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Abstract 

Ligand-target residence time is emerging as a key drug discovery parameter because it can reliably 

predict drug efficacy in vivo. Experimental approaches to binding and unbinding kinetics are 

nowadays available, but we still lack reliable computational tools for predicting kinetics and 

residence time. Most attempts have been based on brute-force molecular dynamics (MD) simulations, 

which are CPU-demanding and not yet particularly accurate. We recently reported a new scaled-MD-

based protocol, which showed potential for residence time prediction in drug discovery. Here, we 

further challenged our procedure’s predictive ability by applying our methodology to a series of 

glucokinase inhibitors that could be useful for treating type 2 diabetes mellitus. We combined scaled 

MD with experimental kinetics measurements and X-ray crystallography, promptly checking the 

protocol’s reliability by directly comparing computational predictions and experimental measures. 

The good agreement highlights the potential of our scaled-MD-based approach as an innovative 

method for computationally estimating and predicting drug residence times.  
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Introduction 

Binding and unbinding kinetics are emerging as key factors for predicting drug efficacy in living 

organisms.1,2 There are several experimental techniques (e.g. SPR, stopped-flow CD, fluorescence 

spectroscopy) for studying (un)binding kinetics, but currently no efficient computational approaches 

for predicting absolute kinetic parameters. The few attempts reported in the literature have mainly 

been based on brute-force molecular dynamics (MD) simulations,3 which are highly demanding in 

terms of time and computational power.4-6 These methods are also unsuitable for industrial use, 

where dozens of compounds must be prioritized in the hit-to-lead and the lead optimization phases.3 

Importantly, (un)binding rates cannot be directly computed for pharmacologically relevant systems, 

since the residence time (tr) of molecules can be in the order of seconds, minutes, or even hours. 

Thus, smarter algorithms and effective practical solutions are needed to tackle the problem of kinetic 

rate estimation.  

Researchers recently reported a detailed computational study of protein-ligand dissociation based on 

extensive metadynamics simulations.7 This work demonstrated the possibility of studying the 

mechanisms governing unbinding events, and of disclosing their pathways, rates, and rate-limiting 

steps. Although this approach has provided remarkable atomistic information, its practical 

effectiveness is limited by the substantial computational resources required (i.e. many weeks on a 

highly parallel computational infrastructure) to evaluate each single binding and unbinding kinetic 

constant pair (i.e. kon and koff values). Moreover, the setup of metadynamics simulations is not trivial 

and requires a strong expertise by the user. The high error in the koff estimation also prevents an easy 

application of this approach within the drug discovery pipeline, especially referring to an automated 

process. A possible alternative is to combine the kon obtained from unbiased simulations with the 

binding free energy estimated using free energy methods. Although promising, this alternative 

method is still too inaccurate and computationally demanding for any screening purpose.5 

We recently reported a novel computational method that addresses the challenge of predicting 

unbinding kinetics, particularly in the hit-to-lead and lead optimization phases of the drug discovery 
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process.8 Rather than trying to predict the absolute off-rate value, koff  = tr
−1, on individual complexes, 

we proposed a procedure to identify the correct koff-based ranking relationship among congeneric 

compounds that bind to a given target, using (possibly) limited computational resources. Our solution 

is rooted in enhancing the transition probability between different free energy minima during MD 

simulations by smoothing the potential energy surface (PES) of the system using a scaling factor λ 

(which ranges from 0 to 1) applied to all the potential energies computed during MD simulations. 

This procedure flattens the PES associate to biomolecular events and samples a greater amount of 

conformational space in simulation times that are much shorter than standard MD simulations. 

The underlying rationale is that simulating a protein-ligand complex under scaled potential energy 

conditions facilitates the rupture of the key physical interactions that confer stability to the complex, 

leading to unbinding in much shorter simulation times. These transitions are considered in a 

statistical framework that combines multiple replicas, a regressive predictive model, and statistical 

analysis to establish the confidence of the predictions. The averaged residence times can and have 

been successfully compared to the experimental ones obtained by inverting the koff values. The details 

of the method, the analytical treatment of the residence times, and their comparison with 

experimental data are reported in the Supporting Information S1.   

The proposed method is easy to implement and sufficiently accurate in reproducing experimental 

data.8 However, several questions remain regarding its general applicability, especially for series of 

chemically unrelated compounds. To clarify these aspects and to assess the validity of our 

methodology in a predictive and/or prospective manner, we here focused on glucokinase (GK, GK1, 

or hexokinase IV), a system of primary interest for both national healthcare systems and the 

pharmaceutical industry. A member of the hexokinase (HK) family, GK9 catalyzes the 

phosphorylation of glucose to glucose 6-phosphate, the rate-limiting step in glycolysis. The 

pharmacological relevance of GK1 is related to its involvement in type 2 diabetes mellitus (T2DM), a 

rapidly expanding public health issue affecting over 150 million people worldwide.10,11 GK plays a 

critical role in glucose homeostasis, serving as a glucose sensor for glucose-dependent insulin 
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secretion in pancreatic β-cells and regulating glucose uptake and glycogen synthesis in the liver.12 

GK1 displays several features which are unique among the hexokinase family members: i) as a 

monomeric enzyme, GK achieves positive substrate cooperativity solely through equilibration 

between multiple conformations,13,14 ii) GK has a unique biochemical kinetics that accounts for its 

role as a glucose sensor, iii) GK has a low affinity for glucose as a substrate with a Ka of ~7 mM, 

which is within the physiological glucose range, and iv) the enzyme also has no direct feedback 

inhibition from its product glucose 6-phosphate. Together, these kinetic properties enable GK to be 

highly responsive to fluctuations in blood glucose levels and to ensure that the glucose metabolic flux 

is closely tied to glucose concentration. While several classes of diabetic therapies are available for 

clinical use, there is still a significant need for new therapies with improved efficacy. A promising 

area of current research involves the use of small molecule allosteric activators of GK (GKAs) to 

lower blood glucose and normalize insulin secretion. Therapeutically, it seems that activating GK1 in 

the liver and pancreas would be an effective strategy for lowering blood glucose by upregulating 

hepatic glucose utilization, downregulating hepatic glucose output, and normalizing glucose-

stimulated insulin secretion.15,16 

In the present work, we investigate the unbinding of a novel series of promising GK modulators at 

the atomic level, using computational simulations coupled to experimental kinetic measurements and 

X-ray crystallography. We were able to correctly rank most of the ligands according to their 

residence time and to depict some structure-kinetics relationships (SKRs). In parallel, we challenge 

our approach, highlighting its major advantages and limitations. Finally, we provide some 

perspectives on the methodology in terms of its potential to become the computational method of 

choice for predicting drug residence times. 
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Results and Discussion 

The main hypothesis under which the original method8 is able to correctly predict residence time 

distributions is related to chemical similarity, namely the presence throughout a series of only minor 

chemical modifications (e.g. small functional group replacement relative to the parent compound). 

The overall protocol comprises the following steps: i) an initial model for each protein-ligand 

complex is built. Ideally, one protein-ligand complex has been experimentally determined by X-ray 

crystallography, and chemical replacement is used to generate three-dimensional models of 

congeneric compounds bound at the target binding pocket. ii) Multiple replicas of scaled molecular 

dynamics (MD) of the partially restrained system are performed and stopped when the ligand is 

unbound. iii) The average simulated and experimental unbinding times are normalized with respect to 

one randomly selected ligand (in this case the ligand for which the experimental structure is 

available) in order to convert the experimental residence times ratio to a scaled ratio via an 

exponential relation. iv) A bootstrap analysis on the simulated unbinding times per target is carried 

out to assess the statistical significance of the observations and to establish whether an increased 

number of replicas is needed.  

In the present study, two different issues were addressed: i) determination of computational residence 

times for all the available ligands for GK1, their ranking and comparison with the experimental data, 

and ii) identification of the physicochemical determinants of residence time variations within the 

series for the ligands and protein (i.e. depiction of the SKRs). 

Measurement of GKA binding kinetics. Following our initial work,17 we exploited the intrinsic 

fluorescence properties of 1 (RO4389620)17 (Figure 1) to use it as a fluorescent reporter in a 

competitive displacement kinetic experiment to rapidly assess the residence time (1/koff) of several 

GKAs, in the presence of glucose to lock GK in its closed conformation. The observed dissociation 

transients were monophasic, suggesting a single-step dissociation. The GKAs’ association kinetics 

was also measured, using the quenching of the GK intrinsic fluorescence as readout. As previously 
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observed17 with 2 (TAFMT) and 3 (LY121260) (Figure 1), association transients were mainly 

monophasic. The equilibrium KD was calculated from the on- and off-rate constants. Data are 

summarized in Table 1. 

Residence time prediction. Initially, we focused on molecules for which crystal structures in 

complex with GK1 were available, namely compounds 1 and 2 (Figure 1). The presence of a well-

defined crystal structure is crucial for determining the physicochemical properties of binding; hence, 

it is also a fundamental prerequisite for applying our method. Moreover, we decided to include in this 

first round of calculations ligand 3 (Figure 1) that shares a scaffold similar to 1 and size with the 

aforementioned molecules. We therefore investigated these three systems first, to challenge the 

method with similar ligands and to understand the level of scaling needed to investigate whole series 

of ligands.  

Ligands 1 and 2 were co-crystallized18 with GK1 (1, resolution 1.7 Å, PDB ID 4NO7; 2, resolution 

2.3 Å, PDB ID 3F9M) without strongly altering the protein structure, which maintains the same 

folding features of previously resolved GK1 structures (Figure 2a). These ligands bind the same 

region of the protein, namely the pocket comprised between the C terminus, the 206 – 218 helix, and 

the 65 – 69 loop. Despite its length, the 65 – 69 loop is well-resolved in the experimental X-ray 

structure and its geometrical features are clearly visible (Figure 2b, 2c). In the apo- form of GK1 (e.g. 

3IDH, resolution equal to 2.14 Å), the heavy atoms of this loop systematically show a higher B factor 

relative to the holo- forms. This clearly indicates that the presence of the ligand reduces the 

conformational flexibility of this region. We assumed that this feature is retained also for the 

complex of GK1 with ligand 3; hence we placed it in the binding site by superimposing its structure 

with the scaffold of ligands 1 and 2 (Figure 2d). 

We simulated the three systems using two different scaling factors, λ = 0.4 and λ = 0.5. A more 

pronounced potential scaling (λ = 0.4) pushed the system in a largely diffusive regime, whereas a 

gentler potential scaling (λ = 0.5) required longer simulations to overcome barriers and sample 
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different minima. In this sense, the two different levels of scaling can highlight different details of the 

ligand-protein interaction during release. By varying the level of potential scaling, we observed the 

passage from a regime where minima were still present and the energy landscape was slightly more 

realistic (λ = 0.5) to a dominantly diffusive behavior (λ = 0.4) where the differences in minima are 

flattened. As shown in Table 1 and in Figure 3, the residence times in both cases have the same trend, 

i.e. tr (1) > tr (3) > tr (2), in very good agreement with the experimental data. A lower value of λ (i.e. 

0.4) has the obvious advantage of reducing the computational cost, translating to a roughly 10x 

speedup compared to a λ value of 0.5. However, when considering residence times in close proximity 

(as here), a larger λ value increases separation and returns a higher confidence in the ranking. 

We then sought to address whether new and structurally different ligands could be adapted starting 

from the coordinates of a different holo structure, and how this strategy could lead to correct 

predictions or inaccuracies. We selected two ligands, 4 (GKA50) and 5 (S-44520) (Figure 1), which 

share a common structural core but differ in the size and nature of their substituents. We built the 

complexes for compounds 4 and 5 by chemical replacement (see the Supporting Information S2a/b), 

since experimental crystal structures for these molecules in complex with GK1 were not available. 

Their starting conformations were obtained by adapting the structure of GK1 in complex with 1, i.e. 

by matching the orientation of the new ligand with the experimentally available pose according to 

their common scaffold. In principle, starting conformations could also be generated by molecular 

docking. Here, we adopted the aforementioned procedure because a conserved orientation within the 

binding site is consistently displayed by quite large series of GK1 inhibitors, for which the three-

dimensional structure is available. We were thus confident that our molecules should have been 

oriented accordingly. We performed a series of unbinding simulations of 5 with two λ factors and 

compared the computational predictions (tr ~ 14 ns for λ = 0.4, tr ~ 45 ns for λ = 0.5) with the 

experimental results obtained via fluorescence stopped-flow ligand displacement kinetics (see the 

Materials and Methods section for details). The correlation was strictly dependent on the λ factor 
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(Figure 3). In detail, simulations with λ = 0.5 showed a residence time that, as confirmed 

experimentally, was between those of 1 and 3, whereas λ = 0.4 led to a rather high value for ligand 5 

with respect to the other compounds.  

This case shows that the effect of a larger molecular size (the radius of gyration of ligand 5 is 5.3 Å, 

whereas the one for ligands 1, 2 and 3 is ~ 4.3 Å) becomes dominant if the scaling factor is too low 

(i.e., the potential is too heavily scaled) and the related energy landscape goes flat. This suggests that, 

if the potential energy scaling is too pronounced, the proposed method could provide residence times 

that are longer than those expected according to the experimental results. When treating molecules 

that are partially diverse in terms of structure from those present in the crystal structure, an 

explorative approach could rely on a double run with two scaling factors and check consensus and 

possibly discrepancy between them. An even higher and unexpected estimate of residence time was 

found for 4 with λ = 0.4, for which the residence time value was almost equal to that of 5. However, 

whereas computational predictions for 5 were in line with the experimentally determined residence 

time when λ = 0.5, 4 could not be accurately ranked with respect to the other members of the series 

even when the higher scaling factor was applied. This behavior could partially be related to the size 

of the molecule: since it is even larger than 5, 4 (its radius of gyration is 5.8 Å) displays a less 

diffusive behavior regardless of the λ scaling and was hence assigned a longer residence time even 

when the system potential was more gently scaled (λ = 0.5). As recently reported,8 a considerable 

change in size within a series of congeneric ligands of the same protein can greatly alter the 

solvation/desolvation enthalpy of the unbinding process, greatly affecting the ability of the method to 

predict the relative residence time for a much larger molecule. Together with a notable deviation 

from the linearity of distributed data in similar cases (see the recent example of Grp788), this results 

in a lower predictability of the molecule’s residence time. Moreover, despite its similarity with ligand 

5, ligand 4 displays more flexibility and degrees of freedom, suggesting that these also could be 
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important physiochemical features that are able to influence the kinetic properties of a ligand during 

its release from the binding site. 

Finally, we focused on two racemic mixtures of enantiomers 6 (S-49164) and 7 (S-49513) (6a-6b and 

7a-7b in Figure 1; see also the Supporting Information S2c/d), which required simulations on each 

enantiomer to computationally predict residence times. In particular, we carried out 40 runs for each 

pair of enantiomers, estimating the residence time averaging all of them. These compounds displayed 

an overall structure that is partially shared by 3 (Figure 2d). As in the previous case, we adapted the 

new structures on an existing crystal structure (GK1 in complex with 3), superimposing the amide 

moiety and the heterocyclic ring, and keeping their orientation in the binding pocket. The relative 

prioritization of the ligands is retained in the computational model, averaging the residence times 

obtained by simulating both the enantiomers (Figure 3, Table 1). Again, agreement with the 

experimental data was fairly good also for these compounds. 

We challenged our novel scaled-MD-based protocol in two different scenarios: i) ranking unbinding 

kinetics for a series of strictly congeneric compounds, and ii) properly ranking and predicting kinetics 

for structurally unrelated molecules. We further showed that the method can reliably rank ligands of 

the same series bearing minor chemical modifications, in agreement with our recent report.8 When 

the chemical similarity is lower, because of differences in size and in the chemical groups contacting 

the target, the method provides predictions that are less accurate but still reliable (see below). With 

the sole exception of 4, we can observe rather linear correlations for both the λ values, with the noise 

increasing, as expected, for λ = 0.4 relative to λ = 0.5 (correlation coefficients for residence times 

normalized as recently described8 (details are reported in the section S1 of the Supporting 

Information) are 0.72 and 0.91 for λ = 0.4 and λ = 0.5, respectively; see Figure 3b). At the lower λ 

value, the more diffusive nature of simulations could be responsible for larger errors, pointing to the 

need for more accurate and CPU-intensive simulations to achieve more reliable predictions of 

unbinding kinetics. This is perfectly in line with expectations of the approach, which could be 
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adopted using lower λ values for returning fast results in screening campaigns (especially when the 

ligands display a high degree of chemical similarity), whereas higher λ values could be adopted for 

accurate but more computationally-demanding predictions. 

Structure-kinetics relationships (SKRs). Despite the loss of detail that is associated with scaled 

MD simulations, it is still possible to identify the chemical features responsible for longer residence 

times, thus establishing structure-kinetics relationships (SKRs). This could be of valuable help in 

designing novel GK1 inhibitors with an improved kinetics profile. 

Ligands 1, 2, and 3 share some similarities in the chemical structure (i.e. an amide moiety connected 

at the carbonyl side to a 5- or 6-atom aromatic ring). In particular, the amide group provides stability 

to the ligand-protein complex donating a hydrogen bond to the backbone of R63 (Fig. 4a). However, 

due to several differences in flexibility and steric hindrance, these compounds overall establish quite 

heterogeneous patterns of interaction (Figure 1c-e). In this respect, both 1 and 3, together with an 

increased number of rotatable bonds, display a common polar sulphonyl group, which is missing in 2. 

This group is accommodated in a region of the protein where it can contact multiple polar groups 

(Figure 4a), creating a network of interactions that stabilizes the protein–ligand complex and that is 

eventually conducive to longer computed residence times of 1 and 3 with respect to 2. This is further 

confirmed by compounds 4 and 5, which, bearing electron donor oxygen atoms in the same region of 

the sulphonylic groups of ligands 1 and 3, were associated with longer computed residence times 

across the series. The larger size of ligand 4 and 5 might also contribute to extending computed 

residence time even further, increasing the enthalpic contribution to the overall unbinding activation 

energy. 

In addition, we noticed that the shape of the ligands plays a role in influencing the residence times. 

Interestingly, the ligands that display a more pronounced linear shape (2, 6, and 7) exhibit a 

significantly shorter residence time than those with a T-shaped geometry (1, 3, 4, and 5), with an 

average tr ~ 27 ns for the former molecules and ~ 90 ns for the latter ones. The GK activators binding 
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site has a rather linear shape, and hence it is easily accessible to ligands that possess a linear 

geometry, whereas molecules bearing other shapes than linear require an induced fit binding 

mechanism. In particular, Tyr125 side chain should move apart to accommodate T-shaped ligands, a 

geometrical rearrangement that can likely help accounting for the longer residence times experienced 

by T-shaped molecules relative to the linear ones. Therefore, the present computational approach can 

help discern among rather different scaffolds, and hence prioritize, for subsequent chemical 

synthesis, those most promising from a residence time and lead efficacy standpoints. 

Finally, we turned our attention to aliphatic rings of 1 and 3 (cyclopentanone in 1, cyclohexane in 3), 

which were docked between T65 and Y215, and that pointed toward the solvent. These rings are 

located on the other side of the loop T64 – V69 (see Figure 1) with respect to the sulphonyl 

functional group in ligands 1 and 3. For ligand 2, the same region of the protein is occupied by an N-

methyl-imidazole ring (which has much greater affinity for water molecules than the aforementioned 

cycles) and by moieties rich in methyl groups in ligands 4 and 5. In this respect, a more hydrophobic 

element of the ligand in this region seems to provide more stabilization to the complex and to be 

another key determinant for the unbinding kinetics. 

To understand in more detail which structural elements of the protein are relevant for the unbinding 

process, we analyzed all the trajectories, considering their statistical distribution in terms of contacts 

between ligands and single residues. Considering both scaling potentials adopted in the present study 

(i.e. λ = 0.4 or λ = 0.5), we identified a set of residues that were transiently involved in all the 

unbinding processes observed (Figure 5 and Figure S3). We considered a residue relevant for 

unbinding when a contact with the ligand occurred in more than 66% of the replicas, for both sets of 

simulations. We could thus monitor at a glance the unbinding events providing a residue level 

description of the dissociation paths. As expected, simulations with λ = 0.4 had a more pronounced 

diffusive character and thus provided more transient and aspecific protein-ligand contacts. 

Conversely, simulations with λ = 0.5 contributed more significantly to the identification of specific 
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contacts along the unbinding paths. The contact maps reported in Figure 6 clearly exemplify this dual 

behavior (all the other maps are available in Figures S4 and S5 of the Supporting Information). Our 

analysis allowed the identification of two groups of amino acids: one encompassing residues that 

were trivially clustered around the binding site (residues 56-66, 89-95, 154-156, 196-199, 203, 206-

218, 231-234, 444-454), and the other formed by a group of amino acids (residues 241-248, 393-394) 

located roughly 20 to 25 Å away from the binding site.  

Diabetes is heavily characterized by genetic mutations that correspond to a huge variety of 

phenotypes. Interestingly, the most relevant pathological mutations identified in diabetes and glucose 

homeostasis19 (Figure 5b) correspond to residues that, according to our analysis, appear to be relevant 

in controlling the unbinding process. GKAs can only be accommodated in their binding site once the 

glucose is bound to the protein via an allosteric modulation. At the same time, the protein’s 

enzymatic efficiency is significantly reduced for many GK1 mutants19 that are related to diabetes and 

similar metabolic diseases. Hence, good GKAs could be designed by accounting for the extreme 

variability of the binding site and the portion of the surrounding region that is relevant for unbinding. 

For example, mutants V91L, W99R, and Y214C (Figure 5b) severely unbalance the biochemistry of 

glucose in patients affected by diabetes. Hence, their effect must be related to the change in local 

dynamics and to steric hindrance in regulating the action of any potential GKA as well as their 

dissociation.  

 

Conclusions 

Residence time is emerging as a key parameter for analyzing and optimizing lead candidates with 

improved in vivo efficacy, within modern drug discovery programs that take it into account during 

the hit-to-lead and lead optimization phases. Here, we have shown that residence time predictions are 

possible using scaled-MD-based approaches, and that the computational protocol can be fine tuned 

by comparing computational data and experimental kinetics measurements. Different scaling factors 

can be used and, depending on the ligand set, the best tradeoff between speed and accuracy can be 
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sought. To properly identify scaling factors, we compared computational predictions with 

experimental data, with λ = 0.5 emerging as more suitable for good correlations (relative to λ = 0.4). 

This was mainly because the series of ligands included compounds that were not strictly analogous. 

However, when investigating series of structurally analogous molecules, a lower λ value can be used, 

allowing faster simulations.8 Building and expanding on the previously reported SMD-based 

method,8 the present work suggests, a practical approach to set the ideal scaling factor to adopt on the 

basis of the needs of the users and the chemical nature of the ligands. We subsequently focused on 

SKRs, an accurate description of the structural determinants responsible for a good residence time 

can be of paramount importance when designing new compounds with improved in vivo profiles. 

SKRs can be depicted from a ligand-based standpoint, from a structure-based analysis, or from both, 

provided that structural information for the ligand and target is available. In this context, by means of 

a statistical analysis of protein-ligand contacts during the unbinding events, we have been able to 

identify those residues that affect the residence time and overall kinetic and release profile of a 

compound. In addition, we observed that the ligand shape could be responsible for an induced fit 

effect, which could explain the different residence times of differently shaped compounds. In 

conclusion, the present computational methodology is very promising and practical. However, further 

case studies are needed to highlight the potential and limitations of scaled MD simulations for drug 

binding kinetics studies, with the goal of making this approach the method of choice for estimating 

and predicting residence times.  

  

Experimental section 

Chemical synthesis  

The synthesis of ligands 1-4 was already reported.17-18 The ones of ligands 6, 7 and 5 is reported 

below, with reference (numbers in italics) to the schemes of the synthetic routes in the Supporting 

Information section S6. All the ligands have been purified using HPLC and characterized using NMR 

spectroscopy and MS, assessing for all the molecules purity more than 95%. 
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6-[[(1R,1aR,6aR)-1a-methyl-6,6a-dihydro-1H-cyclopropa[a]indene-1-carbonyl]amino]pyridine-

3-carboxylic acid (6). Cyclopropanation reaction of 3-methylindene 8 with ethyl diazoacetate was 

performed in the presence of copper sulfate to afford a mixture of diastereoisomers 9 and 10 (70/30). 

After separation by chromatography on silica gel, the ester function of diastereoisomer 9 was 

hydrolyzed to the corresponding acid 11. Compound 11 was then transformed in acid chloride with 

oxalyl chloride, and condensed with 2-pyridin acid to afford the desired amide 12  as a racemic 

mixture (compound 6 in the main text), with 98.7% HPLC purity. 

1H NMR (400 MHz, 300K, DMSO-d6): δ 13.10 ( m, OH), 10.86 (s, NH), 8.78 (s, 1H), 8.22 (m, 2H), 

7.37 (d, 1H), 7.19 (m, 3H), 3.24 (dd, 1H), 2.98 (d, 1H), 2.38 (dd, 1H), 1.66 (d, 1H), 1.62 (s, 3H); 

HRMS (ESI/FIA) for C18H16N2O3: [M+H]+(calculated) = 309.123918, [M+H]+(found) = 309.1231. 

6-[[(1R,1aR,6aR)-6a-methyl-1a,6-dihydro-1H-cyclopropa[a]indene-1-carbonyl]amino]pyridine-

3-carboxylic acid (7). Cyclopropanation reaction of 2-methylindene 13 with ethyl diazoacetate was 

performed in the presence of rhodium acetate to afford a mixture of diastereoisomers 14 and 15 

(63/37). After separation by chromatography on silica gel, the ester function of diastereoisomer 7 was 

hydrolyzed to obtain acid 16. The acid function was then transformed in acid chloride with oxalyl 

chloride, and condensed with 2-aminopyridine methyl ester to afford, after saponification, the desired 

amide 17 (compound 7a/b in the main text), as a racemic mixture, in 99% purity (HPLC). 

1H NMR (400 MHz, 300K, DMSO-d6): δ 13.11 (m, OH), 10.93 (s, NH), 8.79 (s, 1H), 8.23 (m, 2H), 

7.33 (m, 1H), 7.20 (m, 1H), 7.11 (m, 2H), 3.13 (dd, 2H), 2.84 (d, 1H), 1.70 (d, 1H), 1.48 (s, 3H); 

HRMS (ESI/FIA) for C18H16N2O3: [M+H]+(calculated) = 309.123918, [M+H]+(found) = 309.1255. 

(E)-3-[6-[(3,5-diisopropoxybenzoyl)amino]-3-pyridyl]prop-2-enoic acid (5). 3,5-dihydroxy 

methyl benzoate 18 is dialkylated by isopropyl iodide to obtain the ester 19, hydrolyzed to acid 20. 

The acid function is transformed in acid chloride with oxalyl chloride, then condensed with 2-amino-

pyridine-5-acrylate 22, obtained from 2-amino-5-iodo-pyridine 21 and methyl acrylate under Heck 
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conditions. Resulting condensation ester 23 is finally hydrolyzed to afford the desired acid 24 

(compound 5 in the main text), in 99% purity (HPLC). 

1H NMR (400 MHz, 300K, DMSO-d6): δ 12.5 (s, OH), 8.7 (s, 1H), 7.6 (d, J=15Hz, 1H), 6.6 (d, 1H), 

4.7 (m, 2H); HRMS (ESI/FIA) for C21H24N2O5: [M+H]+(calculated) = 385.176348, [M+H]+(found) = 

385.1771. 

 

Protein expression and purification 

Human glucokinase isoform 1 (pancreatic) was expressed and purified as previously described.17 

 

Steady-state kinetics 

GK activity was measured by monitoring the rate of G6P formation using the G6PDH/NADP 

(glucose-6-phosphate dehydrogenase/nicotinamide adenine dinucleotide phosphate)-coupled enzyme 

assay. Initial rate measurements were carried out at 25 °C in buffer A (HEPES/Na 50 mM, NaCl 100  

mM, MgCl2 5 mM, TCEP 2 mM, pH 7.1) on a PHERAstar microplate reader (BMG Labtech) by 

following the increase of absorbance at 340 nm due to the reduction of NADP. Assays were 

performed in a 384-well microplate with a final volume of 50 µl per well. To determine glucose or 

Mg-ATP-related kinetic parameters, glucose concentration was varied (0-50 mM) while maintaining 

a saturating (4 mM) Mg-ATP concentration. A lag phase observed in the early time course of the 

reaction was omitted for the determination of the initial rate. This lag phase is likely due to the 

coupled-enzyme assay, as already described.17 Initial rate data obtained with varying glucose 

concentrations were fitted to the Hill equation. Nonlinear least-squares regression analysis was 

performed with SigmaPlot 9.01. 

 

Dissociation rate measurements by competitive displacement kinetics 
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Because of the relatively fast dissociation kinetics of the GKA studied, the stopped-flow rapid mixing 

technique was used, with the same setup described for the association kinetics measurements. For all 

GKA except ligand 2, displacement experiments were performed by mixing an equal volume (75 µL) 

of the pre-equilibrated GK/GKA complex with an excess of competing ligand 2 in buffer A, 

complemented with 5% DMSO and 100 mM Glc. GK, GKA, and ligand 2 concentrations after 

mixing were 1 µM, 5 µM, and 50 µM respectively. Fluorescence traces were analyzed as previously 

described.17 

Protein crystallization and X-ray diffraction data collection 

The crystallization samples were solutions of GK (at 6 or 10 mg ml/1) in 20mM HEPES, 50 mM KCl, 

2 mM tris(2-carboxyethyl)phosphine (TCEP), 100 mM glucose, 5% (w/v) glycerol pH 7.5. When 

present, activators (1 and 2) were diluted to a concentration of 80 mM and added to the protein 

solution prior to concentration and AMP-PNP was added to a final concentration of 10 mM with the 

addition of 1 mM MgCl2. 

Initial crystals were obtained under conditions similar to those already reported14 and showed the 

same unit cell parameters. However, in our hands, these crystals did not diffract well and grew very 

slowly. After extensive screening in a matrix of various PEGs buffered using HEPES pH 7.5, a 

different crystal form was obtained with space group P212121. This crystal was further used for 

preliminary seeding experiments.  

All crystals used in this work were grown under the same conditions, at room temperature using 

hanging-drop vapor diffusion in Linbro plates. 2 ml protein solution was mixed with 1 ml reservoir 

solution (3232ro plates. 2 p 100 mM HEPES pH 7.5). After 3 d of equilibration, the drops were 

seeded with crushed crystals diluted in reservoir solution.  

Crystals appeared within 12 h in the presence of TAFMT and notably more slowly in its absence. 

They grew to their final dimensions within 2 d (with TAFMT) or longer (without TAFMT). Crystals 
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were obtained over a range (32–38%) of PEG concentrations and cooled under liquid nitrogen 

without the need for further cryoprotection.  

 Data sets were collected on the SLS PX6d beamline (Villigen, Switzerland) and were reduced using 

XDS.20 To avoid any bias on the densities of the ligands, the following procedure was used for 

molecular replacement and structure refinement. Firstly, molecular replacement was performed using 

the program MOLREP.21 As a model, we used the structure 1V4S,14 from which we removed all 

ligands or bound waters. This was followed by refinement omitting all ligands using REFMAC.22 

After several refinement cycles, water molecules were built iteratively by ARP/wARP.23 At this stage, 

the densities of the ligands were clearly visible and were then refined. Further refinement using TLS 

was also performed.24 The structures have been deposited with the PDB ID 4NO718 (1) and 3F9M18 

(2), the latter being a refinement of the structure 3D18.  

 

MD and scaled MD simulations 

Each compound was geometrically optimized via a quantum mechanical approach: electron density 

calculations were performed in NWChem25 using the basis set 6-31G* at the Hartree-Fock (HF) level 

of theory. Partial charges were derived using the RESP methodology26 as implemented in 

Antechamber, leading via a GAFF parameterization to a complete topological description of each 

ligand to be used for classical simulations. The coordinates of the HF/6-31G* optimized ligands are 

reported in the Supporting Information, section S7.  

Protein-ligand experimental complexes were used as a starting point of the MD simulations. When 

the experimental protein-ligand complex structure was not available the ligand was placed in the 

binding site according to its best superimposition with the most corresponding moiety of the 

available experimental structures (PDB ID: 4NO7 and 3F9M). 
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The protein-ligand complexes were then used as a starting point for molecular dynamics simulations 

performed in a GROMACS 4.6.127 version customized to perform scaled molecular dynamics (scaled 

MD)28 implemented by BiKi Life Sciences (BiKi Technologies, Genoa, Italy) as recently described.8 

All the complexes were placed in the geometrical center of parallelepiped-shaped boxes of volume 

equal to ~ 650 nm3. The simulation boxes were then solvated using tLeap, with ~70000 TIP3P water 

molecules.29 Some water molecules were replaced with sodium ions in order to preserve the electro-

neutrality of the system according to need, i.e. the charge of the protein plus the charge of the ligand, 

which varied according to the case considered. The system was minimized with the steepest descent 

method, followed by equilibration of the restrained protein (isotropic 1000 kJ mol−1 nm−1 force 

applied to each heavy atom of the protein backbone) in NPT (up to 400 ps, pressure = 1 atm) and 

NVT (up to 400 ps) ensembles at 300 K via a standard MD procedure. Electrostatics were treated 

with the cutoff method for short-range interactions and with the Particle Mesh Ewald method for the 

long-range ones (rlist = 1 nm, cutoff distance = 0.9 nm, vdW distance = 0.9 nm, PME order = 4).30 The 

constant temperature conditions were provided by using the V-rescale thermostat,31 a modification 

from Berendsen’s coupling algorithm. 

A series of partially unrestrained (see below) scaled MD production runs were performed for each 

complex until the occurrence of the unbinding event, defined as the situation where interactions 

between the ligand and the binding site are no longer present, corresponding to a distance between 

the ligand and the binding site centers of mass of 30 Å. This threshold has been chosen in order to 

achieve complete solvation of the ligand (no remaining hydrogen bonds nor contacts between the 

small molecule and the protein) mimicking the experimental conditions adopted for the experimental 

measurement of the koff values. Twenty simulations were performed for each protein-ligand system 

and for each scaling factor λ. We used two different scaling factors, λ = 0.4 and λ = 0.5, thus having 

40 simulations for each complex and 280 simulations overall.  
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The restraints were adopted as previously described,8 i.e. weakly (50 kJ mol−1 nm−1) restraining all 

the backbone heavy atoms with the exception of those in the binding site, defined as those belonging 

to the residues within 6 Å of the surface of the ligand computed on the starting crystal structure 

(without hydrogen atoms). The residues left unrestrained were: 57 58 59 60 61 62 63 64 65 92 93 94 

155 206 208 210 211 214 216 217 218 231 248 447 448 449 451 452 453 454. The unbound state 

was determined using the same criterion of Mollica et al.8  

All the simulations were set up using the BiKi software package and performed on a set of in-house 

machines, equipped with two esacore Intel Xeon processors and 2 NVIDIA GTX 780 GPUs, for a 

total of 1300 CPU days. 

 

Abbreviations used 

ADP, adenosine diphosphate; AMBER, assisted model building with energy refinement; ATP, 

adenosine triphosphate; CD, circular dichroism; CPU, central processing unit; GPU, graphical 

processing unit; DMSO, dimethyl sulphoxide; GAFF, generalized AMBER force field; GK, 

glucokinase; GKA, glucokinase activator; GROMACS, Groningen machine for chemical 

simulations; HEPES 4-(2-hydroxyethyl)-1-piperazine ethanesulfonic acid; HF, Hartree-Fock; HK, 

hexokinase; HPLC, high performance liquid chromatography; MD, molecular dynamics; MS, mass 

spectrometry; NADP, nicotinamide adenine dinucleotide phosphate; NMR, nuclear magnetic 

resonance; NVT, canonical ensemble (amount of substance (N), volume (V), and temperature (T) are 

conserved); NPT, isothermal-isobaric ensemble (amount of substance (N), temperature (T), and 

pressure (P) are conserved); PES, potential energy surface; PME, particle mesh Ewald; RESP, 

restrained electrostatic potential; SKR, structure kinetics relationship; SMD, scaled molecular 

dynamics; SPR, surface plasmon resonance; T2DM, type 2 diabetes mellitus; TCEP, tris(2-

carboxyethyl)phosphine; vdW, van der Waals. 
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Supporting Information 

Mathematical derivation of the koff and residence time scaling, starting poses for ligands 4, 5, 6a, and 

7a, surface representation of the unbinding paths in the GK1 structure, ligand protein contact maps 

during the unbinding process for the single ligands, ligand protein contact maps during the unbinding 

process for the enantiomeric mixtures, scheme of reactions for the synthesis of compounds 7, 6 and 5, 

ligand’s optimized structure coordinates with RESP charges in .mol2 format. 
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Table 1  

Experimental Kd, kon, koff, and residence time (tr,exp), and in silico residence time (tr,comp) for each 

compound examined. Kds are expressed in µM, kon in s-1M-1, koff in s-1, tr,exp = 1 / koff in s, and tr,comp 

in ns. The activity of the enzyme is reported (in percentage) with reference to the yield of glucose 

conversion in the presence of the ligand (details are provided in Materials and Methods). The tr,comp 

values are reported for both λ values used: an estimation of the error is reported as standard error (se) 

and via a bootstrapping procedure (bs).32 The experimental measurements for ligands from 1 to 5 

have been performed on the enantiomers indicated in Fig.1, whereas the data for ligands 6 and 7 have 

been collected for the racemic mixtures. 

 

 

Ligand 

 

Kd 

 

kon 

 

koff 

 

tr,exp 

Act. 

(%) 

λ = 0.4 λ = 0.5 

     tr,comp,se tr,comp,bs tr,comp,se tr,comp,bs 

1 0.83 0.1x106 0.12 8.3 90 5.5 ± 0.8 5.5 ± 0.9 105.4 ± 9.2 105.1 ± 10.1 

2 0.36 1.1x106 0.43 2.3 170 3.8 ± 0.2 3.7 ± 0.3 29.4 ± 5.1 29.3 ± 5.3 

3 0.40 0.9x106 0.37 2.7 130 5.0 ± 0.5 5.0 ± 0.4 38.7 ± 7.2 38.9 ± 7.1 

4 3.3 0.2x106 0.61 1.6 20 12.9 ± 2.9 12.8 ± 2.8 92.5 ± 7.5 92.9 ± 7.3 

5 0.72 0.2x106 0.16 6.3 60 14.1 ± 0.7 14.3 ± 0.6 99.4 ± 6.6 99.7 ± 6.7 

6 2.0 0.7x106 1.4 0.7 n.a. 6.5 ± 1.1 6.5 ± 1.0 25.7 ± 3.4  25.9 ± 3.9  

7 4.4 1.3x106 5.6 0.2 n.a. 6.2 ± 1.2 6.3 ± 1.1 24.6 ± 2.6 24.7 ± 3.0 
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Figure 1 

Chemical structures of the ligands used in complex with GK1. The protonated structures are reported 

for the acidic ligands, whereas the ionic form was used in the simulation.  

 

Figure 2  

X-ray structure of the three complexes of GK1 with 1, 2 , and reconstructed pose of  3 . a) Overall 

structure of GK1 in complex with 1  (red), 2 (blue), and 3 (yellow) superimposed in the binding site. 

b-d) Local structure of the binding pocket for 1 (b), 2 (c), and 3 (d).  

 

Figure 3 

Normalized experimental vs. computational residence times for λ = 0.4 (a) and λ = 0.5 (b) (errors for 

the computational residence times have been normalized as well, according to error propagation).  

The ratios between experimental or computational data and a reference value have been plotted: the 

residence time values for ligand 3 have been used as a reference due to their average placement 

within the overall data distribution.8 The experimental residence times (on the abscissa) were scaled, 

after the aforementioned referencing scaling, using the same factor λ used for scaling the potentials 

during the SMD simulations. Analytical details of the whole procedure are reported in the section S1 

of the Supporting Information.  

A linear fit was applied to the whole datasets (regression lines are not shown) as well with the 

exclusion of the ligand 4, leading to a correlation factor R equal to 0.41 (0.72 excluding ligand 4) for 

λ = 0.4 and to 0.81 (0.92 excluding ligand 4) for λ = 0.5. 

 

Figure 4 

Binding site of GK1 and its interactions with ligand 1. Hydrogen bonding between the amide proton 

of the ligand and the R63 backbone carbonyl is reported as a dotted line.  
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Figure 5  

Unbinding processes for key GK1 residues (in red), identified as explained in the text, are annotated 

on the protein 3D structure. a) An overall representation. b) A detailed representation displaying all 

the contacts in proximity of the binding site. (b) also reports a set of residues (in green using a stick 

representation; the spheres correspond to the backbone alpha carbon atoms), These residues 

correspond to pathological mutants in T2DM, which severely affect the enzymatic properties of GK1. 

Compound 1 is reported in yellow sticks. The residues highlighted in red are 56-66, 89, 92-95, 154-

156, 196-199, 203, 206-218, 231-234, 241-248, 393-394, and 444-454. 

 

Figure 6 

The mono-dimensional contact map between ligand 5 ) and GK1 is reported for two different levels 

of scaling adopted during scaled MD simulations, λ = 0.4 (black) and λ = 0.5 (red). The numbering 

of residues is reported on the abscissa and the percentage of contacts computed for all simulation 

replicas is reported on the ordinate. Details of the method adopted for generating these maps are 

described within the text. 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5  
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Figure 6  
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