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Abstract
A new mononuclear complex Cu(tdp)Br2·MeCN (1, tdp = 2,2′-(1H-1,2,3-triazole-1,4-diyl)dipyridine) has been synthesized, 
which can transform to a 1D coordination polymer [Cu(tdp)Br2]n (2) under ambient conditions through an irreversible 
single-crystal-to-single-crystal transformation process. The loss of lattice MeCN molecules in 1 was accompanied by the 
generation of new covalent bonds and an increase in dimensionality from 0 to 1D, leading to a change in magnetic exchange 
couplings between the adjacent Cu(II) ions. Magnetic susceptibility measurements indicate that 1 exhibits ferromagnetic 
interactions between the adjacent Cu(II) centers, while the intrachain magnetic interactions between Cu(II) ions are antifer-
romagnetic within 2.

Introduction

The phenomenon of single-crystal-to-single-crystal (SCSC) 
transformation has attracted intense interest, since the struc-
tural transformation can be accompanied by changes in spec-
tral [1–5] and magnetic properties [6–9], which offers prom-
ising perspectives toward developing innovative materials. 
For magnetic materials, SCSC transformations involving 
the breaking and formation of the coordination bonds may 
lead to the modification of metal–ligand environment and/
or spin topology, and thus providing an effective strategy to 

tune the magnetism and investigate the magneto-structural 
correlations [10–13].

So far, SCSC transformations have been widely used as a 
method for subtle modification in the coordination environ-
ment of metal ions and superexchange pathway in porous 
magnets, and most of which are induced by sorption/desorp-
tion of guest molecules, especially solvents [14–17]. How-
ever, due to the absence of voids for the guest molecules, 
only limited SCSC transformations generating a tunable 
magnetic system have been obtained in nonporous coordi-
nation polymers [18–22]. Furthermore, since the movement 
of molecules in the crystal form is restricted, SCSC transfor-
mation in the solid state is difficult [23–25].

One of the fruitful routes for achieving SCSC transforma-
tion is to design ligands with many potential donor atoms, 
which can provide various coordination modes. Pyridyl sub-
stituted triazoles contain two or more potentially conjugated 
aromatic rings with several N-donor coordination sites, pos-
sessing both chelating and bridging capabilities [26–29]. In 
particular, 1,2,4-triazole and its derivatives have been widely 
used for the construction of functional coordination com-
plexes [30, 31], some of which implemented SCSC transfor-
mations [32, 33]. However, in comparison to 1,2,4-triazole 
derivatives, 1,2,3-triazole derivates have been less studied 
in the synthetic chemistry of transition metal complexes due 
to their difficulties in synthesis [34–37]. In this work, we 
synthesized a new discrete nonporous mononuclear complex 
Cu(tdp)Br2·MeCN (1, tdp = 2,2′-(1H-1,2,3-triazole-1,4-diyl)
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dipyridine). Compound 1 transformed to a 1D chain [Cu(tdp)
Br2]n (2) under ambient conditions through an irreversible 
liquid free SCSC transformation process. To the best of our 
knowledge, the coordination chemistry of this ligand has 
still rarely been reported [38–41]. Herein, we described 
the synthesis, structures and magnetic properties of both 
compounds.

Experimental

Materials and general methods

All materials used in the experiment were commercially 
available at analytical grade and used without further puri-
fication. Elemental analysis of C, H, N was performed using 
an Elementar Vario EL analyzer. The FT-IR spectra were 
recorded from KBr pellets in the range 4000–400 cm− 1 on a 
Bruker Tensor II Spectrum FT-IR spectrometer. PXRD data 
were collected in the range of 5–50° for 2θ on crystalline 
samples using a Rigaku Dmax 2000 diffractometer with Cu 
Kα radiation (λ = 0.15418 nm, 40 kV, 40 mA) in flat-plate 
geometry at room temperature.

Synthesis of 2,2′‑(1H‑1,2,3‑triazole‑1,4‑diyl)
dipyridine (tdp)

The ligand 2,2′-(1H-1,2,3-triazole-1,4-diyl)dipyridine (tdp) 
was prepared according to the literature in 2 steps [42].

Synthesis of 4‑pyridyl‑NH‑1,2,3‑triazole

The mixture of pyridine-2-carboxaldehyde (2.14  g, 
20.00 mmol), nitromethane (1.83 g, 30.00 mmol), NaN3 
(1.56 g, 24.00 mmol) and AlCl3 (0.27 g, 2.00 mmol) was 
stirred in 40 mL DMSO at 70 °C under air. After 5–8 h (as 
monitored by TLC), the solution was extracted with EtOAc 
(3 × 40 mL). The combined organic layers were dried over 
anhydrous Na2SO4, and the solvent was evaporated in vacuo. 
The resulting mixture was chromatographed on silica gel 
by eluting with ethyl acetate/petroleum ether (v/v 1:3) to 
afford 4-pyridyl-NH-1,2,3-triazole as yellow solids. Yield: 
1.55 g (52.9%).

Synthesis of tdp

The mixture of 4-pyridyl-NH-1,2,3-triazole (0.50  g, 
3.42  mmol), anhydrous K2CO3 (0.95  g, 6.84  mmol), 
L-proline (0.08 g, 0.68 mmol), 2-bromopyridine (0.65 g, 
4.11 mmol) and CuCl (0.034 g, 0.34 mmol) was stirred in 
25 mL DMSO at 100 °C under anhydrous and anaerobic 
conditions. After 12 h (as monitored by TLC), the solu-
tion was extracted with EtOAc (3 × 40 mL). The combined 

organic layers were dried over anhydrous Na2SO4, and the 
solvent was evaporated in vacuo. The resulting mixture was 
chromatographed on silica gel by eluting with ethyl ace-
tate/petroleum ether (v/v 1:10) to afford tdp as white pow-
ders. Yield: 0.14 g (20.1%). IR (KBr): 3172(w), 3056(w), 
1589(m), 1466(s), 1425 (m), 1233(m), 1018(s), 782(s), 
731(m), 506(w).

Synthesis of Cu(tdp)Br2·MeCN (1)

CuBr2·2H2O (0.066  mmol, 14.7  mg) was dissolved in 
3 mL MeCN and added to a solution of tdp (0.066 mmol, 
14.7 mg) in MeCN (6 mL), then the mixture was placed at 
room temperature. Brown crystals precipitated after a few 
minutes. Yield based on CuBr2·2H2O: 70%. Elem. Anal. 
Calc. for C14H12Br2CuN6: C 34.48; H 2.48; N 17.23%; 
found: C 34.11; H 2.23; N 17.56%. Selected IR bands (KBr): 
3098(m), 1594(m), 1577(m), 1454(s), 1283(m), 1251(w), 
1211(w), 1065(m), 990(w), 785(s), 738(w), 502(w).

Synthesis of [Cu(tdp)Br2]n (2)

There are 2 methods to obtain 2. Method A: placing 1 in 
the air for 10 days, the brown crystals transformed to green 
blocks slowly. Method B: placing 1 (5 mg) in MeCN (5 mL), 
the mixture was then heated at 90 °C for 3 days in a furnace 
and naturally cooled to room temperature to obtain the green 
block crystals. Elem. Anal. Calc. for C12H9Br2CuN5: C 
32.27; H 2.03; N 15.68%; found: C 32.43; H 2.20; N 15.69%. 
Selected IR bands (KBr): 3098(s), 3058(w), 1594(m), 
1456(s), 1287(m), 1254(w), 1148(w), 1066(m), 1021(w), 
991(w), 787(s), 740(w), 503(w).

X‑ray crystallography

The X-ray crystallographic data for the single crystals 
of both compounds were collected on an XtaLAB Mini 
(Rigaku OD, 2015) employing graphite-monochromated 
Mo Kα radiation (λ = 0.71073 Å) at 293 K. An empirical 
absorption correction was applied using spherical harmon-
ics implemented in SCALE3 ABSPACK scaling algorithm. 
Complexes 1 and 2 were solved by intrinsic phasing using 
the Olex2 program with the SHELXS package and refined 
with SHELXL [43–45]. All the non-hydrogen atoms were 
refined anisotropically. Hydrogen atoms were placed in 
calculated positions, refined using idealized geometries 
(riding model) and assigned fixed isotropic displacement 
parameters. For compound 2, the disorder in tdp ligand was 
modeled using sets of isotropic atoms of 50% occupancy. 
Details of the crystal, data collection and refinement param-
eters are listed in Table S1, and selected bond lengths and 
bond angles are given in Table S2.
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Magnetic measurements

Magnetic measurements for 1 and 2 were performed on a 
MPMS XL-5 SQUID (Superconducting Quantum Inter-
ference Device) on finely ground polycrystalline samples. 
The dc magnetic susceptibility data were collected in the 
2.0–300 K temperature range at 1000 Oe. Low-temperature 
isothermal magnetization was measured with an applied 
field from 0 till 5 T. All data were corrected for the contri-
bution of the sample holder and for the diamagnetism esti-
mated from Pascal’s constants [46].

Results and discussion

Synthesis and crystal structures

The reaction of CuBr2 and tdp ligand in the molar ratio 1:1 
in MeCN at room temperature afforded the mononuclear 
compound Cu(tdp)Br2·MeCN (1). The 1D coordination 
polymer [Cu(tdp)Br2]n (2) was synthesized via a structural 
transformation of 1 in a SCSC manner under ambient condi-
tions. Single-crystal X-ray diffraction studies revealed that 

both compounds 1 and 2 crystallize in the monoclinic space 
group C2/c.

As shown in Fig. 1, compound 1 has one lattice MeCN 
per molecule. The molecular structure of 1 consists of a 
tetracoordinate CuII with a square planar geometry through 
2 nitrogen atoms from the chelating tdp ligand and 2 bro-
mine atoms. The average Cu–N and Cu–Br bond lengths 
are all in the normal ranges (Table S2). The coordina-
tion geometry of CuII centers was analyzed with SHAPE 
2.0 software, showing a continuous shape measurement 
(CShM) of 1.13, confirming the distorted square planar 
coordination of CuII ions. The Br2 atoms from both neigh-
boring molecules in the axial directions are located at dis-
tances of 3.243 and 3.294 Å, respectively. The adjacent 
molecular units are further connected via 2 axial Cu…Br2 
supramolecular interactions to form a one-dimensional 
chain (Fig. 2, left). The Cu…Cu distance is 3.95 Å. Fur-
thermore, there are weak π···π interactions between aro-
matic ring planes of two adjacent chains within 1, leading 
to the stabilization of the molecular packing. The centroid-
to-centroid distances between the two nearest parallel aro-
matic ring planes are 3.758 Å (Fig. 2, right).

Compound 2 is a neutral 1D coordination polymer 
(Fig. 3, top). The CuII ions are six-coordinate, exhibiting 
a distorted octahedral coordination geometry with a con-
tinuous shape measurement (CShM) of 2.16. Both axial 
positions of the CuII ions are occupied by the nitrogen 
atoms of the triazole rings, while the equatorial plane is 
coordinate by 2 bromides and 2 pyridyl nitrogen atoms. 
Due to the Jahn–Teller effect, the axial Cu–N distances 
of 2.442 Å are rather longer than the equatorial Cu–N 
distances of 1.995 Å, while the equatorial Cu-Br distances 
are 2.491 Å in the normal range. The tdp ligands bridge 
the neighboring CuII ions in a bis-bidentate chelating mode 
and the intrachain Cu…Cu distances are 5.412 Å. Fur-
thermore, the molecular packing of 2 is also stabilized by 
the π···π interactions between pyridine rings of 2 adjacent 
chains, and the centroid-to-centroid distance is 3.841 Å 
(Fig. 3, bottom).Fig. 1   Molecular structure of compound 1 

Fig. 2   One-dimensional CuII 
chains (left) and π···π interac-
tions between aromatic rings 
of 2 adjacent chains (right) for 
compound 1. Hydrogen atoms 
have been omitted for clarity
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SCSC transformation

The brown single crystals of monomer 1 transformed to 
green single crystals of 1D chain [Cu(tdp)Br2]n (2) by 
separating them from the mother liquor and then leaving 
the crystals in the air for ten days. On the other hand, a 
transformation from 2 to 1 cannot be obtained, suggest-
ing that 2 is the thermodynamically favored compound, 
while 1 represents the metastable compound. Furthermore, 
compound 2 can be synthesized by placing a small amount 
of 1 in 5 ml MeCN in an oven at 90 °C for 72 h under sol-
vothermal conditions, confirming that 2 is thermodynami-
cally favored. The SCSC transformation from 1 to 2 was 
further confirmed by powder X-ray diffraction (PXRD) 
patterns and the percentage conversion versus time plot 
(Fig. 4). The PXRD patterns for different times show that 
the distinct peak at 2θ = 6.4° of compound 1 vanished 
gradually, whereas new peaks generated at 2θ = 11.1, 16.5, 
21.1, 24.0 and 27.5° slowly for compound 2. After 1 was 

placed in ambient air for 10 days, a sample with the same 
PXRD pattern of 2 was achieved.

However, if the crystals of 1 were placed under dry N2 in 
a glass desiccator with a stopcock for ten days and PXRD 
data have been collected periodically (Fig. S1), the distinct 
peak at 2θ = 6.4° of 1 vanished gradually, whereas a new 
peak was generated at 2θ = 7.6° slowly, which was totally 
different from those for compound 2. However, there were 
too many cracks in the obtained crystals, and their qualities 
were not good enough for SXRD analysis (Fig. S2). The 
structural transformation process under an inert atmosphere 
demands a single-crystal study of these obtained crystals, 
which will be the subject of our future work.

The difference between these processes suggested that 
some liquid phase (either air, moisture or MeCN in the case 
of solvothermal synthesis) should be present in order to 
achieve the structural transformation from 1 to 2. By com-
parison with the crystal packing in 1 (Fig. S3) with the linear 
structure of 2 (Fig. 3), the structural transformation is likely 

Fig. 3   Linear structure of 
compound 2 (top) and π···π 
interactions between pyridine 
rings of 2 adjacent chains (bot-
tom). Hydrogen atoms have 
been omitted for clarity
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to be associated with the rearrangement of molecules of 1 
inside the layers, perpendicular to the c-axis. Both uncoor-
dinated nitrogen atoms from the tdp ligands in 1 chelate the 
tetracoordinate CuII ions from the neighboring molecules, 
leading to an increase in coordination number of CuII from 
4 to 6 and an increase in dimensionality from 0 to 1D.

Magnetic properties

Magnetic susceptibility for both compounds was collected 
on powdered samples in the 2.0–300 K temperature range 
(Fig. 5). The χT value at 300 K is 0.361 (for 1) and 0.377 
(for 2) cm3 K mol−1, respectively, which are all close to 
the expected value of 0.375 cm3 K mol−1 for an isolated 
CuII ion (S = 1/2). The χT product for 1 increases with 
decreasing temperature, reaching a maximum value of 
0.414 cm3 K mol−1 at about 40 K, followed by a sharp drop 
down to 0.307 cm3 K mol−1 at 2.0 K. This behavior indicates 
the presence of dominant ferromagnetic interactions between 
neighboring spin carriers, and the final decrease in χT might 
be due to the interchain antiferromagnetic interactions, 
which is likely to be attributed to the π···π stacking between 
the aromatic rings from the adjacent ligands. For 2, the χT 
product almost keeps constant with decreasing temperature 
until it reaches 10 K, and then drops to 0.270 cm3 K mol−1 

at 2.0 K, suggesting the presence of dominant antiferromag-
netic interactions within compound 2.

The experimental data for both compounds have been 
further analyzed using the Baker’s equation for a 1D Heisen-
berg chain of S = 1/2 system based on the spin Hamiltonian 
given below [47].

Thus, the magnetic susceptibility data were fitted to the 
following equation

whereA = 1.0 + 5.7979916y + 16.902653y
2
+ 29.376885y

3

+29.832959y
4
+ 14.036918y

5  ,  B = 1.0 + 2.7979916y+

7.0086780y
2
+ 8.563644y

3
+ 4.5743114y

4 and y = J∕2kBT , 
and the interchain interactions zJ’ have been taken into 
account as a mean-field correction

(1)Ĥ = −J�Si�Si

(2)� =
Ng2�2

4kBT

(

A

B

)2∕3

(3)�chain =
�

1 − �
(

2zJ�∕Ng2�2
)

Fig. 4   PXRD patterns of 1 irra-
diated for different times (left) 
and plot of compound 1 and 2 
obtained versus time (right)
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where z = 2. The best-fit values of the experimen-
tal data are summarized in Table 1, and R is defined as 
R =

∑
�

�calcd
M

− �obs
M

�2
∕
∑

�

�obs
M

�2.
The best-fit values for 1 are close to those obtained in the 

reported mononuclear quasi-square CuII(Hmbm)Cl2 mono-
mers [48], confirming that the magnetic exchange interac-
tions between the adjacent CuII ions for compound 1 are 
ferromagnetic, while the interactions through π···π stacking 
between the aromatic rings from the adjacent ligands are 
antiferromagnetic. However, the intra- and interchain inter-
actions within 2 are both antiferromagnetic. According to 
the calculation [49], the antiferromagnetic component of 
J reaches its maximum for the parameters M–N–N = 135° 
and N–M–N = 90°. In our case, the Cu–N–N (144.5°) and 
N–Cu–N (74.2°) angles deviated from 135° and 90° result-
ing in weaker antiferromagnetic interactions. Thus, the 
observation of weak intrachain antiferromagnetic interac-
tion within 2 is also reasonable.

Conclusion

In conclusion, a new mononuclear complex Cu(tdp)
Br2·MeCN (1) has been synthesized, which can transform 
to a 1D coordination polymer [Cu(tdp)Br2]n (2) under ambi-
ent conditions through an irreversible SCSC transformation 
process, accompanied by a change in magnetic properties. 
The dc magnetic susceptibility studies for both compounds 
revealed the presence of weak ferromagnetic interactions 
between the spin carriers within 1 and antiferromagnetic 
intrachain magnetic exchange couplings within 2. Further-
more, the π···π stacking leads to the weak antiferromagnetic 
interactions within both compounds.

Supplementary material

Crystallographic data for the structural analysis have been 
deposited with the Cambridge Crystallographic Data 
Center. CCDC reference numbers are 2,020,059 (for 1) and 
2,020,060 (for 2). Materials, reagent information, detailed 
synthetic procedures, instrument methods and crystallo-
graphic tables associated with this article can be found in 

the online version. The crystallographic data can be found in 
the supporting information or can be obtained free of charge 
from the Cambridge Crystallographic Data Center via https​
://summa​ry.ccdc.cam.ac.uk/ structure-summary-form.
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