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DBU-Promoted Carbonylative Synthesis of 1,3-Oxathiolan-2-ones 

from Propargylic Alcohols with TFBen as the CO source 

Jun Ying,
a
 Chao Zhou,

a
 and Xiao-Feng Wu*

a,b
 

A DBU-promoted carbonylative cyclization of propargylic alcohols 

with sulfur has been developed. Various 1,3-oxathiolan-2-ones 

were produced in 61-98% yields under mild conditions in the 

absence of metal catalysts. TFBen (benzene-1,3,5-triyl triformate) 

as an efficient and solid CO surrogate and S8 as an ideal sulfur 

source were employed and incorporated. 

1,3-Oxathiolan-2-ones are useful building blocks in organic
1
 

and polymer sciences,
2
 as well as important structural motifs 

in biologically active compounds such as quercetin-

oxathiolanone,
3
 an effective inhibitor of xanthine oxidase. 

Consequently, extensive efforts have been devoted to the 

study of a convenient synthesis of 1,3-oxathiolan-2-ones. 

There are a couple of methods have been reported including 

the cyclization of t-hydroxyl thiol with phosgene, the reaction 

of epoxides with sulfur and carbon monoxide (CO), the 

coupling reaction of epoxides with carbonyl sulfide (COS), the 

base-catalyzed cyclization of the imidazolide derivative, and 

the acid-assisted cyclization of 2-hydroxyethyl thiocarbonate 

(Scheme 1). It is obvious that these methods have some 

obvious drawbacks: including (1) the use of toxic gases 

(phosgene, CO, COS, etc.); (2) the use of odorous sulfurization 

reagents (thiols, etc.); (3) limited substrates scope due to the 

harsh reaction conditions (high temperature and/or high 

pressure).
4-12

  

 On the other hand, carbonylation chemistry is an attractive 

topic from both academia and industry.
13

 For the conveniences 

on small scale applications, many efforts have been attracted 

on in-situ CO generation, due to the high toxicity and 

flammable of CO gas.
14

 Based on the researches from different 

research groups, a number of CO surrogates have been 

developed such as metal carbonyls, formaldehyde, alcohols, 

formic acid, formates, formamides, etc. Additionally, new 

reactor systems have been designed and applied as well, such 

as two-chamber system and In-Ex tube.
15

 In addition, TFBen 

(benzene-1,3,5-triyl triformate), a solid, stable, efficient, and 

convenient CO surrogate, has recently been developed in our 

group.
16,17

 Herein, we wish to report our newly developed 

procedure for 1,3-oxathiolan-2-ones preparation with TFBen 

as the CO source. With DBU as the promotor, propargylic 

alcohols were carbonylatively cyclized with sulfur, which is an 

inexpensive and odorless sulfurization reagent, under mild 

reaction conditions.
18,19

 Notably, no metal catalyst is needed 

here. 

 

 
Scheme 1. Selected examples for the synthesis of 1,3-

oxathiolan-2-ones. 

 

 Initially, we investigated the reaction of propargylic alcohol 

1a with TFBen and sulfur in the presence of base, and the 

results are summarized in Table 1. Treatment of compound 1a 

with S8 (0.5 equiv.), TFBen (1.0 equiv.) and DBU (2.0 equiv.) at 

30 
o
C afforded the product 2a in 49% yield as a Z-isomer (Table 

1, entry 1). Raising the reaction temperature to 60
 o

C 

enhanced the yield of 2a (79%; Table 1, entry 2). When the 

amount of DBU was reduced to 1.0 equivalent, the yield was 

dramatically decreased to 58% (Table 1, entry 3). No product 

was observed without the addition of DBU, which indicates 

that DBU as a base is crucial to initiate this sulfur-involved 
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carbonylative cyclization (Table 1, entry 4). Also, decreasing 

the amount of S8 (0.25 equiv.) or shortening the reaction time 

(24 h) gave a remarkably decreased yield (Table 1, entries 5 

and 6). Then, a variety of solvents were examined (Table 1, 

entries 7-12). It shows that the reaction using CH3CN provided 

an excellent yield (over 99%, isolated yield 87%), while other 

solvents (DMSO, DMF, THF, DCM, and 1,4-dioxane) were 

inferior. Moreover, a series of bases were tested and 

decreased yields were obtained in comparison with DBU 

(Table 1, entries 13-16). Notably, the yield of the desired 

product decreased to 61% when 0.5 equivalent of TFBen was 

used.  

 

Table 1 Screening of optimal reaction conditions 
a
 

 

Entry S8 Base Solvent Yield
b
 

1 0.5 eq 2.0 eq DBU Toluene 49%
c
 

2 0.5 eq 2.0 eq DBU Toluene 79% 

3 0.5 eq 1.0 eq DBU Toluene 58% 

4 0.5 eq ü Toluene 0 

5 0.25 eq 2.0 eq 
 
DBU Toluene 51% 

6 0.5 eq 2.0 eq DBU Toluene 48%
d
 

7 0.5 eq 2.0 eq DBU DMSO 83% 

8 0.5 eq 2.0 eq DBU DMF 9% 

9 0.5 eq 2.0 eq DBU THF 86% 

10 0.5 eq 2.0 eq DBU CH3CN 
>99% 

(87%)
e
 

11 0.5 eq 2.0 eq DBU DCM 0 

12 0.5 eq 2.0 eq DBU Dioxane 51% 

13 0.5 eq 2.0 eq  Et3N CH3CN 60% 

14 0.5 eq 2.0 eq DABCO CH3CN 86% 

15 0.5 eq 2.0 eq 
t
BuOK CH3CN 12% 

16 0.5 eq 2.0 eq NaOH CH3CN 0 

a 
Reaction conditions: 1a (0.5 mmol), solvent (2 mL), TFBen (1 

equiv.), 60 
o
C, 48 h. 

b 
The yield of 2a was determined by GC 

analysis using n-dodecane as internal standard. 
c
 30 

o
C. 

d
 24 h. 

e 

Isolated yield. 

 

 Subsequently, various propargylic alcohols 1 were 

prepared and subjected to the optimal reaction conditions. 

The results are shown in Scheme 2. It was found that the 

electron-donating para-substituted propargylic alcohols 2b-2e 

gave yields relatively higher than that of compounds 

containing electron-withdrawing para-substituents 2f-2g. The 

reactions of substrates bearing ortho- and meta-Me group 

afforded the desired product 2i and 2j in good yields. 

Compounds having an alkyl group on the triple bond could 

undergo carbonylative cyclization smoothly to give the desired 

products 2k-2n in high yields (73-87%). When substrates with a 

carbocycle unit were tested, excellent yields up to 98% of 

products 2o-2q were achieved. Furthermore, the reactions of 

propargylic alcohols with linear alkyl substituents (R
2
, R

3 
= alkyl) 

proceeded to give the corresponding products 2r-2u in 81-97% 

yields. Gratifyingly, treatment of a thiophene substituted 

propargylic alcohol led to the formation of product 2v in 79% 

yield. Compound with no substituent on the alkyne carbon (R
1 

= H) can also cyclize to form product 2w in 85% yield. 

 

Scheme 2 Carbonylative synthesis of 1,3-oxathiolan-2-ones.
a
 

 
a 

Reaction conditions: substrate 1 (0.5 mmol), S8 (0.5 equiv.), 

TFBen (1.0 equiv.), DBU (2.0 equiv.), CH3CN (2 mL), 60 
o
C, 48 h. 

  

 On the basis of the above experimental results and 

previous reports,
18,19

 a possible mechanism for this 

carbonylative cyclization of propargylic alcohol with S8 is 

proposed in Scheme 3. Initially, S8 was activated by DBU and 

the sulfur anion 3 was formed. The reaction of 3 with carbon 

monoxide, generated in situ from TFBen, gives the carbonyl 

sulfide 4. Elimination of 4 can afford the key intermediate COS. 

In the presence of DBU, deprotonation of propargylic alcohol 1 

followed by the nucleophilic attack of its oxygen anion to COS 

generates the carbonothioate 5. Subsequent intramolecular 

cycloaddition of 5 leads to the formation of the final product 2. 

The stereoselectivity of product 2 (Z-isomer) can be explained 

by a backside attack of the thionate anion to a carbon-carbon 

triple bond coordinating with the bulky base DBU. Notably, 

two sulfur atoms from S8 can be transformed before it forms a 

stable complex with DBU. 
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Scheme 3. Possible reaction mechanism. 

 

 In conclusion, we have developed a facile and convenient 

approach for the synthesis of 1,3-oxathiolan-2-ones via 

carbonylative cyclization of propargylic alcohols with sulfur 

promoted by DBU. The reactions proceed under mild 

conditions, affording Z-isomer products in high yields (61-98%). 

This method has some obvious advantages, including metal 

catalyst-free; with TFBen as a benign CO surrogate; with S8 as a 

desirable sulfur source. Further investigation will be focused 

on synthetic application and mechanistic study of this strategy.  
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