.79 (m, 4H), 2.05 (s, 3H), 1.84 (s, 3H). 13C NMR (75 MHz, 
CDCl3) δ 170.6, 170.4, 139.3, 138.6, 128.9, 128.8, 128.7, 128.5, 

126.8, 126.3, 52.6, 49.8, 36.9, 34.8, 33.8, 33.4, 22.0, 21.0.  

N-Hexadecyl-N-methylacetamide (3ma): Yellow oil. 74.3 mg, 
50% yield. IR (neat) : 2929, 2855, 1699, 1462 cm-1. This 

product was obtained as a mixture of two rotamers in its 1H and 
13C NMR spectra. 1H NMR (300 MHz, CDCl3) δ 3.36 – 3.28 (m, 
2H), 3.26 – 3.20 (m, 2H), 2.96 (s, 3H), 2.90 (s, 3H), 2.08 (s, 3H), 

2.06 (s, 3H), 1.58 – 1.47 (m, 4H), 1.26 – 1.22 (m, 52H), 0.87 (t, J 
= 6.6 Hz, 6H). 13C NMR (75 MHz, CDCl3) δ 170.5, 170.4, 51.0, 
47.7, 36.2, 33.4, 32.1, 29.8 x 3, 29.7 x 2, 29.6, 29.5, 28.5, 27.5, 

27.0, 26.9, 22.8, 22.1, 21.4, 14.3 ppm. MS m/z 297 (M+, 4), 283 
(21), 282 (100), 114 (17), 100 (19), 87 (55), 86 (74), 74 (11), 55 
(11); HRMS (EI) calc. for C19H39NO 297.3032, found 297.3036.  

N,N-Diethylacetamide (3na): Yellow oil. 49.9 mg, 85% yield. 1H 
NMR (300 MHz, CDCl3) δ 3.41 – 3.27 (m, 4H), 2.08 (s, 3H), 1.18 
(t, J = 7.0 Hz, 3H), 1.12 (t, J = 7.0 Hz, 3H. 13C NMR (75 MHz, 

CDCl3) δ 169.8, 42.9, 40.1, 21.6, 14.3, 13.2.  

N-Methyl-N-phenylpropionamide (3ab): Yellow oil. 71.8 mg, 88% 
yield. 1H NMR (300 MHz, CDCl3) δ 7.44 – 7.36 (m, 2H), 7.34 – 

7.27 (m, 2H), 7.20 – 7.30 (m, 1H), 3.25 (s, 3H), 2.15 – 1.98 (m, 
2H), 1.03 (t, J = 7.5 Hz, 3H). 13C NMR (75 MHz, CDCl3) δ 174.1, 
144.3, 129.8, 127.4, 122.5, 37.4, 27.6, 9.8.  

N-Methyl-N-phenylbutyramide (3ac): Orange oil. 69.1 mg, 78% 
yield. 1H NMR (300 MHz, CDCl3) δ 7.39 – 7.31 (m, 2H), 7.30 – 
7.24 (m, 1H), 7.15 – 7.07 (m, 2H), 3.19 (s, 3H), 2.03 – 1.95 (m, 

2H), 1.58 – 1.46 (m, 2H), 0.74 (t, J = 7.4 Hz, 3H). 13C NMR (75 
MHz, CDCl3) δ 173.5, 144.3, 129.8, 127.8, 127.4, 37.4, 36.1, 
19.0, 13.9.  

N-Methyl-N-phenylpentanamide (3ad): Colorless liquid. 74.7 mg, 
81% yield. 1H NMR (300 MHz, CDCl3) δ 7.45 – 7.37 (m, 2H), 
7.36 – 7.31 (m, 1H), 7.20 – 7.14 (m, 2H), 3.26 (s, 3H), 2.07 (t, J 

= 7.5 Hz, 2H), 1.50 – 1.57  (m, 2H), 1.14 – 1.27 (m, 2H), 0.80 (t, 
J = 7.3 Hz, 3H). 13C NMR (75 MHz, CDCl3) δ 173.5, 144.4, 129.8, 
127.8, 127.4, 37.5, 33.9, 27.8, 22.5, 13.9.  

N-Methyl-N-phenylhexanamide (3ae): Light yellow liquid. 73.8 
mg, 72% yield. 1H NMR (300 MHz, CDCl3) δ 7.45 – 7.37 (m, 2H), 
7.36 – 7.28 (m, 1H), 7.20 – 7.12 (m, 2H), 3.25 (s, 3H), 2.05 (t, J 

= 7.6 Hz, 2H), 1.51 – 1.60  (m, 2H), 1.23 – 1.09 (m, 4H), 0.81 (t, 
J = 6.8 Hz, 3H).13C NMR (75 MHz, CDCl3) δ 173.6, 144.4, 129.8, 
127.8, 127.4, 37.5, 34.2, 31.6, 25.4, 22.5, 14.0.  

N-Methyl-N-phenylbenzamide (3af): White solid. 73.9 mg, 70% 
yield. 1H NMR (300 MHz, CDCl3) δ 7.32 – 7.11 (m, 8H), 7.06 – 
7.00 (m, 2H), 3.49 (s, 3H).13C NMR (75 MHz, CDCl3) δ 170.8, 

144.9, 135.9, 129.7, 129.2, 128.8, 127.8, 127. 0, 126.6, 38.5.  

N,N-Diethylbenzamide (3nf): Light yellow liquid. 60.0 mg, 81% 
yield. 1H NMR (300 MHz, CDCl3) δ 7.38 (s, 5H), 3.55 (s, 2H), 

3.25 (s, 2H), 1.26 (2, 3H), 1.11 (s, 3H). 13C NMR (75 MHz, 
CDCl3) δ 171.6, 137.1, 130.1, 129.3, 128.5, 126.4, 43.4, 39.5, 
14.3, 13.0. 

Methyl 2-(N-methylacetamido)benzoate (3fa): White solid. 12.4 
mg, 12% yield.  1H NMR (300 MHz, CDCl3) δ 8.10 (d, J = 7.9 Hz, 

1H), 7.70 (t, J = 7.7 Hz, 1H), 7.49 (t, J = 7.6 Hz, 1H), 7.39 (d, J = 
7.9 Hz, 1H), 3.92 (s, 3H), 3.32 (s, 3H), 1.92 (s, 3H). 13C NMR (75 
MHz, CDCl3) δ 170.3, 167.9, 141.2, 131.6, 129.1, 123.2, 122.5, 

122.2, 52.4, 37.2, 22.6.  

N-Methyl-N-(3-nitrophenyl)acetamide (3ga): Yellow solid. 9.7 mg, 
10% yield. 1H NMR (300 MHz, CDCl3) δ 8.21 – 8.20 (m, 1H), 

8.12 – 8.10 (m, 1H), 7.56 – 7.62 (m, 2H), 3.34 (s, 3H), 1.92 (s, 
3H). 13C NMR (75 MHz, CDCl3) δ 170.1, 148.1, 142.3, 132.1, 
130.2, 118.2, 114.9, 38.2, 21.8. 

Gram scale synthesis of N-methyl-N-phenylacetamide (3aa) 

N,N-dimetyhaniline (10 mmol, 1267 L), acetic anhydride (12 
mmol, 1134 L) and tert-butyl hydroperoxide (10 equiv.) were 

added to a suspension of CuNPs/ZY (400 mg, 1.0 mol% Cu) in 
MeCN (40 mL) under air.  The reaction mixture was warmed to 
70 ºC and monitored by TLC and/or GLC until total conversion of 

the starting material. The solvent was removed in vacuo and the 
product was purified by flash column chromatography to give N-
methyl-N-phenylacetamide in 93% yield (1.39 g). 
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