

Review

Contents lists available at ScienceDirect

Journal of Molecular Liquids

journal homepage: www.elsevier.com/locate/molliq

Solubility and solution thermodynamics of novel pyrazolo chalcone derivatives in various solvents from 298.15 K to 328.15 K

Shipra Baluja *, Asmita Hirapara

Physical Chemistry Laboratory, Department of Chemistry, Saurashtra University, Rajkot 360005, Gujarat, India

ARTICLE INFO

ABSTRACT

Article history: Received 28 August 2018 Received in revised form 24 November 2018 Accepted 14 December 2018 Available online 18 December 2018

Keywords: Pyrazolo chalcone derivatives Solubility Apelblat equation Buchowski-Ksiazczak equation Thermodynamic parameters Some novel pyrazolo chalcone derivatives have been synthesized and characterization of these synthesized compounds was done by IR, ¹H NMR, ¹³C NMR and mass analysis. The solubility of pyrazolo chalcone derivatives in methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol, ethyl acetate and acetonitrile was measured by gravimetric method over a temperature range (298.15 to 328.15) K at atmospheric pressure. The solubility of synthesized compounds is found to increase linearly with temperature. Further, in alcoholic solvents, solubility is maximum in 1-pentanol and minimum in methanol whereas in non-alcoholic solvents, solubility is greater in ethyl acetate and minimum in acetonitrile. The experimental solubility data were correlated with temperature by modified Apelblat and Buchowski-Ksiazczak λh equations. The experimental data and model parameters would be useful for optimizing the process of purification. Some thermodynamic parameters such as dissolution enthalpy, Gibb's free energy and entropy of mixing have also been calculated by Van't Hoff analysis. Further, excess enthalpy of solutions has been calculated using Buchowski-Ksiazczak λh equation.

© 2018 Published by Elsevier B.V.

Contents

		c00
1.	Introduction	692
2.	Experimental	693
	2.1. Synthesis	693
	2.2. Spectroscopy studies	697
3.	Solubility measurement	697
	3.1. Results and discussion	697
	3.2. Thermodynamic parameters	700
	3.3. Excess enthalpy of solutions	704
4.	Conclusions	704
Ackr	nowledgments	704
Appe	endix A. Supplementary data	704
Refe	rences	704

1. Introduction

Chalcones, considered to be the precursor of flavonoids and isoflavonoids are abundant in edible plants as well as useful for the synthesis of several derivatives like cyanopyridines [1], pyrazolines isoxazoles [2] and pyrimidines [3]. These chalcones containing keto ethylenic group demonstrate various biological activities such as anti-

* Corresponding author. *E-mail address:* shipra_baluja@rediffmail.com (S. Baluja). inflammatory [4], antiherbicidal [5], anti-HIV [6], anti-ulcer [7] and anti-cancer [8] etc. Due to these biological applications, it was of our interest to study the behaviour of these pyrazolo chalcones in solutions which may be useful for their further applications in different fields.

The ability of a chemical compound to elicit a pharmacological/therapeutic effect is related to its various physicochemical properties. Solubility is one of the properties which provide preliminary information on the nature of the tested compound. Solubility behaviour of a compound is an important factor affecting their bioavailability [9]. Further, solubility data provides useful information to understanding of intermolecular

Fig. 1. Reaction Scheme for synthesized pyrazolo chalcone derivatives.

forces-solution and structure property relationship [10]. By using this data one can design process pharmaceutical dosage form and drug discovery process [11,12]. It is also important for synthesis and evaluation of the separation process [13,14]. Study of temperature dependence solubility data provides the explanation of molecular mechanisms involved in the respective drug dissolution process [15]. The data has been useful in drug design, formulation, production, distillation and crystallization based on separation [16] etc. Solubility data may be useful to understand various biological processes [17,18].

Because of the continuing interest and marvellous biological activity of chalcone derivatives, the solubility of synthesized compounds has been studied in different solvents and temperatures. These data were correlated with a modified Apelblat and Buchowski-Ksiazczak λh models. Further, using solubility data, some thermodynamic parameters such as dissolution enthalpy, Gibb's free energy and entropy of mixing were also evaluated.

2. Experimental

The chemicals used in the synthesis of different chalcone compounds are *o*-phenyledine diamine, glacial acetic acid, phenyl hydrazine and different substituted acetophenones etc. These chemicals were

Table 1
Physical properties of synthesized chalcone derivatives.

purchased from Spectochem Pvt. Ltd. (Mumbai, India) as well as LOBA Chemie Pvt. Ltd. and the mole fraction purities of these chemicals were of 98.5–99.5%. The solvents used in solubility determination were of Analytical Reagent (AR) grade and were further purified according to reported method [19]. All the distilled solvents were stored over dry molecular sieves. The purity of solvents was checked by GC–MS (SHIMADZU Model-QP- 2010).

2.1. Synthesis

A methanolic solution of different 1-(1H-benzo[*d*]imidazole-2-yl) ethan-1-one (0.01 mol), pyrazolo aldehyde (0.008–0.007 mol) and potassium hydroxide (0.04 mol) was stirred at room temperature for 1 h. The completion of reaction was confirmed by analytical thin layer chromatography (TLC) (Performed on aluminium coated plates Gel 60F254 (E. Merck)) using (0.6:0.4-Hexane: Ethyl acetate) as mobile phase. After completion of reaction, the reaction mass was poured in to crushed ice and the resultant solid was filtered, washed with methanol to remove unreacted reagents and dried under vacuum to give crude product.

The reaction scheme is given in Fig. 1.

-R	Molecular formula	Average molar mass	Yield (%)	$R_{\rm f}^*$ value	T _{fus} /K	Electro-negativity
3-methoxy	C ₂₆ H ₂₀ N ₄ O ₂	420.158	80	0.84	504.28	2.26
-H	C ₂₅ H ₁₈ N ₄ O	390.446	80	0.84	543.65	-
4-chloro	C25H17CIN40	424.880	80	0.80	540.90	3.00
3, 4-dimethoxy	C ₂₇ H ₂₂ N ₄ O ₃	450.169	81	0.71	524.11	2.25
4-flouro	C ₂₅ H ₁₇ FN ₄ O	408.440	85	0.88	555.43	4.00
2-chloro	C ₂₅ H ₁₇ ClN ₄ O	424.110	86	0.80	554.67	2.97
4-methoxy	C ₂₆ H ₂₀ N ₄ O ₂	420.158	89	0.88	535.64	2.24
3-nitro	C ₂₅ H ₁₇ N ₅ O ₃	436.136	83	0.83	523.01	≈ 2.8
	-R 3-methoxy -H 4-chloro 3, 4-dimethoxy 4-flouro 2-chloro 4-methoxy 3-nitro	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

R^{*}_f - Retention factor.

T_{fus} - Melting point.

^a 0.6:0.4-Hexane: Ethyl acetate.

Experimental mole fraction solubilities (x_i) and relative deviation (RD) of chalcone derivatives in selected solvents at different temperatures at experimental pressure p = 0.1 MPa.

	T(K)	$x_i \cdot 10^3$	$x_{ci}^{a} \cdot 10^{3}$	100 · RD ^a	$x_{ci}^{b} \cdot 10^{3}$	$100 \cdot RD^b$	$x_i \cdot 10^3$	$x_{ci}^{a} \cdot 10^{3}$	100 · RD ^a	$x_{ci}^{b} \cdot 10^{3}$	100 <i>·RD</i> ^b
	Methanol										
283.5 0.0271 0.0272 -0.481 0.0275 -1.529 0.0554 0.0580 -4.782 393.15 0.0112 0.0213 0.0218 0.0283 0.0699 3.4600 0.0689 3.4600 393.15 0.0412 0.0411 0.0213 0.0483 0.0699 3.4600 0.0699 3.4600 393.15 0.0452 0.0442 0.0443 0.0483 0.0111 3.4760 0.0222 2.5123 393.15 0.0515 0.0519 -0.2767 0.0230 -0.3790 0.0112 2.5724 393.15 0.0674 0.0462 0.9344 -0.0420 0.9377 -0.9386 0.0372 -2.4071 393.15 0.0674 0.0466 -2.3477 0.0551 1.570 -1.5738 0.0466 0.0463 1.4163 0.0374 -4.0078 393.15 0.0570 0.0371 0.0460 -2.3716 0.0474 -4.0078 393.15 0.5786 0.1160 -2.3716 0.0474 -4.0078	AH-1						AH-2				
30.15 0.0115 0.0115 0.0218 0.0053 0.0678 -2.4802 0.0678 -2.4812 0.0678 -2.4812 0.0778 1.0441 0.0789 1.0441 0.0778 1.0441 0.0778 1.0441 0.0779 1.0411 0.0779 0.0115 0.0779 0.0115 0.0779 0.0123 2.0511 0.0779 0.0123 2.0511 0.0779 0.0123 2.0511 0.0779 0.0123 2.0774 0.0125 -2.3793 233.15 0.0551 -0.0579 -0.0569 -1.0579 0.0130 0.0355 -1.4161 0.0715 -2.4708 243.5 0.0466 0.0574 -0.0669 -1.739 0.0466 0.0464 0.0463 0.0471 -4.0640 0.0475 -4.0100 0.0572 -2.4005 0.0451 -2.4005 0.0451 -2.4005 0.0451 -2.4005 0.0451 -2.4005 0.0451 -2.4005 0.0572 -4.313 0.0573 -4.0005 0.0572 -4.0005 0.0572 -2.4005 0.0573 <t< td=""><td>298.15</td><td>0.0271</td><td>0.0272</td><td>-0.4431</td><td>0.0275</td><td>-1.5509</td><td>0.0554</td><td>0.0561</td><td>-1.1905</td><td>0.0580</td><td>-4.7979</td></t<>	298.15	0.0271	0.0272	-0.4431	0.0275	-1.5509	0.0554	0.0561	-1.1905	0.0580	-4.7979
303.13 0.0381 0.0381 0.0382 0.0382 0.0482 0.0488 0.0488 0.0499 3.1210 0.0475 5.1211 333.13 0.0513 0.0519 0.0779 0.0399 0.1323 0.0132 2.3734 333.13 0.0519 0.0779 0.0208 -0.02700 0.0133 0.112 2.3714 333.13 0.0451 0.0451 0.0452 0.1221 0.0544 0.122 0.0544 0.122 0.0544 0.122 0.0544 0.123 0.0314 -0.0548 0.0512 -1.3167 233.13 0.0579 0.4190 0.0571 -1.0538 0.0495 0.4491 0.4493 1.0522 -1.0112 -1.3113 1.0522 0.0534 0.0523 -1.0123 0.0512 -1.3113 1.0523 0.0495 0.4471 0.0523 -1.0123 0.0524 -1.2000 0.0512 -1.3114 1.0507 0.1049 1.0507 0.1049 1.0507 0.1049 1.0507 0.04143 1.0507 0.0144	303.15	0.0315	0.0315	0.1268	0.0315	0.1268	0.0653	0.0669	-2.4502	0.0668	-2.4502
331.15 0.0412 0.0412 0.0412 0.0412 0.0422 0.0422 0.0422 0.0423 0.0423 0.0423 0.0423 0.0423 0.0423 0.0423 0.0423 0.0423 0.0423 0.0423 0.0423 0.0423 0.0423 0.0423 0.0424 0.0423 0.0424 0.0423 0.0424 0.0423 0.0424 0.0423 0.0424 0.0423 0.0424 0.0423 0.0424<	308.15	0.0363	0.0361	0.5235	0.0359	1.0747	0.0808	0.0783	3.0461	0.0765	5.1511
318.15 0.0482 0.0482 0.0433 0.0287 0.0173 -2.653 0.0522 -1.0829 221.15 0.0531 0.0571 0.0520 -0.0579 0.1133 0.1211 0.0535 0.0173 -2.6535 0.0123 -1.0879 303.15 0.0510 0.0557 -5.653 0.0520 -1.0320 0.0030 0.0355 1.4161 0.0355 1.4162 303.15 0.0574 0.0663 -1.2728 0.0400 0.0464 0.0493 -0.0575 0.0173 -1.3133 313.16 0.0160 0.0111 -5.746 0.0553 0.0510 0.0774 0.0463 -0.0378 0.0147 0.0493 -2.2708 0.0463 0.0531 -3.3113 313.15 0.1600 0.1111 -5.7161 0.0563 0.0531 3.3394 0.0374 -4.0000 0.0774 -4.0037 323.15 0.1600 0.1173 0.5596 0.1375 0.1375 0.1379 0.1374 -1.1313 0.3776 0.1372 <t< td=""><td>313.15</td><td>0.0412</td><td>0.0411</td><td>0.3153</td><td>0.0408</td><td>1.0429</td><td>0.0883</td><td>0.0899</td><td>-1.8120</td><td>0.0873</td><td>1.0193</td></t<>	313.15	0.0412	0.0411	0.3153	0.0408	1.0429	0.0883	0.0899	-1.8120	0.0873	1.0193
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	318.15	0.0462	0.0464	-0.3894	0.0462	0.0433	0.0987	0.1013	-2.6551	0.0992	-0.6283
328.15 0.6581 0.0577 0.0629 0.0581 0.1229 0.121 0.6140 0.1255 -1.1087 283.15 0.0410 0.0357 -5.655 0.0451 0.2325 0.0335 0.1016 0.0335 -1.1017 313.15 0.0770 0.0840 0.3327 -0.1115 1.0327 -1.2134 0.0571 -0.0669 0.0447 0.0459 -2.21355 0.0612 -1.5115 313.15 0.0356 0.0574 -0.0066 0.0572 -2.4000 0.0574 -1.0000 333.15 0.5601 0.5585 0.1125 0.0550 0.0572 -2.4000 0.0574 -1.0000 333.15 0.5601 0.5588 0.1125 0.5586 0.1325 0.1335 1.2307 0.1116 3.7311 333.15 0.5690 0.5698 0.5698 -0.3252 0.1335 1.2320 0.1323 0.1335 1.2327 0.2374 1.1476 1.477 1.477 1.477 1.477 1.477 1.477 1.477<	323.15	0.0515	0.0519	-0.7767	0.0520	-0.9709	0.1153	0.1121	2.7754	0.1122	2.5152
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	328.15	0.0581	0.0577	0.6029	0.0584	-0.6029	0.1229	0.1221	0.6348	0.1265	-3.1087
288.15 0.0466 0.0429 -5.650 0.0431 0.0322 0.0307 -0.0375 0.0112 -2.578 301.13 0.0570 0.0267 -2.317 0.0231 -1.7863 0.0449 <td>AH-3</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>AH-4</td> <td></td> <td></td> <td></td> <td></td>	AH-3						AH-4				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	298.15	0.0406	0.0429	-5.6650	0.0461	0.7322	0.0304	0.0307	-0.9536	0.0312	-2.5978
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	303.15	0.0510	0.0557	-9.2157	0.0553	1.5929	0.0360	0.0355	1.4163	0.0355	1.4162
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	308.15	0.0674	0.0696	-3.2947	0.0659	-1.7839	0.0406	0.0406	0.0984	0.0403	1.0827
33.8.15 0.0859 0.0879 -4.3493 0.08612 1.3841 0.0512 -4.0300 0.0512 -4.0300 323.15 0.1167 0.1214 -4.0185 0.1226 -4.0000 0.0531 3.3344 0.0574 -4.0000 323.15 0.5165 0.1125 0.0974 -0.0986 0.0974 0.0974 0.0277 0.1118 3.077 0.1118 3.077 0.1118 3.7813 1.3733 1.3733 1.3733 1.3733 1.3733 1.3733 1.3733 1.3733 1.3733 1.3733 1.3733 1.3733 1.3743 0.1467 0.1467 1.4765 313.15 0.0586 -0.0516 0.0586 -0.0500 0.1799 0.1799 1.4865 0.2144 -2.4867 11.17 0.0185 -0.0165 0.0586 0.0560 0.0276 0.2061 -1.4865 0.2144 -2.4867 11.17 0.0185 -0.0673 0.0556 0.0448 0.0472 2.0619 0.0419 -1.3844 0.1487	313.15	0.0790	0.0840	6.3291	0.0781	-0.9056	0.0447	0.0459	-2.7305	0.0455	-1.6115
323.15 0.1057 0.1146 0.0139 0.0057 -6.0808 303.15 0.5799 -0.5598 -0.1406 0.1136 0.1136 0.1137 1.3292 0.1287 -6.0808 313.15 0.5590 -0.5598 -0.3598 0.5395 -0.5398 0.1397 0.1469 0.1179 -1.1844 0.1677 0.1467 1.4765 313.15 0.5690 0.6991 -0.6115 0.6691 0.0991 -3.1378 0.1489 0.3576 0.0444 0.0490 -1.1284 0.1687 -1.4438 33.15 0.1699 0.1149 0.3576 0.0444 0.0475 2.0618 0.0673 2.2618 33.15 0.1690 0.1177 -0.0067 0.0550 0.0544 1.1289 0.149 <t< td=""><td>318.15</td><td>0.0936</td><td>0.0979</td><td>-4.5493</td><td>0.0921</td><td>1.5841</td><td>0.0502</td><td>0.0515</td><td>-2.6305</td><td>0.0512</td><td>-1.8334</td></t<>	318.15	0.0936	0.0979	-4.5493	0.0921	1.5841	0.0502	0.0515	-2.6305	0.0512	-1.8334
33.8.15 0.1167 0.124 4.0185 0.1260 -0.0689 0.0631 0.3394 0.0574 2.1140 288.15 0.6560 0.5598 0.1146 0.0590 0.1135 1.2300 0.0987 -2.3931 338.15 0.5596 0.1146 0.6597 0.2790 0.3345 0.1135 1.2303 0.1125 3.2301 313.15 0.5868 0.5398 0.03897 -0.2391 0.11390 0.1170 0.11670 0.11670 0.11670 0.1467 0.41672 0.3901 328.15 0.0560 0.6691 -0.5113 0.0691 -0.4950 0.1879 0.1894 -1.3120 0.1479 -1.4489 328.15 0.1640 0.3576 0.0662 0.0292 0.0561 -0.6978 0.0591 0.0541 1.1269 0.0475 2.26768 331.15 0.1663 0.1261 0.0663 0.0261 0.4862 0.0733 -2.3749 331.15 0.1663 0.1261 0.0663 0.02613 <td< td=""><td>323.15</td><td>0.1050</td><td>0.0111</td><td>-5.7140</td><td>0.1080</td><td>-2.5161</td><td>0.0550</td><td>0.0572</td><td>-4.0000</td><td>0.0574</td><td>-4.0000</td></td<>	323.15	0.1050	0.0111	-5.7140	0.1080	-2.5161	0.0550	0.0572	-4.0000	0.0574	-4.0000
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	328.15	0.1167	0.1214	-4.0185	0.1260	-0.0696	0.0653	0.0631	3.3394	0.0574	2.1140
288.15 0.5661 0.0535 0.1125 0.0396 0.6186 0.1118 1.6270 0.0067 -6.3988 303.15 0.5799 -0.3346 0.5798 -0.3353 0.1322 0.1118 1.5272 0.1223 1.4423 0.1447 0.1116 1.1118 1.5272 0.1233 1.4423 0.1447 0.1116 1.1118 1.5272 0.1233 1.4423 0.1467 0.1467 0.1467 0.1467 0.1467 0.1467 0.1467 0.1467 0.1467 0.1467 0.1467 0.1467 0.1467 0.1464 0.1467 -2.4607 238.15 0.6189 0.6185 0.6672 0.0652 0.0653 0.0449 0.1772 0.0449 0.376 0.1469 0.1503 -1.0181 0.4639 0.0475 2.0619 0.0475 2.0619 0.0475 2.0619 0.0475 2.0619 0.0473 2.1261 0.0633 2.1264 0.335 2.1264 0.335 2.1264 0.335 2.4502 0.0763 -1.2449 2.3313	AH-5						AH-6				
333.15 0.5660 0.5668 -0.1466 0.6688 -0.1375 0.1185 1.2392 0.1186 3.7381 333.15 0.579 0.579 0.579 0.579 0.579 0.579 0.579 0.579 0.579 0.578 0.728 3.3415 0.6180 0.6181 0.1322 0.1184 -1.284 0.1283 3.3425 323.15 0.6185 0.6662 0.0662 0.0662 0.0292 0.2061 -1.2848 0.149 -3.7893 333.15 0.1482 0.1485 0.1503 -1.0081 0.0445 0.0475 2.0619 -3.7893 333.15 0.1482 0.1556 -0.6078 0.0556 0.0550 0.0631 -3.3948 0.0632 -1.604 0.0662 -2.613 0.0631 -3.3948 0.0632 -2.6627 0.0652 0.0633 -2.6434 0.2625 0.0633 -3.4941 0.6677 0.2625 0.0633 -3.4941 0.6677 0.2625 0.0633 -3.4943 0.0663 -1.2644	298.15	0.5601	0.5595	0.1125	0.5596	0.1125	0.0904	0.0929	-2.7768	0.0967	-6.9808
338.15 0.5799 0.5799 0.3375 0.1322 0.1312 0.1283 3.6425 313.15 0.5860 0.5880 0.5085 -0.5188 0.5985 -0.2010 0.1514 -1.1070 0.1477 0.1514 -1.1084 0.1672 0.3991 328.15 0.6189 0.6185 0.0662 0.4186 0.2061 -1.3044 0.1672 0.2144 -2.24607 AH7 0.6189 0.6185 0.0662 0.4486 0.0409 -1.1220 0.0419 -3.7899 308.15 0.1547 0.1553 -0.6078 0.1566 0.0663 1.1261 0.0652 2.3893 0.0601 -1.8844 313.15 0.1665 0.1666 0.1261 0.0663 0.1261 0.0652 -3.3893 0.0601 -1.8144 313.15 0.1665 0.1610 0.1777 -0.1000 0.1747 -1.0000 0.0744 0.0753 -4.7890 313.15 0.1767 0.1777 -0.1000 0.1747 -1.1905 0.0	303.15	0.5690	0.5698	-0.1406	0.5698	-0.1406	0.1160	0.1118	3.6207	0.1116	3.7931
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	308.15	0.5779	0.5799	-0.3548	0.5798	-0.3375	0.1332	0.1315	1.2392	0.1283	3.6425
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	313.15	0.5880	0.5898	-0.3061	0.5897	-0.2891	0.1490	0.1514	-1.6107	0.1467	1.4765
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	318.15	0.5964	0.5995	-0.5198	0.5995	-0.5030	0.1679	0.1709	-1.8049	0.1672	0.3991
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	323.15	0.6060	0.6091	-0.5115	0.6091	-0.4950	0.1870	0.1894	-1.2834	0.1897	-1.4438
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	328.15	0.6189	0.6185	0.0662	0.6186	0.0662	0.2092	0.2061	1.4865	0.2144	-2.4807
288.15 0.1489 0.35/6 0.1369 -3.769 0.0404 0.0404 0.0404 0.0419 -3.769 0.0419 -3.769 303.15 0.1488 0.1556 -0.6078 0.0550 0.0541 1.1269 0.0633 2.7626 313.15 0.1660 0.1663 0.1261 0.0653 0.0641 -1.2162 0.073 -2.1244 323.15 0.1700 0.1771 -0.000 0.0717 -1.0000 0.0741 0.0821 0.0821 0.0833 -1.5844 238.15 0.1767 0.1771 -0.0471 0.0940 0.0954 -1.1905 0.0763 -4.7980 303.15 0.0850 0.0866 -4.2753 0.0863 -3.824 0.0940 0.0958 -2.4502 0.0833 -2.4502 303.15 0.0850 0.0866 -4.2753 0.0846 0.1161 1.314 0.1266 0.16373 -2.4502 303.15 0.1361 0.1214 -0.0726 0.1133 2.3625 0.1339 -2.25	AH-7						AH-8				
33315 0.1488 0.1303 -1.0081 0.0485 0.0475 2.0619 0.0475 2.0613 33815 0.1600 0.1600 -0.5625 0.0530 0.0513 -3.883 0.0601 -1.864 33315 0.1600 0.1603 0.1261 0.1663 0.1261 0.0653 0.2622 -3.4011 0.0673 -2.1244 32315 0.1700 0.1717 -0.1000 0.0740 0.0749 -1.2152 0.0753 -4.780 AH-1 -0.0237 0.1771 -0.1076 -5.4450 0.0842 -1.1905 0.0763 -4.780 303.15 0.0856 -0.2725 0.1617 3.7323 0.1230 0.1208 -1.4195 0.0763 -2.4502 303.15 0.0856 -0.2726 0.1167 3.7323 0.1230 0.1208 -1.8120 0.1167 1.0933 313.15 0.1462 0.1516 -2.2725 0.1440 0.1472 2.7754 0.1160 0.1616 0.1617 0.1272 2.1161 </td <td>298.15</td> <td>0.1454</td> <td>0.1449</td> <td>0.3576</td> <td>0.1449</td> <td>0.3576</td> <td>0.0404</td> <td>0.0409</td> <td>-1.3129</td> <td>0.0419</td> <td>-3.7899</td>	298.15	0.1454	0.1449	0.3576	0.1449	0.3576	0.0404	0.0409	-1.3129	0.0419	-3.7899
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	303.15	0.1488	0.1503	-1.0081	0.1503	-1.0081	0.0485	0.0475	2.0619	0.0475	2.0619
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	308.15	0.1547	0.1556	-0.6078	0.1556	-0.6078	0.0550	0.0544	1.1269	0.0535	2.7626
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	313.15	0.1600	0.1609	-0.5625	0.1610	-0.5625	0.0590	0.0613	-3.8983	0.0601	-1.8644
323.13 0.1709 0.1771 -0.0037 0.1717 -0.1071 -0.0037 0.1717 -0.1671 0.0821 0.0821 0.0821 0.0842 -0.12162 0.0833 -1.5384 Ehand AH-1 -0.7131 0.0763 -5.450 0.0842 -1.1905 0.0763 -4.7800 303.15 0.0856 0.0986 -2.4773 0.0883 -5.8824 0.09842 -1.1905 0.0763 -4.7800 303.15 0.0456 0.0986 -0.0726 0.1167 3.7923 0.1200 0.1018 3.0461 0.1018 5.5111 1.0133 -0.6283 323.15 0.1462 0.1460 0.1471 -0.1167 3.7923 0.1200 0.1238 -0.6518 0.1616 2.5152 -2.82.15 0.1133 -0.6283 3.313.5 0.1651 0.1617 0.1717 -4.0291 0.1601 0.1628 0.6588 0.0402 1.0133 -0.6283 323.15 0.1170 0.1113 1.5329 0.0586 -1.5144 0.0584 <td>318.15</td> <td>0.1665</td> <td>0.1663</td> <td>0.1261</td> <td>0.1663</td> <td>0.1261</td> <td>0.0659</td> <td>0.0682</td> <td>-3.4901</td> <td>0.0673</td> <td>-2.1244</td>	318.15	0.1665	0.1663	0.1261	0.1663	0.1261	0.0659	0.0682	-3.4901	0.0673	-2.1244
SAB.1 0.170 0.171 -0.037 0.171 -0.037 0.0812 1.0862 0.0813 -1.2854 Bhand AH-1	323.15	0.1700	0.1717	- 1.0000	0.1717	-1.0000	0.0740	0.0749	-1.2162	0.0750	-1.3514
Ethanol AH-1 AH-2 AH-1 0.0724 0.0724 -0.7131 0.0763 -5.4450 0.0842 -1.1905 0.0763 -4.7890 303.15 0.0856 0.0156 0.0508 -4.2753 0.0883 -3.8244 0.0940 0.0642 -1.8120 0.1107 5.1511 313.15 0.1230 0.121 -0.0726 0.1167 3.7922 0.1230 -1.8120 0.1167 1.0193 318.15 0.1640 0.1517 -0.7266 0.1332 2.0643 0.1348 0.1333 -0.6233 322.15 0.1640 0.1614 0.1610 0.1660 0.6348 0.1718 -3.1087 AH-3	328.15	0.1767	0.1771	-0.2037	0.1771	-0.14/1	0.0821	0.0812	1.0962	0.0833	-1.5834
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Ethanol										
298.15 0.0724 0.0728 -0.7131 0.0763 -5.4450 0.0842 -1.1905 0.0763 -4.7802 308.15 0.0856 0.1056 0.0589 -0.4753 0.0883 -2.4502 0.0883 -2.4502 308.15 0.1214 -0.0726 0.1167 3.7923 0.1230 0.1230 0.1171 1.0193 318.15 0.1341 0.1511 -0.7266 0.1332 2.0645 0.1472 2.7754 0.1333 -0.6283 322.15 0.1640 0.1514 0.1717 -4.0291 0.1610 0.1660 0.6348 0.1718 -3.1087 AH-3	AH-1						AH-2				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	298.15	0.0724	0.0728	-0.7131	0.0763	-5.4450	0.0848	0.0842	-1.1905	0.0763	-4.7980
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	303.15	0.0850	0.0886	-4.2753	0.0883	-3.8824	0.0940	0.0958	-2.4502	0.0883	-2.4502
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	308.15	0.1056	0.1050	0.5097	0.1017	3.6476	0.1064	0.1081	3.0461	0.1018	5.1511
318.15 0.1611 0.1371 −0.7296 0.1333 2.0645 0.1480 0.1339 −2.6551 0.1333 −0.6283 323.15 0.1651 0.1640 0.6174 0.1717 −2.40291 0.1601 0.1606 0.6348 0.1718 −3.1087 AH-3 H H H 298.15 0.1017 0.0101 0.6339 0.0595 0.0402 1.00130 308.15 0.1130 0.1113 1.5044 0.1113 1.5929 0.0500 0.0447 -1.5149 0.0586 0.0697 5.1220 318.15 0.1325 0.1339 −1.0566 0.1339 −2.6161 0.1000 0.0977 −2.6219 0.0978 −3.3356 328.15 0.1520 0.1591 −2.6451 0.1591 −2.6451 0.1510 0.1533 −2.6925 0.1104 −3.3987 328.15 0.1725 0.1728 −0.0666 0.1111 0.1112 −0.22935 0.1149 −3.3856 328.15 0.8143 0.8146 −0.2318 0.1561 0.1562 −2.46610	313.15	0.1213	0.1214	-0.0726	0.1167	3.7923	0.1230	0.1208	-1.8120	0.1167	1.0193
323.15 0.1422 0.1515 -2.2141 0.1516 -2.2735 0.1460 0.1472 2.7754 0.1516 2.5152 328.15 0.1651 0.1610 0.60348 0.1718 -3.1087 AH-3 AH-4 298.15 0.1017 0.1011 0.6339 0.1011 0.7322 0.0301 0.0389 0.6958 0.0402 10.0130 303.15 0.1199 0.1223 -1.9506 0.1223 -1.7839 0.0588 0.0596 -1.5214 0.0584 4.3952 313.15 0.1484 0.1461 1.5167 0.1461 1.5841 0.0466 0.0844 0.7266 0.0828 1.1714 323.15 0.1550 0.1591 -2.6455 0.1591 -2.5161 0.1000 0.0977 -0.8219 0.0978 -3.8356 328.15 0.8143 0.8146 -0.0343 0.8284 -0.0483 0.1111 0.1123 -2.8375 0.1094 -3.9961 303.15 0.8280 0.8267 0.0350 0.8542 0.0936 0.1567 0.1983 -2.65460 0.1242	318.15	0.1361	0.1371	-0.7296	0.1333	2.0645	0.1348	0.1339	-2.6551	0.1333	-0.6283
32.8.15 0.1651 0.1640 0.6174 0.1717 -4.0291 0.1601 0.1606 0.6348 0.1718 -3.1087 AH-3 298.15 0.1017 0.1011 0.6339 0.1011 0.7322 0.0391 0.0389 0.0402 10.0130 303.15 0.1130 0.1113 1.5044 0.1113 1.5929 0.0500 0.0487 -1.9149 0.0486 6.0638 308.15 0.1325 0.1339 -1.0566 0.1329 -0.9057 0.0716 0.7160 1.7886 0.0697 5.1220 318.15 0.1550 0.1591 -2.6451 0.1591 -2.5161 0.1000 0.0977 -0.8219 0.0978 -3.8356 328.15 0.1725 0.1284 -0.0181 0.1051 0.1353 -2.87350 0.1149 -2.2544 AH-5	323.15	0.1482	0.1515	-2.2141	0.1516	-2.2735	0.1460	0.1472	2.7754	0.1516	2.5152
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	328.15	0.1651	0.1640	0.6174	0.1717	-4.0291	0.1601	0.1606	0.6348	0.1718	-3.1087
28.15 0.1017 0.1011 0.6339 0.1011 0.7322 0.0391 0.0389 0.6958 0.0402 10.0130 303.15 0.1130 0.1113 1.5044 0.1113 1.5929 0.0500 0.0487 -1.9149 0.0486 6.6638 308.15 0.1139 0.1223 -1.7839 0.0588 0.0566 -1.5214 0.0584 4.3952 313.15 0.1325 0.1339 -0.0566 0.0176 0.7160 1.7886 0.0697 5.1220 318.15 0.1591 -2.6451 0.1591 -2.5161 0.1000 0.0977 -0.8219 0.0978 -3.8356 328.15 0.1728 -0.1855 0.1728 -0.0696 0.111 0.1135 -2.87350 0.194 -3.9961 303.15 0.8133 0.8161 -0.0433 0.8151 -0.1081 0.10151 0.1353 -2.87350 0.1944 3.2814 303.15 0.8260 0.8677 0.1830 0.8155 0.1220 -7.6583	AH-3						AH-4				
30.15 0.1130 0.1113 1.5044 0.1113 1.5029 0.0500 0.0487 -1.9149 0.0584 4.3952 308.15 0.1123 0.1233 -1.0566 0.1339 -0.0957 0.0716 0.7160 1.7886 0.0697 5.1220 318.15 0.1484 0.1461 1.5167 0.1461 1.5841 0.0846 0.0844 0.7266 0.0828 1.1714 323.15 0.1725 0.1728 -0.1855 0.1728 -0.0696 0.1111 0.1112 -0.2935 0.1149 -7.2544 AH-5 - - -0.1811 0.1051 0.1353 -28.7350 0.1094 -3.3956 308.15 0.8146 -0.0343 0.8151 -0.1081 0.1051 0.1352 -24.6610 0.1242 0.9577 308.15 0.8280 0.8267 0.3623 0.8284 -0.0433 0.1562 -24.6610 0.1242 0.9577 308.15 0.8889 0.8675 0.1588 0.0867 0.1587 0.1983 -26.5480 0.1580 -0.7658 318.15 0.88930	298.15	0.1017	0.1011	0.6339	0.1011	0.7322	0.0391	0.0389	0.6958	0.0402	10.0130
38.15 0.1199 0.1223 -1.9506 0.1223 -1.7839 0.0588 0.0596 -1.5214 0.0584 4.3952 313.15 0.1325 0.1339 -1.0566 0.1339 -0.9057 0.0716 0.7160 1.7886 0.0697 5.1220 318.15 0.1454 0.1461 1.5167 0.1461 0.0846 0.0844 0.7266 0.0828 1.1714 328.15 0.1725 0.1728 -0.1855 0.1728 -0.0696 0.1111 0.1112 -0.2935 0.1149 -7.2254 AH-5 - -0.1855 0.1728 -0.0433 0.1253 0.1562 -24.6610 0.1242 0.9577 303.15 0.8393 0.8416 -0.2717 0.8414 -0.2478 0.1451 0.1774 -22.2940 0.1404 3.2814 313.15 0.8550 0.8547 0.0350 0.8562 0.2509 0.1786 0.183 -26.5480 0.1500 -0.7658 318.15 0.8801 -0.1251	303.15	0.1130	0.1113	1.5044	0.1113	1.5929	0.0500	0.0487	-1.9149	0.0486	6.0638
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	308.15	0.1199	0.1223	-1.9506	0.1223	-1.7839	0.0588	0.0596	-1.5214	0.0584	4.3952
318.15 0.1484 0.1461 1.5167 0.1461 1.5841 0.0846 0.0844 0.7266 0.0828 1.1714 323.15 0.1550 0.1591 -2.6451 0.1591 -2.5161 0.1000 0.0977 -0.8219 0.0978 -3.8356 328.15 0.1725 0.1728 -0.1855 0.1728 -0.1081 0.1011 0.1112 -0.2395 0.1149 -7.2254 AH-5 AH-6 303.15 0.8280 0.2820 0.3623 0.8284 -0.0483 0.1551 0.1562 -24.6610 0.1242 0.9577 308.15 0.8393 0.8416 -0.2717 0.8414 -0.2478 0.1451 0.1774 -22.2940 0.1404 3.2814 313.15 0.8500 0.8547 0.0350 0.8542 0.0936 0.1567 0.1983 -26.5480 0.1580 -0.7658 318.15 0.8689 0.8675 0.1588 0.8667 0.2509 0.1786 0.2183 -22.2010 0.1773 0.8061 328.15 0.8930 0.8925 0.0593 0.8912 <td>313.15</td> <td>0.1325</td> <td>0.1339</td> <td>-1.0566</td> <td>0.1339</td> <td>-0.9057</td> <td>0.0716</td> <td>0.7160</td> <td>1.7886</td> <td>0.0697</td> <td>5.1220</td>	313.15	0.1325	0.1339	-1.0566	0.1339	-0.9057	0.0716	0.7160	1.7886	0.0697	5.1220
323.15 0.1550 0.1591 -2.6451 0.1591 -2.5161 0.1000 0.0977 -0.8219 0.0978 -3.8356 328.15 0.1725 0.1728 -0.0855 0.1728 -0.0696 0.1111 0.1112 -0.2935 0.1149 -7.2254 AH-5 - - - - - - - -7.2254 308.15 0.8143 0.8146 -0.0343 0.8151 -0.1081 0.1051 0.1353 -28.7350 0.1094 -3.9961 308.15 0.8280 0.2620 0.3623 0.8284 -0.0483 0.1253 0.1562 -24.610 0.1242 0.9577 308.15 0.8393 0.8416 -0.2717 0.8414 -0.2478 0.1451 0.1774 -22.940 0.1404 3.2814 313.15 0.8689 0.8675 0.1588 0.8667 0.2509 0.1786 0.2183 -22.610 0.1773 0.8061 328.15 0.8930 0.8925 0.0593 0.8912 0.1937 0.2172 0.2542 -17.0240 0.2028 -1.6481	318.15	0.1484	0.1461	1.5167	0.1461	1.5841	0.0846	0.0844	0.7266	0.0828	1.1714
328.15 0.1725 0.1728 -0.1855 0.1728 -0.0696 0.1111 0.1112 -0.2935 0.1149 -7.2254 AH-5 AH-6 298.15 0.8143 0.8146 -0.0343 0.8151 -0.1081 0.1051 0.1353 -28.7350 0.1094 -3.9961 308.15 0.8280 0.2820 0.3623 0.8284 -0.04483 0.1253 0.1562 -24.6610 0.1242 0.9577 308.15 0.8550 0.8547 0.0350 0.8542 0.0936 0.1567 0.1983 -26.5480 0.1580 -0.7658 313.15 0.8689 0.8675 0.1588 0.8670 0.2509 0.1786 0.2183 -22.2010 0.1773 0.8061 323.15 0.8930 0.88025 0.0593 0.8912 0.1937 0.2172 0.2542 -17.0240 0.208 -1.6481 AH-7 H H N -1.6481 AH-7 -1.4516 0.0630 -1.4516 303.15 0.3720 0.3697 0.6183	323.15	0.1550	0.1591	-2.6451	0.1591	-2.5161	0.1000	0.0977	-0.8219	0.0978	-3.8356
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	328.15	0.1725	0.1728	-0.1855	0.1728	-0.0696	0.1111	0.1112	-0.2935	0.1149	-7.2254
298.15 0.8143 0.8146 -0.0343 0.8151 -0.1081 0.1051 0.1353 -28.7350 0.1094 -3.9961 303.15 0.8280 0.2820 0.3623 0.8284 -0.0483 0.1253 0.1562 -24.6610 0.1242 0.9577 308.15 0.8393 0.8416 -0.2717 0.8414 -0.2478 0.1451 0.1774 -22.2940 0.1404 3.2814 313.15 0.8550 0.8547 0.0350 0.8542 0.0936 0.1567 0.1983 -26.5480 0.1580 -0.7658 318.15 0.8699 0.8675 0.1588 0.8667 0.2509 0.1786 0.2183 -22.2010 0.1773 0.8061 323.15 0.8790 0.8801 -0.1251 0.8791 -0.0114 0.1950 0.2372 -21.6410 0.1982 -1.5897 328.15 0.8930 0.8925 0.0593 0.8912 0.1937 0.2172 0.2542 -17.0240 0.208 -1.6481 AH-7 -0.5626 0.3539 0.0553 0.0000 0.0547 1	AH-5						AH-6				
303.15 0.8280 0.2820 0.3623 0.8284 -0.0483 0.1253 0.1562 -24.6610 0.1242 0.9577 308.15 0.8393 0.8416 -0.2717 0.8414 -0.2478 0.1451 0.1774 -22.2940 0.1404 3.2814 313.15 0.8550 0.8547 0.0350 0.8542 0.0936 0.1567 0.1983 -26.5480 0.1580 -0.7658 318.15 0.8689 0.8675 0.1588 0.8667 0.2509 0.1786 0.2183 -22.2010 0.1773 0.8061 328.15 0.8930 0.8925 0.0593 0.8912 0.1937 0.2172 0.2542 -17.0240 0.2208 -1.6481 AH-7 H-7 H-8 - AH-8 - - -0.493 0.0701 0.0716 -2.2127 0.0721 -2.9265 308.15 0.3855 0.3858 -0.0752 0.3857 -0.0493 0.0701 0.0716 -2.2127 0.0721 -2.9265 313.15 0.3986 0.4019 -0.8254 0.0842 0.0816 3.0879	298.15	0.8143	0.8146	-0.0343	0.8151	-0.1081	0.1051	0.1353	-28.7350	0.1094	-3.9961
308.15 0.8393 0.8416 -0.2717 0.8414 -0.2478 0.1451 0.1774 -22.2940 0.1404 3.2814 313.15 0.8550 0.8547 0.0350 0.8542 0.0936 0.1567 0.1983 -26.5480 0.1508 -0.7658 318.15 0.8689 0.8675 0.1588 0.8667 0.2509 0.1786 0.2183 -22.2010 0.1773 0.8061 323.15 0.8790 0.8801 -0.1251 0.8791 -0.0114 0.1950 0.2372 -21.6410 0.1982 -1.5897 328.15 0.8930 0.8925 0.0593 0.2172 0.2542 -17.0240 0.2208 -1.6481 AH-7 - - - -1.6481 - - - - 0.553 0.0000 0.0547 1.0850 303.15 0.3579 0.3697 0.6183 0.0620 0.0629 -1.4516 0.0630 -1.4516 308.15 0.3858 0.3858 -0.0752	303.15	0.8280	0.2820	0.3623	0.8284	-0.0483	0.1253	0.1562	-24.6610	0.1242	0.9577
313.15 0.8540 0.08542 0.0936 0.1567 0.1983 -26.5480 0.1580 -0.7658 318.15 0.8669 0.8675 0.1588 0.8667 0.2509 0.1786 0.2183 -22.2010 0.1773 0.8061 323.15 0.8790 0.8801 -0.1251 0.8791 -0.0114 0.1950 0.2372 -21.6410 0.1982 -1.5897 328.15 0.8930 0.8925 0.0593 0.8912 0.1937 0.2172 0.2542 -17.0240 0.2208 -1.6481 AH-7	308.15	0.8393	0.8416	-0.2717	0.8414	-0.2478	0.1451	0.1774	-22.2940	0.1404	3.2814
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	313.15	0.8550	0.8547	0.0350	0.8542	0.0936	0.1567	0.1983	-26.5480	0.1580	-0.7658
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	318.15	0.8689	0.8675	0.1588	0.8667	0.2509	0.1786	0.2183	-22.2010	0.1773	0.8061
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	323.15	0.8790	0.8801	-0.1251	0.8791	-0.0114	0.1950	0.2372	-21.6410	0.1982	-1.5897
AH-7 AH-8 298.15 0.3519 0.3539 -0.5626 0.0553 0.0553 0.0000 0.0547 1.0850 303.15 0.38720 0.3697 0.6183 0.3697 0.6183 0.0620 -1.4516 0.0630 -1.4516 308.15 0.3855 0.3858 -0.0752 0.3857 -0.0493 0.0701 0.0716 -2.2127 0.0721 -2.9265 313.15 0.3986 0.4019 -0.8254 0.0419 -0.8254 0.0842 0.0816 3.0879 0.0823 2.2565 318.15 0.4195 0.4182 0.3051 0.4182 0.3051 0.0946 0.0929 1.8074 0.0935 1.1732 323.15 0.4300 0.4346 -1.0674 0.4346 -1.0674 0.1032 0.1058 -2.5194 0.1058 -2.5194 328.15 0.4518 0.4512 0.1416 0.1194 0.1205 -0.8875 0.1193 0.2009 1-propanol AH-1 AH-2 AH-2 -2.9967 303.15 0.1453 0.1453 0.0138 0.1454 -0.05	328.15	0.8930	0.8925	0.0593	0.8912	0.1937	0.2172	0.2542	-17.0240	0.2208	-1.6481
298.15 0.3519 0.3533 -0.5626 0.0533 0.0000 0.0547 1.0830 303.15 0.3720 0.3697 0.6183 0.3697 0.6183 0.0620 0.0629 -1.4516 0.0630 -1.4516 308.15 0.3855 0.3858 -0.0752 0.3857 -0.0493 0.0716 -2.2127 0.0721 -2.9265 313.15 0.3986 0.4019 -0.8254 0.0842 0.0816 3.0879 0.0823 2.2565 318.15 0.4195 0.4182 0.3051 0.4182 0.3051 0.0946 0.0929 1.8074 0.0935 1.1732 323.15 0.4300 0.4346 -1.0674 0.4346 -1.0674 0.1032 0.1058 -2.5194 0.1058 -2.5194 328.15 0.4518 0.4512 0.1416 0.1194 0.1205 -0.8875 0.1193 0.2009 1-propanol	AH-/	0.2510	0.3530	0.5626	0.2520	0.5626	AH-8	0.0552	0.0000	0.05.47	1 0050
303.15 0.3720 0.3897 0.6183 0.0620 0.0629 -1.4316 0.0530 -1.4316 308.15 0.3855 0.3858 -0.0752 0.3857 -0.0493 0.0701 0.0716 -2.2127 0.0721 -2.9265 313.15 0.3986 0.4019 -0.8254 0.0413 0.0946 0.0929 1.8074 0.0935 1.1732 323.15 0.4300 0.4346 -1.0674 0.4346 -1.0674 0.1032 0.1058 -2.5194 0.1058 -2.5194 328.15 0.4518 0.4512 0.1416 0.4512 0.1416 0.1194 0.1205 -0.8875 0.1193 0.2009 1-propanol	298.15	0.3519	0.3539	-0.5626	0.3539	-0.5626	0.0553	0.0553	0.0000	0.0547	1.0850
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	303.15	0.3720	0.3697	0.6183	0.3697	0.6183	0.0620	0.0629	-1.4516	0.0630	-1.4516
313.15 0.3986 0.4019 -0.8254 0.0842 0.0816 5.0879 0.0823 2.2565 318.15 0.4195 0.4182 0.3051 0.04182 0.3051 0.0929 1.8074 0.0935 1.1732 323.15 0.4300 0.4346 -1.0674 0.4346 -1.0674 0.1032 0.1058 -2.5194 0.1058 -2.5194 328.15 0.4518 0.4512 0.1416 0.4116 0.1194 0.1205 -0.8875 0.1193 0.2009 1-propanol AH-1 AH-2 AH-1 AH-2 AH-1 AH-2 AH-2 </td <td>308.15</td> <td>0.3855</td> <td>0.3858</td> <td>-0.0752</td> <td>0.3857</td> <td>-0.0493</td> <td>0.0701</td> <td>0.0716</td> <td>-2.2127</td> <td>0.0721</td> <td>-2.9265</td>	308.15	0.3855	0.3858	-0.0752	0.3857	-0.0493	0.0701	0.0716	-2.2127	0.0721	-2.9265
316.15 0.4152 0.4051 0.4182 0.3051 0.0946 0.0929 1.8074 0.0955 1.1732 323.15 0.4300 0.4346 -1.0674 0.4346 -1.0674 0.1032 0.1058 -2.5194 0.1058 -2.5194 328.15 0.4518 0.4512 0.1416 0.4512 0.1416 0.1194 0.1205 -0.8875 0.1193 0.2009 1-propanol AH-1 AH-2 AH-2 AH-2 -2.5948 0.1552 0.1523 -0.1110 0.1392 -2.9967 303.15 0.1453 0.1453 0.0138 0.1454 -0.0551 0.1523 0.1562 -2.5607 0.1560 -2.4294 308.15 0.1657 0.1655 0.0906 0.1632 1.4790 0.1785 0.1774 0.6385 0.1742 2.4308 313.15 0.1865 0.1858 0.3753 0.1824 2.1984 0.1890 0.1983 -4.9206 0.1938 -2.5397 318.15 0.2063 0.2058 0.2569 0.2032 1.5169 0.2154 0.2184 -1.4116 0.	2101F	0.3980	0.4019	-0.8254	0.4019	-0.8254	0.0842	0.0010	3.U8/9 1.0074	0.0025	2.2000
323.15 0.4300 0.4346 -1.0674 0.4346 -1.0674 0.1032 0.1038 -2.5194 0.1058 -2.5194 328.15 0.4518 0.4512 0.1416 0.4512 0.1416 0.1032 0.1058 -2.5194 0.1058 -2.5194 1-propanol AH-1 AH-2 AH-2 -0.0876 0.1291 -2.7948 0.1352 0.1353 -0.1110 0.1392 -2.9967 303.15 0.1453 0.1453 0.0138 0.1454 -0.0551 0.1523 0.1562 -2.5607 0.1560 -2.4294 308.15 0.1657 0.1655 0.0906 0.1632 1.4790 0.1785 0.1774 0.6385 0.1742 2.4308 313.15 0.1865 0.1858 0.3753 0.1824 2.1984 0.1890 0.1983 -4.9206 0.1938 -2.5397 318.15 0.2063 0.2058 0.2569 0.2032 1.5169 0.2154 0.2184 -1.4116 0.2149 0.2600 323.15 0.2310 0.2250 2.5974 0.2256 2.3377 0.2260 <t< td=""><td>318.15</td><td>0.4195</td><td>0.4182</td><td>1.0074</td><td>0.4182</td><td>0.3051</td><td>0.0946</td><td>0.0929</td><td>1.8074</td><td>0.0935</td><td>1.1/32</td></t<>	318.15	0.4195	0.4182	1.0074	0.4182	0.3051	0.0946	0.0929	1.8074	0.0935	1.1/32
328.13 0.4318 0.4312 0.1416 0.1416 0.1194 0.1203 -0.8873 0.1193 0.2009 1-propanol AH-1 AH-2 AH-2 AH-2 AH-2 AH-2 AH-3 0.1193 0.1392 -2.9967 303.15 0.1453 0.1453 0.0138 0.1454 -0.0551 0.1523 0.1562 -2.5607 0.1560 -2.4294 308.15 0.1657 0.1655 0.0906 0.1632 1.4790 0.1785 0.1774 0.6385 0.1742 2.4308 313.15 0.1865 0.1858 0.3753 0.1824 2.1984 0.1890 0.1983 -4.9206 0.1938 -2.5397 318.15 0.2063 0.2058 0.2569 0.2032 1.5169 0.2154 0.2184 -1.4116 0.2149 0.2600 323.15 0.2310 0.2250 2.5974 0.2256 2.3377 0.2260 0.2372 -4.9558 0.2375 -5.0443	323.15	0.4300	0.4340	-1.0674	0.4340	-1.06/4	0.1032	0.1058	-2.5194	0.1058	-2.5194
1-propanol AH-1 AH-2 298.15 0.1256 0.1257 -0.0876 0.1291 -2.7948 0.1352 0.1353 -0.110 0.1392 -2.9967 303.15 0.1453 0.1453 0.0138 0.1454 -0.0551 0.1523 0.1562 -2.6007 0.1560 -2.4294 308.15 0.1657 0.1655 0.0906 0.1632 1.4790 0.1785 0.1774 0.6385 0.1742 2.4308 313.15 0.1865 0.1858 0.3753 0.1824 2.1984 0.1890 0.1983 -4.9206 0.1938 -2.5397 318.15 0.2063 0.2058 0.2569 0.2032 1.5169 0.2154 0.2184 -1.4116 0.2149 0.2600 323.15 0.2310 0.2250 2.5974 0.2256 2.3377 0.2260 0.2372 -4.9558 0.2375 -5.0443	328.15	0.4518	0.4512	0.1416	0.4512	0.1416	0.1194	0.1205	-0.8875	0.1193	0.2009
AH-1 AH-2 298.15 0.1256 0.1257 -0.0876 0.1291 -2.7948 0.1352 0.1353 -0.1110 0.1392 -2.9967 303.15 0.1453 0.1453 0.0138 0.1454 -0.0551 0.1523 0.1562 -2.5067 0.1560 -2.4294 308.15 0.1657 0.1655 0.0906 0.1632 1.4790 0.1785 0.1774 0.6385 0.1742 2.4308 313.15 0.1865 0.1858 0.3753 0.1824 2.1984 0.1890 0.1983 -4.9206 0.1938 -2.5397 318.15 0.2063 0.2058 0.2569 0.2032 1.5169 0.2154 0.2184 -1.4116 0.2149 0.2600 323.15 0.2310 0.2250 2.5974 0.2256 2.3377 0.2260 0.2372 -4.9558 0.2375 -5.0443	1-propanol										
298.150.12560.1257-0.08760.1291-2.79480.13520.1353-0.11100.1392-2.9967303.150.14530.14530.01380.1454-0.05510.15230.1562-2.56070.1560-2.4294308.150.16570.16550.09060.16321.47900.17850.17740.63850.17422.4308313.150.18650.18580.37530.18242.19840.18900.1983-4.92060.1938-2.5397318.150.20630.20580.25690.20321.51690.21540.2184-1.41160.21490.2600323.150.23100.22502.59740.22562.33770.22600.2372-4.95580.2375-5.0443	AH-1						AH-2				
303.150.14530.14530.01380.1454-0.05510.15230.1562-2.56070.1560-2.4294308.150.16570.16550.09060.16321.47900.17850.17740.63850.17422.4308313.150.18650.18580.37530.18242.19840.18900.1983-4.92060.1938-2.5397318.150.20630.20580.25690.20321.51690.21540.2184-1.41160.21490.2600323.150.23100.22502.59740.22562.33770.22600.2372-4.95580.2375-5.0443	298.15	0.1256	0.1257	-0.0876	0.1291	-2.7948	0.1352	0.1353	-0.1110	0.1392	-2.9967
308.15 0.1657 0.1655 0.0906 0.1632 1.4790 0.1785 0.1774 0.6385 0.1742 2.4308 313.15 0.1865 0.1858 0.3753 0.1824 2.1984 0.1890 0.1983 -4.9206 0.1938 -2.5397 318.15 0.2063 0.2058 0.2569 0.2032 1.5169 0.2154 0.2184 -1.4116 0.2149 0.2600 323.15 0.2310 0.2250 2.5974 0.2256 2.3377 0.2260 0.2372 -4.9558 0.2375 -5.0443	303.15	0.1453	0.1453	0.0138	0.1454	-0.0551	0.1523	0.1562	-2.5607	0.1560	-2.4294
313.15 0.1865 0.1858 0.3753 0.1824 2.1984 0.1890 0.1983 -4.9206 0.1938 -2.5397 318.15 0.2063 0.2058 0.2569 0.2032 1.5169 0.2154 0.2184 -1.4116 0.2149 0.2600 323.15 0.2310 0.2250 2.5974 0.2256 2.3377 0.2260 0.2372 -4.9558 0.2375 -5.0443	308.15	0.1657	0.1655	0.0906	0.1632	1.4790	0.1785	0.1774	0.6385	0.1742	2.4308
318.15 0.2063 0.2058 0.2569 0.2032 1.5169 0.2154 0.2184 -1.4116 0.2149 0.2600 323.15 0.2310 0.2250 2.5974 0.2256 2.3377 0.2260 0.2372 -4.9558 0.2375 -5.0443	313.15	0.1865	0.1858	0.3753	0.1824	2.1984	0.1890	0.1983	-4.9206	0.1938	-2.5397
323.15 0.2310 0.2250 2.5974 0.2256 2.3377 0.2260 0.2372 -4.9558 0.2375 -5.0443	318.15	0.2063	0.2058	0.2569	0.2032	1.5169	0.2154	0.2184	-1.4116	0.2149	0.2600
	323.15	0.2310	0.2250	2.5974	0.2256	2.3377	0.2260	0.2372	-4.9558	0.2375	-5.0443

Table 2 (continued)

T(K)	$x_i \cdot 10^3$	$x_{ci}^{a} \cdot 10^{3}$	100 · RD ^a	$x_{ci}^{b} \cdot 10^{3}$	$100 \cdot RD^{b}$	$x_i \cdot 10^3$	$x_{ci}^{a} \cdot 10^{3}$	100 · RD ^a	$x_{ci}^{b} \cdot 10^{3}$	100 · RD ^b
328 15	0.2449	0.2432	0.6739	0.2497	-1 9808	0.2551	0.2541	0 3842	0.2617	-2 5561
AH-3	0.2110	0.2 132	0.0755	0.2137	1.5000	AH-4	0.23 11	0.5012	0.2017	2.5501
298.15	0.0835	0.0840	-0.5627	0.0972	-2.7948	0.1251	0.1255	-0.2877	0.1254	0.0000
303.15	0.1030	0.1023	0.6796	0.1080	-0.0551	0.1400	0.1386	1.0000	0.1386	0.0000
308.15	0.1213	0.1202	0.9232	0.1195	1.4790	0.1503	0.1527	-1.5901	0.1526	0.0000
313.15	0.1322	0.1364	-3.1770	0.1318	2.1984	0.1670	0.1676	-0.3593	0.1676	0.0000
323 15	0.1501	0.1499	-1 2025	0.1449	2.3377	0.1854	0.2004	-0.2000	0.2003	0.0000
328.15	0.1673	0.1657	0.9623	0.1738	-1.9808	0.2200	0.2182	0.8272	0.2181	0.0000
AH-5						AH-6				
298.15	1.0377	1.0340	0.3585	1.0341	0.1754	0.1568	0.1566	13.6890	0.1548	1.2503
303.15	1.0560	1.0562	-0.0189	1.0562	-0.0852	0.1670	0.1675	6.4671	0.1676	-0.2994
308.15	1.0733	1.0782	-0.4528	1.0781	-0.4062	0.1769	0.1796	-0.3110	0.1809	-2.2335
313.15	1.0930	1.0782	1.3541	1.0997	-0.4666	0.1890	0.1931	-4.9206	0.1948	-3.0688
323 15	1.1155	1.1212	0.2445	1.1211	0.5852	0.2000	0.2080	-0.3002 -7.8182	0.2093	-1.8798 -1.9546
328.15	1.1679	1.1630	0.4204	1.1630	0.8571	0.2440	0.2428	-4.1633	0.2401	1.6964
AH-7						AH-8				
298.15	0.4901	0.4934	-0.6651	0.4939	-0.7671	0.1145	0.1152	-0.5762	0.1196	-4.4177
303.15	0.5200	0.5160	0.7692	0.5165	0.6731	0.1350	0.1376	-1.9259	0.1374	-1.7037
308.15	0.5407	0.5388	0.3588	0.5394	0.2478	0.1641	0.1609	1.9261	0.1571	4.2424
313.15	0.5650	0.5619	0.5487	0.5625	0.4425	0.1753	0.1843	-5.1341	0.1789	-1.9966
318.15	0.5856	0.5853	0.0512	0.5858	-0.0512	0.2057	0.2071	-0.6953	0.2028	1.4441
323.15	0.6150	0.6088	1.0081	0.6093	0.9106	0.2256	0.2287	-1.3741	0.2291	-1.4628
526.15	0.0278	0.0323	-0.7507	0.0551	-0.8525	0.2303	0.2485	0.8901	0.2378	-2.8019
1-butanol										
AH-1	0 1701	0.1004	0.0010	0.1007	0.9050	AH-2	0.2465	0.4764	0.2525	2 2740
298.15	0.1701	0.1084	-1 4993	0.1087	0.8056	0.2477	0.2465	0.4764	0.2535	2.3740
308.15	0.1854	0.1882	0 9171	0.1885	0.7753	0.2750	0.2717	-0.6727	0.2730	-1.8106
313 15	0.2299	0.2326	-1 1744	0.2330	-13484	0.335	0 3345	0 1493	0 3540	-13134
318.15	0.2584	0.2573	0.4257	0.2577	0.2709	0.3742	0.3735	0.1924	0.3875	-0.8231
323.15	0.2853	0.2838	0.5258	0.2842	0.3856	0.4250	0.4186	1.5059	0.4235	1.6235
328.15	0.3115	0.3121	-0.1830	0.3125	-0.3114	0.4653	0.4708	-1.1886	0.4618	0.7458
AH-3						AH-4				
298.15	0.1502	0.1507	-0.3529	0.1553	-3.4161	0.1596	0.1633	-2.3119	0.1730	-8.3892
303.15	0.1750	0.1754	-0.2286	0.1752	-0.0571	0.2090	0.2025	3.1100	0.2020	3,3971
313 15	0.2015	0.2005	-4 5918	0.1907	2.2949	0.2445	0.2435	-1 3929	0.2343	3 2500
318 15	0.2398	0.2295	-16 649	0.2455	-2.3438	0.3200	0.3222	-0.5022	0.3119	2 7418
323.15	0.2580	0.2724	-5.5814	0.2728	-5.7364	0.3500	0.3564	-1.8286	0.3573	-2.0571
328.15	0.2952	0.2931	0.7181	0.3022	-2.3643	0.3899	0.3846	1.3770	0.4076	-4.4696
AH-5						AH-6				
298.15	1.5823	1.5846	-0.1460	1.5848	-0.1650	0.2942	0.2960	-0.6221	0.2960	-0.6221
303.15	1.6000	1.6008	-0.0500	1.6009	-0.0563	0.3300	0.3296	0.1212	0.3296	0.1212
308.15	1.6161	1.6167	-0.0396	1.6166	-0.0396	0.3543	0.3657	-3.2264	0.3657	-3.2546
313.15	1.6480	1.0321	0.9648	1.6320	0.9648	0.4000	0.4045	-0.2870	0.4044	-0.2870
323 15	1,6530	1.6618	-0 5324	1,6618	-0 5384	0.5000	0.4901	1 9800	0.4400	2 0000
328.15	1.6743	1.6760	-0.1033	1.6762	-0.1213	0.5333	0.5371	-0.7125	0.5371	-0.7125
AH-7						AH-8				
298.15	1.3336	1.3296	0.3022	1.3298	0.2872	0.2025	0.2017	0.4147	0.2070	-2.1527
303.15	1.3580	1.3613	-0.2430	1.3613	-0.2430	0.2356	0.2391	-1.4856	0.2388	-1.3158
308.15	1,3834	1.3925	-0.6585	1.3925	-0.6585	0.2788	0.2788	0.0215	0.2/42	1.0/11 3.071 <i>C</i>
313.15	1.4210	1.4255	-0.1759	1.4254	-0.1689	0.3240	0.3201	-0.7050	0.3155	0.7069
323 15	1 4912	1 4843	0.4647	1 4843	0.4647	0.4023	0.4041	-0.4474	0.4046	-0.5469
328.15	1.5125	1.5114	0.0707	1.5142	0.0707	0.4454	0.4452	0.0427	0.4570	-2.5843
1										
AH-1						AH-2				
298.15	0.2265	0.2251	0.6181	0.2366	4.4592	0.2566	0.2589	-0.8924	0.2796	-8.9981
303.15	0.2740	0.2733	0.2555	0.2731	0.2920	0.3320	0.3298	0.6627	0.3287	0.9639
308.15	0.3123	0.3232	-3.5002	0.3139	-0.5220	0.4065	0.4037	0.6839	0.3845	5.3582
313.15	0.3810	0.3727	2.1785	0.3591	5.7218	0.4750	0.4759	-0.1895	0.4476	5.7474
318.15	0.4268	0.4198	1.6355	0.4091	4.1192	0.5352	0.5414	-1.1622	0.5184	3.0980
323.15	0.4570	0.4626	-1.2254	0.4642	-1.6193	0.5920	0.5957	-0.6250	0.5978	-1.0135
328.15 AH-2	0.4987	0.4991	-0.0722	0.5247	-5.2452	0.6391 AU 4	0.6354	16.2312	0.6864	- 1.4256
298 15	0.2535	0.2534	0.0513	0.2579	-17237	0 3104	0.3099	0.1579	0.3153	-0.8731
303.15	0.2750	0.2865	-4.1818	0.2855	-3.8182	0.3300	0.3324	-0.7273	0.3340	-0.6970
308.15	0.3039	0.3199	-5.2407	0.3150	-3.6287	0.3542	0.3542	0.0028	0.3531	0.6522
313.15	0.3540	0.3530	0.2825	0.3464	2.1186	0.3749	0.3750	-0.0267	0.3727	0.8002
318.15	0.3875	0.3853	0.5575	0.3799	1.9512	0.3951	0.3947	0.0962	0.3927	0.6530
323.15	0.4235	0.4161	1.7473	0.4154	1.8890	0.4120	0.4133	-0.3155	0.4130	-0.3398

(continued on next page)

Table 2 (continued)

T(K)	$x_i \cdot 10^3$	$x_{ci}^{a} \cdot 10^{3}$	100 · RD ^a	$x_{ci}^{b} \cdot 10^{3}$	100 · <i>RD</i> ^b	$x_i \cdot 10^3$	$x_{ci}^{a} \cdot 10^{3}$	100 · RD ^a	$x_{ci}^{b} \cdot 10^{3}$	100 · <i>RD</i> ^b
328.15	0.4420	0.4451	-0.6945	0.4530	-2.5044	0.4298	0.4304	-0.1349	0.4338	-1.1819
AH-5						AH-6				
298.15	1.7575	1.7577	-0.0131	1.7579	-0.0131	0.3542	0.3531	0.3077	0.3497	1.2394
303.15	1.7830	1.7860	-0.1683 -0.1585	1.7861	-0.1683 -0.1585	0.4000	0.4003	-0.0750 -1.2605	0.4006	-0.1500 -1.9520
313.15	1.839	1.8412	-0.1196	1.8412	-0.1142	0.5100	0.5147	-0.9216	0.5188	-1.7451
318.15	1.8662	1.8680	-0.0965	1.8680	-0.0911	0.6000	0.5835	2.7500	0.5868	2.1667
323.15	1.8900	1.8943	-0.2275	1.8944	-0.2222	0.6900	0.6614	4.1449	0.6612	4.1449
328.15	1.9204	1.9201	0.0156	1.9203	0.0104	0.7400	0.7495	-1.2838	0.7423	-0.3378
AH-7	1 5507	1 5 6 5 0	0.2022	1 5700	0.2072	AH-8	0.2016	0.2411	0.0071	2 2 2 2 2 6
298.15	1,5587	1.5650	0.3022	1.5722	0.2872	0.2806	0.2816	-0.3411 0.1689	0.2871	-2.3336
308.15	1.6834	1.6802	-0.6585	1.6395	-0.6585	0.3679	0.3704	-0.6983	0.3659	0.5347
313.15	1.7400	1.7381	-0.1759	1.6959	-0.1689	0.4236	0.4171	1.5361	0.4106	3.0564
318.15	1.7903	1.7959	0.0096	1.7524	0.0096	0.4551	0.4642	-2.0235	0.4591	-0.9111
323.15	1.8500	1.8539	0.4647	1.8089	0.4647	0.5130	0.5112	0.3448	0.5117	0.2483
328.15	1.9095	1.9118	0.0707	1.8655	0.0707	0.5572	0.5573	-0.0072	0.5683	-2.0056
Ethyl acetate										
AH-1						AH-2				
298.15	0.2412	0.2415	-0.1202	0.2387	1.9112	0.1590	0.1572	1.1507	0.1656	-4.1942
303.15	0.2564	0.2570	-0.2340	0.2571	-6.5523	0.1952	0.2020	-3.4836	0.2015	-3.2275
313 15	0.2739	0.2935	-0.4105	0.2763	-22 8870	0.2435	0.2018	2 2115	0.2435	6 1859
318.15	0.3166	0.3149	0.5495	0.3170	-29.2320	0.3621	0.3599	0.6076	0.3495	3.4521
323.15	0.3359	0.3386	-0.8038	0.3384	-38.2260	0.4030	0.4142	-2.7792	0.4152	-3.0521
328.15	0.3650	0.3649	0.0301	0.3606	-43.7770	0.4625	0.4656	-0.6768	0.4907	-6.1258
AH-3	0.2507	0.2542	0.0620	0.2500	0.0603	AH-4	0.3599	0.0453	0.2694	2 6 4 6 2
298.15	0.2567	0.2543	0.9620	0.2566	0.0662	0.3554	0.3588	-0.9453	0.3684	-3.6462
308.15	0.3282	0.3356	-2.2641	0.3335	-1.6242	0.4230	0.4571	3.0047	0.4495	4.6386
313.15	0.3850	0.3808	1.0909	0.3779	1.8442	0.5200	0.5046	2.9615	0.4941	5.0000
318.15	0.4323	0.4288	0.8188	0.4265	1.3508	0.5545	0.5497	0.8710	0.5416	2.3497
323.15	0.4820	0.4794	0.5394	0.4795	0.5187	0.5900	0.5912	-0.2034	0.5920	-0.3051
328.15	0.5265	0.5325	-1.1492	0.5373	-2.0610	0.6291	0.6284	0.1033	0.6452	-2.5515
AH-5 208.15	1 /1002	1 /1978	0.1604	1 /870	0 1604	AH-6 0.7700	0 7820	_1 5584	0.8160	-5 9610
303.15	1.5220	1.5269	-0.3219	1.5269	-0.3154	0.9500	0.9263	2.4947	0.9246	2.6842
308.15	1.5618	1.5656	-0.2459	1.5656	-0.2395	1.0670	1.0719	-0.4592	1.0434	2.2212
313.15	1.6000	1.6041	-0.2563	1.6040	-0.2438	1.2000	1.2134	-1.1167	1.1730	2.2583
318.15	1.6407	1.6422	-0.0939	1.6421	-0.0817	1.3470	1.3456	0.1039	1.3138	2.4722
323.15	1.6809	1.6799	0.0595	1.6799	0.0714	1.4500	1.4635	-0.9310	1.4663	-1.1172
328.15 AH_7	1./150	1./1/3	-0.1318	1./1/4	-0.1318	1.5720 AH_8	1.5629	0.5789	1.6311	-3./532
298.15	0.8095	0.8077	0.2236	0.8077	0.2112	1.3007	1.3030	-0.1745	1.3025	-0.1361
303.15	0.8260	0.8286	-0.3148	0.8285	-0.3027	1.4875	1.4912	-0.2487	1.4911	-0.2420
308.15	0.8463	0.8492	-0.3486	0.8491	-0.3486	1.6977	1.6993	-0.0954	1.6996	-0.1131
313.15	0.8680	0.8696	-0.1843	0.8696	-0.1959	1.9423	1.9287	0.7002	1.9292	0.6745
318.15	0.8862	0.8899	-0.4221	0.8899	-0.4221	2.1658	2.1807	-0.6889	2.1811	-0.7074
328.15	0.9352	0.9299	0.5646	0.9299	0.5646	2,7694	2,4500	0.4196	2.4505	0 4593
520.15	0.5552	0.5255	0.5010	0.0200	0.5010	2.7031	2.7570	0.1150	2.7507	0.1555
Acetonitrile						411.2				
708 15	0 0291	0 0200	0 2751	0.0325	-11 761	AH-2 0.0571	0.0568	0 5428	0.0568	0 5428
303.15	0.0231	0.0423	-1.8252	0.0421	-0.8646	0.0650	0.0661	-1.6923	0.0661	-1.8462
308.15	0.0587	0.0581	0.9193	0.0540	8.0695	0.0761	0.0766	-0.7232	0.0766	-0.7232
313.15	0.0762	0.0754	0.9576	0.0687	9.8780	0.0930	0.0882	5.1613	0.0883	5.0538
318.15	0.0921	0.0927	-0.8686	0.0868	5.7546	0.1017	0.1013	0.3835	0.1013	0.3835
323.15	0.1109	0.1083	2.0739	0.1089	11 404	0.1200	0.1157	3.5833	0.1157	3.5000
AH-3	0.1218	0.1209	0.0008	0.1557	-11.454	0.1323 AH-4	0.1317	0.0203	0.1317	0.0205
298.15	0.1162	0.1172	-0.8432	0.1211	-4.1129	0.1131	0.1146	-1.3711	0.1170	-3.4056
303.15	0.1350	0.1347	0.2222	0.1345	0.4444	0.1350	0.1327	1.7037	0.1326	1.8519
308.15	0.1535	0.1521	0.9379	0.1489	3.0871	0.1519	0.1517	0.1054	0.1497	1.4882
313.15	0.1712	0.1688	1.4191	0.1643	4.1056	0.1700	0.1712	-0.7059	0.1684	1.0000
318.15	0.1824	0.1842	-0.9758	0.1807	0.9429	0.1889	0.1909	-1.0267	0.1887	0.1905
328,15	0.2112	0.2097	0.7008	0.2168	-2.6139	0.2304	0.2296	0.3645	0.2344	-1.6751
AH-5	0,2112	0.2007	5000	5.2100	2.0135	AH-6	0.2200	5.50 15	5,25 1 1	1,0701
298.15	0.7521	0.7624	-1.3735	0.7614	-1.2406	0.0178	0.0206	-15.7300	0.0526	-75.8430
303.15	0.8020	0.8043	-0.2868	0.8033	-0.1496	0.0600	0.0488	18.6667	0.0709	20.1667
308.15	0.8574	0.8471	1.2071	0.8460	1.3354	0.1010	0.0943	6.6337	0.0947	28.3168
313.15 318.15	0.8900	0.8906	-0.0674 0.8580	0.8892 0.9338	0.0562	0.1400	0.1507	- 7.0429 - 7.5036	0.1252	22.85/1 14.0100
323.15	0.9700	0.9800	-1.0309	0.9788	-0.9072	0.1870	0.2272	-8.1905	0.2134	-10,2860
328.15	1.0107	1.0258	-1.4960	1.0245	89.8583	0.2410	0.2190	9.1286	0.2752	-38.0910

Table 2 (continued)

T(K)	$x_i \cdot 10^3$	$x_{ci}^{a} \cdot 10^{3}$	100 · RD ^a	$x_{ci}^{\ b} \cdot 10^3$	100 · RD ^b	$x_i \cdot 10^3$	$x_{ci}^{a} \cdot 10^{3}$	100 · RD ^a	$x_{ci}^{\ b} \cdot 10^3$	100 · <i>RD</i> ^b
AH-7						AH-8				
298.15	0.1647	0.1660	-0.7648	0.1717	-4.2248	0.1026	0.1031	-0.4873	0.1063	-3.5838
303.15	0.2001	0.1948	2.6487	0.1945	2.7986	0.1230	0.1235	-0.4065	0.1231	-0.0342
308.15	0.2274	0.2244	1.3323	0.2195	3.5308	0.1476	0.1450	1.7615	0.1418	3.9451
313.15	0.2500	0.2536	-1.4400	0.2466	1.3600	0.1633	0.1672	-2.4330	0.1627	0.4127
318.15	0.2823	0.2816	0.2586	0.2761	2.2066	0.1897	0.1896	0.0659	0.1858	2.0880
323.15	0.3010	0.3077	-2.2259	0.3081	-2.3588	0.2156	0.2113	1.9694	0.2113	2.0102
328.15	0.3291	0.3309	-0.5592	0.3426	-4.1148	0.2323	0.2320	0.2494	0.2394	-2.9067

 $(x_i) =$ Experimental mole fraction solubility with an uncertainty of ±0.00001.

^a Values obtained by Apelblat equation (Eq. (2)).

^b Values obtained by Buchowski-Ksiazczak equation (Eq. (3)).

Overall, eight compounds are synthesized and the IUPAC names of these compounds are:

AH-1:(E)-1-(1H-benzo[d]

imidazole-2-yl)-3-(3-methxyphenyl-1H-pyrazol-4-yl)prop-2-en1one AH-2:(E)-1-(1H-benzo[d]imidazole-2-yl)-3-(1,

3-diphenyl-1H-pyrazol-4-yl) prop-2-en-1one

AH-3:(E)-1-(1H-benzo[d]

imidazole-2-yl)-3-(3-(4-chlorophenyl)-phenyl-1H-pyrazol-4-yl) prop-2-en-1one

AH-4:(E)-1-(1H-benzo[d])

imidazole-2-yl)-3-(3-(3,4-dimethoxyphenyl)-1-phenyl-1H-pyrazol-4-yl) prop-2-en-1one

AH-5:(E)-1-(1H-benzo[d]

imidazole-2-yl)-3-(3-(4-fluorophenyl)-1H-pyrazol-4-yl)pop-2-en-1one AH-6:(E)-1-(1H-benzo[d]imidazole-2-

yl)-3-(3-(2-chlorophenyl)-1-phenyl-1H-pyrazol-4-yl) prop-2-en-1one AH-7:(E)-1-(1H-benzo[d]

imidazole-2-yl)-3-(3-(4-methxyphenyl)-1-phenyl-1H-pyrazol-4-yl) prop-2-en-1one

AH-8: (E)-1-(1H-benzo[d] imidazole-2-yl)-3-(3-(3-nitrophenyl)-1-phenyl-1H-pyrazol-4-yl) prop-2-en-1one

Table 1 shows the physical parameters and different substitutions of synthesized compounds.

2.2. Spectroscopy studies

The structure confirmation was done by different spectroscopic techniques such as IR, ¹H NMR, ¹³CNMR and mass.

3. Solubility measurement

The isothermal saturation method [20] was used to determine the solubility of compounds. For each measurement, an excess amount of compound was added to known volume of selected solvent at a definite temperature. The desired temperature was controlled by the thermostatic water bath (Model No. 140285, Nova, India) and had a standard uncertainty of ± 0.05 K. A magnetic stirrer was used to mix the solution. The solutions were stirred for few hours to reach solid-liquid equilibrium. The stirring was then stopped and the mixture was allowed to settle so that undissolved compound should be completely settled at the bottom. From this saturated solution, 5 ml of clear saturated solution was quickly withdrawn from the pre-heated or pre-cooled syringe from the solution and taken in a vial which had been weighed before (m_0) . The vial with the saturated solution was then immediately weighted (m_1) to determine the weight of sample solution (m_1-m_0) . The solvent of the solution in the vial was then allowed to evaporate at room temperature (about 35 °C) for at least 48 h. For some solvents, it may take longer. When all the solvent is evaporated, the weight of vial was again taken (m_2) to determine the weight of dry residue compound (m_2-m_0) . This weight should be again taken after 24 h. If there is decrease in weight it suggests that solvent is not completely evaporated. So, more evaporation time should be given. This should continue until the weight was constant. The total evaporation of solvent was further confirmed by comparing TG of residue with that of original compound. At each temperature experiment was conducted three times in parallel and the average value was used as experimental result to calculate the mole solubility of compound. An analytical balance (Mettler Toledo AB204-S, Switzerland) was employed to determine the mass of solute, solvent, and saturated solution with the accuracy of ± 0.0001 g. The mole fraction solubility of the solute i.e., compound (x_{exp}) in different pure solvents can be calculated by the following relation:

$$\mathbf{x}_{i} = \frac{\frac{(m_{2} - m_{0})}{M_{2}}}{\left(\frac{m_{2} - m_{0}}{M_{2}}\right) + \left(\frac{m_{1} - m_{2}}{M_{1}}\right)}$$
(1)

where M_1 and M_2 is the molecular weight of solvent and compound respectively. m_1 and m_2 are weights of solvent and compound in the solution respectively. At each temperature, the measurement was repeated three times and an average value is given in Table 2. The uncertainty of experimental values is established to be less than 1.03%.

3.1. Results and discussion

The experimental mole fraction solubilities (x_i) of the studied compounds in the selected solvents are listed in Table 2 at different temperatures. It is observed that for alcoholic solvent, solubility increases from methanol to 1-pentanol. Thus, in alcohols, as -CH₂- group increases, solubility increases. For each compound, in non-alcoholic solvents, solubility is higher in ethyl acetate than that in acetonitrile.

Table 3 shows dielectric constant, dipole moment and hydrogen bonding capacity of studied solvents. It is observed that in alcohols, there is a regular decrease in dielectric constant and δ_H (Hydrogen bonding capacity) from methanol to 1-pentanol i.e., with increases in -CH₂- group. However, dipole moment is not in a systematic order. Thus, solubility in alcohols is reverse of dielectric constant and hydrogen bonding capacity.

For non-alcoholic solvents, all these three parameters are higher in acetonitrile than those for ethyl acetate. So, solubility in alcohols is reverse of these parameters i.e., dielectric constant, dipole moment and hydrogen bonding capacity.

It is also observed that different compounds have different solubility in a particular solvent. This is due to different types of interactions taking place in solution due to different substitution groups present in compounds. As shown in Table 1, all the studied compounds have same central moiety but different side chain substitutions which are of different nature. The solubility of AH-5 is maximum in all selected solvents. AH-1 has minimum solubility in methanol, ethyl acetate and acetonitrile. In 1-propanol, 1-butanol and 1-pentanol, AH-3 had minimum solubility whereas AH-4 was minimum soluble in ethanol.

Dielectric constant, dipole moment and hydrogen bond capacity of studied solvents at 293.15 K.

Solvent	Dielectric constant	Dipole moment	δ_{H} Hydrogen bonding
Methanol	33.00	1.70	29.60
Ethanol	25.30	1.69	26.30
1-propanol	20.80	1.55	24.30
1-butanol	17.84	1.66	23.30
1-pentanol	15.30	1.70	22.30
Ethyl acetate	6.08	1.78	18.60
Acetonitrile	37.50	3.93	24.30

role in solubility. Table 1 also shows the electronegativity of different substitutions. The highest electronegativity is for flouro group present in AH-5. It is observed that AH-5 exhibited maximum solubility in all the solvents except ethyl acetate. However, for the other compounds, the electronegativity order of order of substitution is not always observed. This may be due to the fact that different substitutions interact differently with different solvents thus, affecting solubility of compounds in different solvents.

As temperature increases solubility increases and the trend of solubility of compounds in different solvents changed. The temperature dependence of solubility of compounds is described by the modified Apelblat model [21].

It is also observed that different compounds have different solubility in a particular solvent. The solubility of AH-5 is maximum in all selected solvents. AH-1 has minimum solubility in methanol, ethyl acetate and acetonitrile. The different solubility of compounds in different solvents may be due to different types of interactions taking place in solution due to different substitution groups present in compounds. As shown in Table 1, all the studied compounds have same central moiety but different side chain substitutions which are of different nature. Thus, different side substitution and orientation of compounds play important

$$\ln x_{ci}^a = A + \frac{B}{T} + C \ln T \tag{2}$$

where *T* is the experimental temperature and A, B and C are parameters determined by least square method. The values of these parameters are listed in Table 4 for all the compounds. Using these parameters, mole fraction solubility (x^{a}_{ci}) was evaluated and is given in Table 2.

To describe solid-liquid equilibrium, Buchowski et al. [22] introduced a new model known as Buchowski-Ksiazczak (λh) model by

Table 4	1
---------	---

Parameters of modified Apelblat equation, RMSD and ARD in the studied solvents

Parameters	AH-1	AH-2	AH-3	AH-4	AH-5	AH-6	AH-7	AH-8
Methanol								
A	114 88	377 28	746 80	135 15	-511	415 30	-533	261 34
В	-7886.10	-284.60	-37.947.20	-8721.70	-385.98	-21.871.30	-714.14	-14.471.80
C	-17.3658	-56.1135	-110.5077	-20.4103	-0.1892	-61.6457	-0.1942	-39.1236
10 ³ RMSD	0.2529	2.2106	38,5458	1.4814	2.1551	3.0832	1.1013	1.5201
100 ARD	-0.0058	-0.2359	8.0509	-0.7801	-0.2363	-0.1614	-0.4140	-0.8047
Ethanol								
Α	261.58	129.48	-4.21	352.81	-4.97	286.98	-4.71	-116.65
В	-25,849.80	-8213.83	-1708.24	-19,714.90	-350.88	-15,660.19	-819.05	2804.80
С	-74.2105	-19.5383	0.1299	-52.1000	-0.1696	-42.7569	-0.0853	17.1016
10 ³ RMSD	2.1042	1.5096	23.3510	1.5096	1.7205	39.5064	2.6843	1.8610
100 ARD	-0.8806	-0.2909	-0.4024	-0.2909	0.0316	-19.1956	-0.1289	-0.3108
1-propanol								
A	261.58	302.75	757.20	-3.77	-4.88	-121.90	-4.36	394.42
В	-14,356.80	-16,182.10	-37,401.00	-1766.16	-415.92	4035.40	-834.58	-20,814.80
С	-39.0361	-45.1755	-112.5295	0.1247	-0.1046	17.4818	-0.0788	-58.5647
10 ³ RMSD	2.5667	6.3069	20.7630	1.5822	7.3445	14.3387	4.1047	4.3743
100 ARD	0.5725	-1.8323	-0.2364	0.0957	0.1451	-2.4437	0.2828	-0.9019
1-butanol								
Α	-3.69	-199.10	318.98	613.78	-4.77	91.84	-4.63	-277.55
В	-1930.54	7060.42	-17,024.30	-31,211.00	-232.00	-6274.82	-450.04	-15,439.50
С	0.2592	29.3312	-47.5087	-90.8846	-0.1570	-13.8547	-0.0843	-41.1189
10 ³ RMSD	2.0557	3.8434	17.8166	4.9127	7.5409	6.6894	5.2529	2.5569
100 ARD	-0.1412	0.1695	-3.7036	0.1768	0.0450	-0.4644	-0.0761	-0.2087
1-pentanol								
Â	512.22	814.12	211.88	104.46	-4.63	-102.49	-4.19	206.73
В	-26,323.08	-40,587.73	-11,755.40	-6120.57	-323.03	2308.34	-656.99	-11,840.90
С	-75.8809	-120.4449	-31.7217	-16.1489	-0.1108	15.2351	-0.0127	-30.7487
10 ³ RMSD	6.7208	42.4911	8.7167	1.1677	2.7065	14.3513	4.2038	4.7972
100 ARD	-0.1040	2.2287	-1.0756	-0.1579	-0.1078	0.4792	-0.0538	-0.0970
Ethyl acetate								
Α	-2.23	556.45	97.63	277.20	-4.51	450.18	-4.81	-2.23
В	-2270.08	-29,186.30	-6944.29	-14,758.80	-487.93	0.01	-495.25	-2270.07
С	18.3379	-82.0195	-14.4995	-41.3572	-0.0642	-66.6687	-0.1141	0.5613
10 ³ RMSD	1.4327	7.1356	4.9396	11.2528	3.4097	14.0017	3.2446	12.6234
100 ARD	-0.1408	-1.0732	-0.3052	1.5305	-0.1415	0.0958	-0.1007	-0.1037
Acetonitrile								
Α	1228.64	-3.18	349.16	1.53	-3.97	4430.49	365.05	347.42
В	-61,362.30	-2620.72	-18,220.10	-12,436.60	-966.54	-212,352.00	-19,223.90	-18,763.00
С	-181.3525	0.3849	-52.1972	-32.5214	0.0047	-654.4960	-54.2817	-51.5424
10 ³ RMSD	1.1531	2.7074	2.5622	1.5208	10.1135	14.5724	4.0953	2.6276
100 ARD	0.2734	1.0484	-0.0409	0.0289	-0.1164	1.5717	0.0021	0.1724

Parameters of Buchowski-Ksiazczak λh equation, RMSD and ARD in the studied solvents.

Parameters	AH-1	AH-2	AH-3	AH-4	AH-5	AH-6	AH-7	AH-8
Methanol λ · 10 ² h · 10 ⁴ 10 ³ RMSD 100 ARD	0.0759 323.59 0.3846 0.1195	0.2707 93.86 2.9194 0.3285	0.6404 51.19 4.3981 1.0174	0.0935 0.2353 1.2374 -0.7756	0.0928 35.19 2.0776 -0.2266	0.4978 52.17 4.5131 —0.2277	0.0382 170.88 1.0966 0.4059	0.1057 211.72 1.3851 -0.8413
Ethanol λ·10 ² h·10 ⁴ 10 ³ RMSD 100 ARD	0.2727 97.04 4.5802 -0.0972	0.2505 89.51 7.4597 0.8131	0.1403 124.61 2.2568 -0.2997	0.5686 0.3425 7.4597 0.8131	0.1279 22.75 1.5086 0.0329	0.3541 64.71 3.3585 0.1488	0.1148 69.02 2.6828 -0.1252	0.2134 70,361.77 1.6848 —0.4667
1-propanol λ·10 ² h·10 ⁴ 10 ³ RMSD 100 ARD	0.2360 91.17 4.0335 0.7852	0.3126 65.81 6.3868 1.4112	0.1681 112.68 6.6333 0.5462	0.0044 34,369.14 0.0000 0.0000	0.1873 20.46 5.8225 0.0304	0.1356 105.49 4.1606 	0.1645 49.24 3.9687 0.1958	0.4420 56.66 5.2074 -0.3340
1-butanol λ·10 ² h·10 ⁴ 10 ³ RMSD 100 ARD	0.2551 78.84 2.0938 0.2698	0.5878 35.89 5.2158 0.0539	533,474 0.4068 7.8237 1.4706	0.9837 32,059.67 11.8787 0.9968	0.2103 8.69 7.5909 0.0407	0.5644 34.42 6.7426 0.4655	0.2494 16.99 5.2201 —0.0750	0.8573 30.13 7.1468 0.1718
1-pentanol λ·10 ² h·10 ⁴ 10 ³ RMSD 100 ARD	0.7908 32.86 16.4757 0.3924	2.3484 12.47 26.8527 0.9612	0.4092 44.90 9.5826 0.57033	0.1418 1076.40 3.1988 -0.0162	0.2748 10.49 2.6542 -0.1062	1.4508 16.92 13.9559 0.3038	0.4028 15.73 11.1608 0.0554	0.7114 31.30 7.7321 0.1672
Ethyl acetate λ·10 ² h·10 ⁴ 10 ³ RMSD 100 ARD	0.1468 91.65 97.4333 22.1778	3.5151 94,201.48 16.1596 0.3989	0.9653 24.98 6.4183 0.1536	0.5173 35.34 18.5233 1.8928	0.3074 15.22 3.3239 -0.1344	2.5194 8.98 38.5259 0.6808	0.1597 28.76 3.2309 0.1006	4.4241 5.53 12.7539 -0.1053
Acetonitrile $\lambda \cdot 10^2$ $h \cdot 10^4$ $10^3 RMSD$ 100 ARD	1.7668 26.38 7.2925 1.8781	0.3588 90,289.29 2.6586 0.9991	0.2111 89.99 5.0919 0.4674	0.3104 7.31 2.7221 0.3671	0.3426 25.26 0.3708 13.0256	18.9835 2.84 44.4275 5.4119	0.4887 145,648.57 8.4498 0.4889	0.4839 54.71 4.6200 0.7879

which solubility data can be correlated with temperature by the relation:

$$\ln\left(1 + \frac{\lambda(1 - x_{ci}^b)}{x_{ci}^b}\right) = \lambda h \left[\frac{1}{T} - \frac{1}{T_m}\right]$$
(3)

where *T* and *T_m* are the experimental and melting temperature of compound. λ and *h* are two adjustable parameters. The values of λ and *h* are evaluated using experimental solubility data and are reported in Table 5. Using these values of adjustable parameters, solubility (x_{ci}^{b}) is calculated using Eq. (3) and obtained values are listed in Table 2.

The calculated solubility values by Apelblat and Buchowski-Ksiazczak (λh) models are also plotted against temperature in Figs. 2 to 5. It is observed that for all the compounds, there is good agreement between experimental solubility values with those evaluated (x^{b}_{ci}) by Apelblat model. However, when experimental solubility is compared with calculated values (x^{b}_{ci}) by Buchowski-Ksiazczak (λh) model, for some of the compounds, discrepancies are observed in some solvents. This indicates that for some solvents, Buchowski-Ksiazczak model is not suitable.

Comparison of solubility variation with temperature among different compounds suggest that when solubility various linearly with temperature, (x^{b}_{ci}) values evaluated by Buchowski-Ksiazczak (λh) model are in good agreement with experimental data but when variation of solubility with temperature is non-linear, (x^{b}_{ci}) deviates from experimental values. This is further observed by relative deviation (*RD*), root-meansquare deviations (*RMSD*) and relative average deviations (*RAD*) which are calculated using following equations:

$$RD = \frac{\left(x_{exp} - x_{ci}^{a/b}\right)}{x_i} \tag{4}$$

$$RMSD = \left[\sum_{i=1}^{N} \frac{\left(x_{ci}^{a/b} - x_{exp}\right)^2}{N-1}\right]^{1/2}$$
(5)

$$RAD = \frac{1}{N} \sum_{i}^{N} \frac{\left(x_{exp} - x_{ci}^{a/b}\right)}{x_{exp}} \tag{6}$$

where x_{exp} is experimental solubility and $x^{a/b}_{ci}$ is calculated solubility. x^a_{ci} and x^b_{ci} are calculated solubility values from Apelblat and Buchowski–Ksiazczak models. *N* is the number of experimental points. The evaluated relative deviation (*RD*) values for both models are given in Table 2 where sroot-mean-square deviations (*RMSD*) and relative average deviations (*RAD*) values are listed in Tables 5 and 6 for both models.

It is evident from Table 2 that for some compounds, for some solvents, *RD* values for Buchowski-Ksiazczak model are higher than that evaluated for Apelblat model.

Some thermodynamic parameters	s, ΔG_{sol} , ΔH_{sol} and ΔS_{sol} of	f dissolution of chalcone d	erivatives in the studied solvents.
-------------------------------	--	-----------------------------	-------------------------------------

Parameters	AH-1	AH-2	AH-3	AH-4	AH-5	AH-6	AH-7	AH-8
Methanol ΔG_{sol}	26.3 ± 0.2	24.3 ± 0.3	24.7 ± 0.04	26.0 ± 0.3	19.3 ± 0.5	44.5 ± 0.8	22.7 ± 0.3	25.3 ± 0.02
ΔH_{sol}	20.4 ± 0.2	21.1 ± 0.2	28.2 ± 0.4	19.4 ± 0.6	2.7 ± 0.2	21.0 ± 0.1	5.4 ± 0.6	18.6 ± 0.2
ΔS_{sol} J·mol ⁻¹	-18.8 ± 0.2	-10.2 ± 0.7	11.2 ± 0.8	-21.0 ± 0.2	-53.1 ± 0.6	-73.4 ± 0.7	-55.2 ± 0.03	-21.3 ± 0.6
Ethanol ∆G _{sol} kI∙mol ⁻¹	23.5 ± 0.8	23.5 ± 0.1	23.2 ± 0.2	24.9 ± 0.3	18.3 ± 0.8	22.7 ± 0.8	20.3 ± 0.5	24.4 ± 0.9
ΔH_{sol}	22.0 ± 0.1	17.5 ± 0.01	14.5 ± 0.4	28.47 ± 0.8	2.4 ± 0.8	19.0 ± 0.5	6.5 ± 0.9	21.1 ± 0.3
ΔS_{sol} J·mol ⁻¹	-5.0 ± 0.1	-19.2 ± 0.1	-27.7 ± 0.3	11.3 ± 0.6	-50.8 ± 0.4	-11.9 ± 0.3	-43.9 ± 0.8	-10.7 ± 0.2
1-propanol ΔG_{sol} k_{l} , mol^{-1}	22.4 ± 0.1	22.2 ± 0.6	23.3 ± 0.1	22.6 ± 0.2	17.7 ± 0.3	22.1 ± 0.5	19.7 ± 0.7	22.4 ± 0.7
ΔH_{sol}	17.8 ± 0.9	17.1 ± 0.1	18.4 ± 0.4	15.0 ± 0.1	3.1 ± 0.9	11.8 ± 0.9	6.7 ± 0.3	20.8 ± 0.2
ΔS_{sol} J·mol ⁻¹	-14.4 ± 0.6	-16.4 ± 0.6	-15.5 ± 0.8	-24.3 ± 0.6	-46.4 ± 0.8	-32.8 ± 0.001	-40.7 ± 0.2	-5.2 ± 0.7
1-butanol ∆G _{sol} kl∙mol ⁻¹	21.7 ± 0.7	20.7 ± 0.9	21.9 ± 0.3	21.3 ± 0.09	16.6 ± 0.9	20.4 ± 0.6	17.0 ± 0.5	21.0 ± 0.1
ΔH_{sol} kl·mol ⁻¹	16.7 ± 0.2	17.5 ± 0.4	18.0 ± 0.4	23.2 ± 0.4	1.5 ± 0.2	16.1 ± 0.5	3.5 ± 0.2	21.4 ± 0.8
ΔS_{sol} J·mol ⁻¹	-16.1 ± 0.5	-10.4 ± 0.02	-12.4 ± 0.04	5.9 ± 0.2	-48.5 ± 0.1	-13.7 ± 0.7	-43.2 ± 0.6	1.4 ± 0.9
1-pentanol ∆G _{sol} kJ∙mol ⁻¹	20.6 ± 0.6	20.0 ± 0.8	20.7 ± 0.4	20.5 ± 0.6	16.3 ± 0.8	19.6 ± 0.9	16.5 ± 0.4	20.3 ± 0.04
ΔH_{sol} kI·mol ⁻¹	21.6 ± 0.02	24.3 ± 0.6	15.2 ± 0.8	8.9 ± 0.1	2.3 ± 0.9	20.4 ± 0.1	5.4 ± 0.3	18.5 ± 0.2
ΔS_{sol} J·mol ⁻¹	3.0 ± 0.3	13.6 ± 0.6	-17.4 ± 0.7	-37.2 ± 0.2	-44.7 ± 0.1	2.2 ± 0.8	-35.5 ± 0.1	-5.7 ± 0.2
Ethyl acetate ΔG_{sol}	21.1 ± 0.5	21.1 ± 0.9	20.5 ± 0.2	19.8 ± 0.2	16.7 ± 0.4	17.7 ± 0.04	18.3 ± 0.4	16.2 ± 0.8
ΔH_{sol}	11.1 ± 0.9	29.4 ± 0.5	20.0 ± 0.4	15.2 ± 0.01	$\textbf{3.8} \pm \textbf{0.9}$	18.7 ± 0.8	$\textbf{3.8}\pm\textbf{0.2}$	20.3 ± 0.3
kJ∙mol ^{−1} ΔS _{sol} J∙mol ^{−1}	-31.8 ± 0.3	26.3 ± 0.8	-1.5 ± 0.2	-14.7 ± 0.7	-41.0 ± 0.9	3.4 ± 0.5	-46.4 ± 0.02	12.9 ± 0.5
Acetonitrile ΔG_{sol}	24.9 ± 0.7	24.3 ± 0.01	22.6 ± 0.8	22.6 ± 0.2	18.2 ± 0.8	23.8 ± 0.2	21.6292	22.6 ± 0.8
ΔH_{sol}	38.7 ± 0.5	22.7 ± 0.8	15.7 ± 0.9	18.8 ± 0.6	8.0 ± 0.5	64.2 ± 0.3	18.7256	20.7 ± 0.7
ΔS_{sol} $[\cdot mol^{-1}]$	44.0 ± 0.6	-4.8 ± 0.5	-22.0 ± 0.1	-12.0 ± 0.3	-32.6 ± 0.9	129.1 ± 0.9	-9.2814	-6.1 ± 0.06

Comparison of root-mean-square deviations (*RMSD*) and relative average deviations (*ARD*) values for both models in Tables 4 and 5 again confirms that Apelblat model is better for all the compounds in all the studied solvents whereas Buchowski-Ksiazczak model exhibited discrepancies in some solvents for few compounds, the reason of which is not clear.

3.2. Thermodynamic parameters

The dissolution process in solid and liquid is a pseudo chemical reaction [23]. From the energy point of view, the thermodynamic properties of dissolution process are of great significance in the study of solution structures. Thus, using experimental solubility data of compounds in different solvents, some thermodynamics parameters such as dissolution enthalpy (ΔH_{sol}), Gibb's free energy of dissolution (ΔG_{sol}) and entropy (ΔS_{sol}) have been evaluated. The following modified Van't Hoff equation [24] was used to calculate enthalpy of dissolution (ΔH_{sol}):

$$\left(\frac{\partial \ln x_{exp}}{\partial \left(\frac{1}{T} - \frac{1}{T_{hm}}\right)}\right)_p = -\frac{\Delta H_{sol}}{R}$$
(7)

where *T* is the experimental temperature, *R* is universal gas constant (= 8.314 J/mol K). *T*_{hm} is mean harmonic temperature [25] which is calculated by the following equation:

$$T_{hm} = \frac{n}{\sum_{i=1}^{n} \left(\frac{1}{T}\right)} \tag{8}$$

where n is the number of experimental temperatures studied. In the present study, the value of $T_{\rm hm}$ is 312.83 K.

Using Eq. (7), dissolution enthalpy was evaluated from the slope of the plot of $\ln x_{exp}$ versus $(1/T-1/T_{hm})$ for all the compounds in different solvents. The Gibb's free energy of dissolution was calculated by the intercept of these plots by the relation:

$$\Delta G_{sol} = -R.T_{hm}.Intercept \tag{9}$$

The entropy of dissolution (ΔS_{sol}) was evaluated by the following equation [26]:

$$\Delta S_{\rm sol} = \frac{(\Delta H_{\rm sol} - \Delta G_{\rm sol})}{T_{\rm hm}} \tag{10}$$

All these thermodynamic parameters are given in Table 6. It is observed that for all the compounds, enthalpy (ΔH_{sol}) and Gibb's free energy of dissolution (ΔG_{sol}) are positive. The entropy values are both positive and negative for different compounds in different solvents.

The positive enthalpy (ΔH_{sol}) indicates that dissolution of studied compounds in selected solvents is endothermic process. As mentioned above, presence of different groups interact differently with solvent molecules. However, these interactions are stronger than intramolecular interactions of compounds. Thus, these powerful interaction between compounds and solvent molecules results in positive enthalpy. The positive Gibb's free energy of dissolution (ΔG_{sol}) suggests spontaneous dissolution of compounds. The negative entropy is due to more order in solutions whereas positive entropy suggests more randomness in solution. Further, comparison of enthalpy of different compounds shows that in all the studied solvents, AH-5 exhibited minimum enthalpy whereas its solubility is maximum in all the studied solvents. However, there is no systematic correlation between solubility and Gibb's free energy and entropy. Again, due to different type and magnitude of interactions, thermodynamic parameters vary for different compounds due to different nature of substitution groups.

In Buchowski-Ksiazczak (λh) model, the parameter λ denotes the average value of the associative amount of solute molecules in a solute i.e., compound. Table 5 shows that values of λ are very small in studied

Table 7

The relative contribution by enthalpy and entropy derived from thermodynamic data.

Parameters	AH-1	AH-2	AH-3	AH-4	AH-5	AH-6	AH-7	AH-8
Methanol %ξ _{TS} %ξ _H	22.3 77.6	13.2 86.8	11.1 88.9	25.3 74.7	86.0 14.0	51.6 48.4	76.0 24.0	26.4 73.6
Ethanol %§ _{TS} %§ _H	6.6 93.4	25.6 74.4	37.4 62.6	11.1 88.91	86.5 13.5	16.4 83.6	67.6 32.4	13.7 86.3
1-propanol %ξ _{TS} %ξ _Η	20.2 79.8	23.1 76.9	20.9 79.1	33.7 66.3	82.0 18.0	46.3 53.7	65.4 34.6	7.3 92.7
1-butanol %ξ _{TS} %ξ _H	23.2 76.8	15.6 84.4	17.7 82.3	7.4 92.6	90. 9 9.1	21.1 78.9	79.3 20.7	2.1 97.9
1-pentanol %ξ _{TS} %ξ _H	4.2 95.2	14.9 85.1	26.4 73.6	56.7 43.3	85.4 14.6	3.4 96.6	67.2 32.8	8.8 91.2
Ethyl acetate %ξ _{TS} %ξ _H	47.1 52.9	21.9 78.1	2.3 97.7	23.3 76.7	76.8 23.2	5.4 94.6	79.2 20.8	16.6 83.4
Acetonitrile %ξ _{TS} %ξ _H	26.2 73.8	6.2 93.8	30.4 69.6	16.6 83.3	56.0 44.0	38.6 61.4	13.4 86.6	8.4 91.6

solvents for all the compounds. This suggests that there is no obvious association formed during dissolution process.

The contribution of enthalpy and entropy to standard Gibb's energy of dissolution is also evaluated using the following equations [27]:

$$\% \xi_H = \frac{|\Delta H_{sol}|}{|\Delta H_{sol}| + |T.\Delta S_{sol}|}.100$$
⁽¹¹⁾

$$\%\xi_{S} = \frac{|T.\Delta S_{sol}|}{|\Delta H_{sol}| + |T.\Delta S_{sol}|}.100$$
(12)

The ξ_H and ξ_{TS} represent the comparison of relative contribution to the standard Gibbs energy by enthalpy and entropy towards the solution process, respectively. These values are listed in Table 7. The comparison of these evaluated contributions of enthalpy and entropy to solubility does not give systematic order.

Among alcohols, only for compounds AH-5, AH-7 and AH-6, solubility is reverse of ξ_H . For other compounds, in both alcoholic and non-alcoholic solvents, no regular trend is observed. However, in almost all the cases, the main contributor to standard Gibbs energy of solution is enthalpy during the dissolution because the values of \mathcal{K}_{ξ_H} are greater than 50%. The ξ_H and ξ_{TS} values are different for different compounds in different solvents. It is observed that in alcohols, for all the solvents, highest enthalpy of contribution is for AH-3 in methanol, AH-1 in 1-propanol, AH-8 in 1-butanol, AH-6 in 1-pentanol, AH-3 in ethyl acetate and AH-2 in acetonitrile. However, entropy of contribution is higher for AH-5 in all the alcohols. Further, comparison of these evaluated contributions of enthalpy and entropy to electro negativity of substitutions (Table 1) does not give any systematic order.

The net variation in enthalpy results from the contribution of several kinds of interactions such as ion-dipole, vander Waals, Lewis acid-base interactions etc. [28]. The synthesized compounds could act as Lewis base in solutions due to the presence of free electron pairs on carbonyl and secondary amine groups (Fig. 1). These compounds may form hydrogen bonding with proton acceptor groups present in the solvents. Otherwise, these compounds could also act as Lewis acid because the proton on its secondary group present on benzo [d] imidazole ring may interact with the free electron pair of oxygen present in most of the studied solvents [29]. Thus, more deep research is required to understand the possible mechanism involved in the dissolution of studied compounds.

The apparent dissolution enthalpy ΔH_{sol} can be derived from the Gibbs-Helmholtz equation [30] and the modified Apelblat equation, and then expressed as following equation

$$\Delta H_{\rm sol} = R(-B + CT) \tag{13}$$

where *B* and *C* are parameters of modified Apelblat equation represented in Table 4, *R* is the universal gas constant (8.314 J·K⁻¹·mol⁻¹), and *T* is the absolute temperature.

The evaluated values are listed in Table 8. Comparison of enthalpy values reported in Tables 6 and 8 shows that either of two equations (Eqs. (7) and (13)) can be used for the evaluation of enthalpy. By Eq. (7), only one value of enthalpy was evaluated from the slope of the plot whereas by Eq. (13), at each temperature, enthalpy can be calculated.

The enthalpy of mixing is the enthalpy liberated or absorbed from a substance upon mixing [31]. When a substance or compound is combined with any other substance or compound the enthalpy of mixing is the consequence of the new interactions between the two substances or compounds. This enthalpy if released exothermically can in an extreme case cause an explosion.

The apparent molar dissolution derived from thermodynamics data using Eq. (13).

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\pm 0.3 \\ \pm 0.8 \\ \pm 0.5 \\ \pm 0.1 \\ \pm 0.7 \\ \pm 0.3$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\pm 0.3 \\ \pm 0.8 \\ \pm 0.5 \\ \pm 0.1 \\ \pm 0.7 \\ \pm 0.3$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \pm \ 0.3 \\ \pm \ 0.8 \\ \pm \ 0.5 \\ \pm \ 0.1 \\ \pm \ 0.7 \\ \pm \ 0.3 \end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$egin{array}{c} \pm \ 0.8 \\ \pm \ 0.5 \\ \pm \ 0.1 \\ \pm \ 0.7 \\ \pm \ 0.3 \end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\pm 0.5 \\ \pm 0.1 \\ \pm 0.7 \\ \pm 0.3$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	${}^{\pm}$ 0.1 ${}^{\pm}$ 0.7 ${}^{\pm}$ 0.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	± 0.7 ± 0.3
$\begin{array}{c} 323.15 & 18.9 \pm 0.1 & 13.5 \pm 0.3 & 14.4 \pm 0.9 & 10.7 \pm 0.3 & 14.9 \pm 0.3 & 12.7 \pm 0.9 & 22.2 \pm 1.4 \\ \hline AH-2 \\ 298.15 & 27.8 \pm 0.9 & 19.8 \pm 0.6 & 22.5 \pm 0.6 & 15.8 \pm 0.1 & 38.8 \pm 0.9 & 39.3 \pm 0.4 & 22.7 \pm 0.4 \\ \hline AH-2 \\ 303.15 & 25.5 \pm 0.6 & 19.0 \pm 0.5 & 20.6 \pm 0.8 & 15.9 \pm 0.5 & 33.8 \pm 0.8 & 35.9 \pm 0.3 & 22.7 \pm 1.4 \\ \hline 303.15 & 23.2 \pm 0.2 & 18.2 \pm 0.3 & 18.7 \pm 0.9 & 16.0 \pm 0.9 & 28.8 \pm 0.7 & 23.5 \pm 0.2 & 22.7 \pm 1.4 \\ \hline 318.15 & 18.5 \pm 0.6 & 16.6 \pm 0.1 & 15.0 \pm 0.4 & 16.3 \pm 0.9 & 18.8 \pm 0.6 & 25.7 \pm 0.1 & 22.8 \pm 1.4 \\ \hline 323.15 & 18.5 \pm 0.6 & 16.6 \pm 0.1 & 15.0 \pm 0.4 & 16.3 \pm 0.9 & 18.8 \pm 0.6 & 25.7 \pm 0.1 & 22.8 \pm 1.4 \\ \hline 323.15 & 13.8 \pm 0.9 & 14.9 \pm 0.8 & 11.2 \pm 0.9 & 16.6 \pm 0.9 & 8.8 \pm 0.4 & 18.8 \pm 0.9 & 22.8 \pm 1.4 \\ \hline 328.15 & 13.8 \pm 0.9 & 14.9 \pm 0.8 & 11.2 \pm 0.9 & 16.6 \pm 0.9 & 8.8 \pm 0.4 & 18.8 \pm 0.9 & 22.8 \pm 1.4 \\ \hline 303.15 & 35.9 \pm 0.7 & 14.5 \pm 0.3 & 27.3 \pm 0.3 & 21.7 \pm 0.9 & 17.7 \pm 0.8 & 21.1 \pm 0.9 & 19.9 \pm 1.4 \\ \hline 303.15 & 35.9 \pm 0.7 & 14.5 \pm 0.3 & 27.3 \pm 0.3 & 21.7 \pm 0.9 & 17.7 \pm 0.8 & 21.1 \pm 0.9 & 19.9 \pm 1.4 \\ \hline 303.15 & 32.3 \pm 0.7 & 14.5 \pm 0.3 & 17.3 \pm 0.3 & 17.8 \pm 0.2 & 16.4 \pm 0.6 & 20.5 \pm 0.8 & 17.7 \pm 1.4 \\ \hline 313.15 & 23.1 \pm 0.9 & 14.5 \pm 0.5 & 13.3 \pm 0.01 & 15.8 \pm 0.7 & 13.8 \pm 0.3 & 19.3 \pm 0.8 & 13.5 \pm 1.4 \\ \hline 313.15 & 23.1 \pm 0.9 & 14.5 \pm 0.5 & 13.3 \pm 0.01 & 15.8 \pm 0.7 & 13.8 \pm 0.3 & 19.3 \pm 0.8 & 13.5 \pm 1.4 \\ \hline 323.15 & 18.5 \pm 0.9 & 14.5 \pm 0.5 & 13.3 \pm 0.01 & 15.8 \pm 0.7 & 13.8 \pm 0.3 & 19.3 \pm 0.8 & 13.4 \pm 1.4 \\ \hline 323.15 & 14.0 \pm 0.01 & 14.5 \pm 0.5 & 39.5 \pm 0.1 & 18.7 \pm 0.8 & 11.2 \pm 0.6 \\ \hline 338.15 & 21.0 \pm 0.1 & 32.5 \pm 0.9 & 14.9 \pm 0.9 & 34.2 \pm 0.01 & 10.8 \pm 0.6 & 20.1 \pm 0.8 & 22.7 \pm 0.4 \\ \hline 338.15 & 21.9 \pm 0.2 & 34.7 \pm 0.6 & 14.9 \pm 0.9 & 34.2 \pm 0.01 & 10.8 \pm 0.8 & 20.7 \pm 0.2 \\ \hline 333.15 & 17.6 \pm 0.8 & 23.9 \pm 0.3 & 15.0 \pm 0.1 & 15.3 \pm 0.1 & 18.7 \pm 0.9 & 11.5 \pm 0.9 & 16.0 \pm 0.2 \\ \hline 333.15 & 27.7 \pm 0.4 & 24.4 \pm 0.9 & 3.1 \pm 0.9 & 15.5 \pm 0.4 & 38.4 \pm 0.7 & 13.3 \pm 0.1 & 17.3 \pm 0.2 \\ \hline 333.15 & 17.6 \pm 0.8 & 23.9 \pm 0.3 & 15.0 \pm 0.1 & 15.3 \pm 0.3 & 24.4 \pm 0.1 & 38.8 \pm 0.9 & 80.9 \pm 0.2 \\ \hline 333.15 & 2.7 \pm 0.1 & $	± 0.3
$\begin{array}{c} 1313 \\ 1611 \pm 0.3 \\ 1611$	$\perp 0.0$
$\begin{array}{c} \text{AH-2}\\ 298.15 & 27.8 \pm 0.9 & 19.8 \pm 0.6 & 22.5 \pm 0.6 & 15.8 \pm 0.1 & 38.8 \pm 0.9 & 39.3 \pm 0.4 & 22.7 \pm 0.3 \\ 308.15 & 23.2 \pm 0.2 & 18.2 \pm 0.3 & 18.7 \pm 0.9 & 160 \pm 0.9 & 28.8 \pm 0.7 & 32.5 \pm 0.2 & 22.7 \pm 0.1 \\ 308.15 & 23.2 \pm 0.2 & 18.2 \pm 0.3 & 18.7 \pm 0.9 & 160 \pm 0.9 & 28.8 \pm 0.7 & 32.5 \pm 0.2 & 22.7 \pm 0.1 \\ 318.15 & 20.8 \pm 0.9 & 17.4 \pm 0.2 & 16.9 \pm 0.2 & 16.2 \pm 0.5 & 23.8 \pm 0.7 & 29.1 \pm 0.1 & 22.7 \pm 0.1 \\ 323.15 & 16.2 \pm 0.3 & 15.7 \pm 0.9 & 13.1 \pm 0.7 & 16.5 \pm 0.4 & 13.8 \pm 0.6 & 25.7 \pm 0.1 & 22.8 \pm 0.1 \\ 323.15 & 13.8 \pm 0.9 & 14.9 \pm 0.8 & 11.2 \pm 0.9 & 16.6 \pm 0.9 & 8.8 \pm 0.4 & 18.8 \pm 0.9 & 22.8 \pm 0.1 \\ 328.15 & 13.8 \pm 0.9 & 14.9 \pm 0.8 & 11.2 \pm 0.9 & 16.6 \pm 0.9 & 8.8 \pm 0.4 & 18.8 \pm 0.9 & 22.8 \pm 0.1 \\ 303.15 & 36.9 \pm 0.7 & 14.5 \pm 0.3 & 27.3 \pm 0.3 & 21.7 \pm 0.9 & 17.7 \pm 0.8 & 21.1 \pm 0.9 & 19.9 \pm 0.1 \\ 303.15 & 36.9 \pm 0.7 & 14.5 \pm 0.3 & 22.6 \pm 0.6 & 19.8 \pm 0.2 & 16.4 \pm 0.6 & 20.5 \pm 0.8 & 17.7 \pm 0.1 \\ 313.15 & 27.7 \pm 0.8 & 14.5 \pm 0.4 & 17.9 \pm 0.8 & 17.8 \pm 0.5 & 15.1 \pm 0.5 & 19.9 \pm 0.8 & 15.5 \pm 0.1 \\ 318.15 & 23.1 \pm 0.9 & 14.5 \pm 0.5 & 13.3 \pm 0.01 & 15.8 \pm 0.7 & 13.8 \pm 0.3 & 19.3 \pm 0.8 & 13.4 \pm 0.2 \\ 328.15 & 14.0 \pm 0.01 & 14.5 \pm 0.5 & 8.6 \pm 0.2 & 13.9 \pm 0.0 & 12.5 \pm 0.1 & 18.7 \pm 0.8 & 11.2 \pm 0.1 \\ 328.15 & 14.0 \pm 0.01 & 14.5 \pm 0.5 & 8.6 \pm 0.2 & 13.9 \pm 0.0 & 12.5 \pm 0.1 & 18.7 \pm 0.8 & 11.2 \pm 0.1 \\ 328.15 & 14.0 \pm 0.01 & 14.5 \pm 0.5 & 8.0 \pm 0.2 & 10.9 \pm 0.8 & 18.4 \pm 0.7 & 20.4 \pm 0.1 \\ 303.15 & 21.9 \pm 0.2 & 34.7 \pm 0.6 & 14.9 \pm 0.9 & 34.2 \pm 0.01 & 10.8 \pm 0.6 & 20.1 \pm 0.8 & 22.7 \pm 0.1 \\ 303.15 & 21.9 \pm 0.2 & 34.7 \pm 0.6 & 14.9 \pm 0.9 & 34.2 \pm 0.01 & 10.8 \pm 0.6 & 20.1 \pm 0.8 & 22.7 \pm 0.1 \\ 303.15 & 10.4 \pm 0.1 & 32.5 \pm 0.9 & 14.9 \pm 0.9 & 34.2 \pm 0.01 & 10.8 \pm 0.6 & 20.1 \pm 0.8 & 22.7 \pm 0.1 \\ 313.15 & 19.3 \pm 0.7 & 28.2 \pm 0.7 & 15.0 \pm 0.1 & 29.8 \pm 0.7 & 88.8 \pm 0.4 & 15.0 \pm 0.2 & 18.7 \pm 0.1 \\ 328.15 & 11.6 \pm 0.3 & 21.7 \pm 0.6 & 15.0 \pm 0.1 & 13.8 \pm 0.7 & 33.8 \pm 0.9 & 80.4 \pm 0.1 \\ 328.15 & 16.8 \pm 0.3 & 21.7 \pm 0.6 & 15.0 \pm 0.2 & 11.5 \pm 0.3 & 24.4 \pm 0.1 & 38.4 \pm 0.9 & 80.4 \pm 0.1 \\ 328.15 & 17.6 \pm 0.8 & 23.9 \pm 0.3 & 15.0 \pm 0.1 & 15.8 \pm 0$	1 0.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	± 0.4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	± 0.0 ± 0.7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	± 0.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	± 0.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	± 0.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	± 0.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	± 0.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	± 0.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	± 0.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	± 0.9
322.13 18.5 ± 0.9 14.5 ± 0.5 8.6 ± 0.2 13.9 ± 0.0 12.5 ± 0.1 18.7 ± 0.8 11.2 ± 0.3 328.15 14.0 ± 0.01 14.5 ± 0.6 3.9 ± 0.4 11.9 ± 0.3 11.1 ± 0.9 18.1 ± 0.7 9.0 ± 0.6 AH-4298.15 21.9 ± 0.2 34.7 ± 0.6 14.9 ± 0.9 34.2 ± 0.01 10.8 ± 0.6 20.1 ± 0.8 22.7 ± 0.6 303.15 21.0 ± 0.1 32.5 ± 0.9 14.9 ± 0.9 30.4 ± 0.2 10.1 ± 0.8 18.4 ± 0.7 21.4 ± 0.6 308.15 20.2 ± 0.2 30.4 ± 0.3 15.0 ± 0.03 26.6 ± 0.5 9.5 ± 0.1 16.7 ± 0.5 20.0 ± 0.6 313.15 19.3 ± 0.7 28.2 ± 0.7 15.0 ± 0.1 22.8 ± 0.7 8.8 ± 0.4 15.0 ± 0.2 18.7 ± 0.6 318.15 18.5 ± 0.2 26.1 ± 0.001 15.0 ± 0.1 19.0 ± 0.9 8.1 ± 0.7 13.3 ± 0.1 17.3 ± 0.6 323.15 17.6 ± 0.8 23.9 ± 0.3 15.0 ± 0.1 19.0 ± 0.9 8.1 ± 0.7 13.3 ± 0.1 17.3 ± 0.6 328.15 16.8 ± 0.3 21.7 ± 0.6 15.0 ± 0.2 11.5 ± 0.3 6.8 ± 0.3 9.8 ± 0.7 14.6 ± 0.6 AH-5 298.15 2.7 ± 0.4 2.4 ± 0.9 3.1 ± 0.9 1.5 ± 0.4 2.4 ± 0.1 38.8 ± 0.9 8.0 ± 0.0 303.15 2.7 ± 0.2 2.4 ± 0.8 3.1 ± 0.9 1.5 ± 0.3 2.4 ± 0.1 38.8 ± 0.9 8.0 ± 0.0 308.15 2.7 ± 0.2 2.4 ± 0.8 3.1 ± 0.8 1.5 ± 0.3 2.4 ± 0.1 3.8 ± 0	± 0.2
J22.1.5 14.5 ± 0.51 14.5 ± 0.5 1.5 ± 0.4 11.5 ± 0.5 11.1 ± 0.5 10.1 ± 0.7 3.6 ± 0.7 AH-4298.15 21.9 ± 0.2 34.7 ± 0.6 14.9 ± 0.9 34.2 ± 0.01 10.8 ± 0.6 20.1 ± 0.8 22.7 ± 0.6 303.15 21.0 ± 0.1 32.5 ± 0.9 14.9 ± 0.9 30.4 ± 0.2 10.1 ± 0.8 18.4 ± 0.7 21.4 ± 0.6 308.15 20.2 ± 0.2 30.4 ± 0.3 15.0 ± 0.03 26.6 ± 0.5 9.5 ± 0.1 16.7 ± 0.5 $20.0 \pm 0.6 \pm 0.5$ 313.15 19.3 ± 0.7 28.2 ± 0.7 15.0 ± 0.1 22.8 ± 0.7 8.8 ± 0.4 15.0 ± 0.2 18.7 ± 0.6 318.15 18.5 ± 0.2 26.1 ± 0.001 15.0 ± 0.1 19.0 ± 0.9 8.1 ± 0.7 13.3 ± 0.1 17.3 ± 0.1 323.15 17.6 ± 0.8 23.9 ± 0.3 15.0 ± 0.1 15.3 ± 0.1 7.4 ± 0.9 11.5 ± 0.9 16.0 ± 0.2 328.15 16.8 ± 0.3 21.7 ± 0.6 15.0 ± 0.2 11.5 ± 0.3 6.8 ± 0.3 9.8 ± 0.7 14.6 ± 0.6 298.15 2.7 ± 0.4 2.4 ± 0.9 3.1 ± 0.9 1.5 ± 0.3 2.4 ± 0.1 3.8 ± 0.9 8.0 ± 0.6 303.15 2.7 ± 0.2 2.4 ± 0.8 3.1 ± 0.8 1.5 ± 0.3 2.4 ± 0.1 3.8 ± 0.9 8.0 ± 0.6 308.15 2.7 ± 0.2 2.4 ± 0.8 3.1 ± 0.8 1.5 ± 0.3 2.4 ± 0.1 3.8 ± 0.9 8.0 ± 0.6 313.15 2.7 ± 0.2 2.4 ± 0.6 3.1 ± 0.8 1.5 ± 0.1 2.3 ± 0.9 3.8 ± 0.9 <	± 0.5 ± 0.8
AH-4298.15 21.9 ± 0.2 34.7 ± 0.6 14.9 ± 0.9 34.2 ± 0.01 10.8 ± 0.6 20.1 ± 0.8 22.7 ± 0.6 303.15 21.0 ± 0.1 32.5 ± 0.9 14.9 ± 0.9 30.4 ± 0.2 10.1 ± 0.8 18.4 ± 0.7 21.4 ± 0.6 308.15 20.2 ± 0.2 30.4 ± 0.3 15.0 ± 0.03 26.6 ± 0.5 9.5 ± 0.1 16.7 ± 0.5 20.0 ± 0.6 313.15 19.3 ± 0.7 28.2 ± 0.7 15.0 ± 0.1 22.8 ± 0.7 8.8 ± 0.4 15.0 ± 0.2 18.7 ± 0.6 318.15 18.5 ± 0.2 26.1 ± 0.001 15.0 ± 0.1 19.0 ± 0.9 8.1 ± 0.7 13.3 ± 0.1 17.3 ± 0.6 323.15 17.6 ± 0.8 23.9 ± 0.3 15.0 ± 0.1 15.3 ± 0.1 7.4 ± 0.9 11.5 ± 0.9 16.0 ± 0.6 328.15 16.8 ± 0.3 21.7 ± 0.6 15.0 ± 0.2 11.5 ± 0.3 6.8 ± 0.3 9.8 ± 0.7 14.6 ± 0.6 303.15 2.7 ± 0.4 2.4 ± 0.9 3.1 ± 0.9 1.5 ± 0.4 2.4 ± 0.1 3.8 ± 0.9 8.0 ± 0.6 303.15 2.7 ± 0.4 2.4 ± 0.9 3.1 ± 0.9 1.5 ± 0.3 2.4 ± 0.1 3.8 ± 0.9 8.0 ± 0.6 308.15 2.7 ± 0.2 2.4 ± 0.8 3.1 ± 0.8 1.5 ± 0.3 2.4 ± 0.1 3.8 ± 0.9 8.0 ± 0.6 313.15 2.7 ± 0.2 2.4 ± 0.8 3.1 ± 0.8 1.5 ± 0.3 2.4 ± 0.1 3.8 ± 0.9 8.0 ± 0.6 313.15 2.7 ± 0.2 2.4 ± 0.6 3.1 ± 0.8 1.5 ± 0.1 2.3 ± 0.9 3.8 ± 0.9 8.0 ± 0.6	± 0.0
298.15 21.9 ± 0.2 34.7 ± 0.6 14.9 ± 0.9 30.4 ± 0.01 10.8 ± 0.0 20.1 ± 0.8 22.7 ± 0.7 303.15 21.0 ± 0.1 32.5 ± 0.9 14.9 ± 0.9 30.4 ± 0.2 10.1 ± 0.8 18.4 ± 0.7 21.4 ± 0.7 308.15 20.2 ± 0.2 30.4 ± 0.3 15.0 ± 0.03 26.6 ± 0.5 9.5 ± 0.1 16.7 ± 0.5 20.0 ± 0.7 313.15 19.3 ± 0.7 28.2 ± 0.7 15.0 ± 0.1 22.8 ± 0.7 8.8 ± 0.4 15.0 ± 0.2 18.7 ± 0.7 318.15 18.5 ± 0.2 26.1 ± 0.001 15.0 ± 0.1 19.0 ± 0.9 8.1 ± 0.7 13.3 ± 0.1 17.3 ± 0.1 323.15 17.6 ± 0.8 23.9 ± 0.3 15.0 ± 0.1 15.3 ± 0.1 7.4 ± 0.9 11.5 ± 0.9 16.0 ± 0.2 328.15 16.8 ± 0.3 21.7 ± 0.6 15.0 ± 0.2 11.5 ± 0.3 6.8 ± 0.3 9.8 ± 0.7 14.6 ± 0.2 303.15 2.7 ± 0.4 2.4 ± 0.9 3.1 ± 0.9 1.5 ± 0.4 2.4 ± 0.1 3.8 ± 0.9 8.0 ± 0.2 303.15 2.7 ± 0.4 2.4 ± 0.9 3.1 ± 0.9 1.5 ± 0.3 2.4 ± 0.1 3.8 ± 0.9 8.0 ± 0.2 308.15 2.7 ± 0.2 2.4 ± 0.8 3.1 ± 0.8 1.5 ± 0.3 2.4 ± 0.1 3.8 ± 0.9 8.0 ± 0.2 313.15 2.7 ± 0.2 2.4 ± 0.8 3.1 ± 0.8 1.5 ± 0.3 2.4 ± 0.1 3.8 ± 0.9 8.0 ± 0.2 318.15 2.7 ± 0.1 2.4 ± 0.7 3.1 ± 0.8 1.5 ± 0.1 2.3 ± 0.9 3.8 ± 0.9 8.0 ± 0.2 <t< td=""><td></td></t<>	
308.15 2.02 ± 0.2 3.04 ± 0.3 1.50 ± 0.03 26.6 ± 0.5 9.5 ± 0.1 16.7 ± 0.5 20.0 ± 0.6 313.15 19.3 ± 0.7 28.2 ± 0.7 15.0 ± 0.03 26.6 ± 0.5 9.5 ± 0.1 16.7 ± 0.5 20.0 ± 0.6 318.15 19.3 ± 0.7 28.2 ± 0.7 15.0 ± 0.1 22.8 ± 0.7 8.8 ± 0.4 15.0 ± 0.2 18.7 ± 0.6 318.15 18.5 ± 0.2 26.1 ± 0.001 15.0 ± 0.1 19.0 ± 0.9 8.1 ± 0.7 13.3 ± 0.1 17.3 ± 0.6 323.15 17.6 ± 0.8 23.9 ± 0.3 15.0 ± 0.1 15.3 ± 0.1 7.4 ± 0.9 11.5 ± 0.9 16.0 ± 0.6 328.15 16.8 ± 0.3 21.7 ± 0.6 15.0 ± 0.2 11.5 ± 0.3 6.8 ± 0.3 9.8 ± 0.7 14.6 ± 0.6 AH-5 298.15 2.7 ± 0.4 2.4 ± 0.9 3.1 ± 0.9 1.5 ± 0.4 2.4 ± 0.1 3.8 ± 0.9 8.0 ± 0.6 308.15 2.7 ± 0.3 2.4 ± 0.9 3.1 ± 0.9 1.5 ± 0.3 2.4 ± 0.1 3.8 ± 0.9 8.0 ± 0.6 308.15 2.7 ± 0.2 2.4 ± 0.8 3.1 ± 0.8 1.5 ± 0.3 2.4 ± 0.1 3.8 ± 0.9 8.0 ± 0.6 313.15 2.7 ± 0.2 2.4 ± 0.8 3.1 ± 0.8 1.5 ± 0.2 2.3 ± 0.9 3.8 ± 0.9 8.0 ± 0.6 318.15 2.7 ± 0.1 2.4 ± 0.7 3.1 ± 0.8 1.5 ± 0.1 2.3 ± 0.9 3.8 ± 0.9 8.0 ± 0.6 318.15 2.7 ± 0.1 2.4 ± 0.6 3.1 ± 0.7 1.5 ± 0.1 2.3 ± 0.9 3.8 ± 0.9 8.0 ± 0.6 318.15<	± 0.8 ± 0.3
313.1519.3 \pm 0.728.2 \pm 0.715.0 \pm 0.122.8 \pm 0.78.8 \pm 0.415.0 \pm 0.218.7 \pm (318.1518.5 \pm 0.226.1 \pm 0.00115.0 \pm 0.119.0 \pm 0.98.1 \pm 0.713.3 \pm 0.117.3 \pm 0.1323.1517.6 \pm 0.823.9 \pm 0.315.0 \pm 0.115.3 \pm 0.17.4 \pm 0.911.5 \pm 0.916.0 \pm 0.2328.1516.8 \pm 0.321.7 \pm 0.615.0 \pm 0.211.5 \pm 0.36.8 \pm 0.39.8 \pm 0.714.6 \pm 0.4AH-5298.152.7 \pm 0.42.4 \pm 0.93.1 \pm 0.91.5 \pm 0.42.4 \pm 0.13.8 \pm 0.98.0 \pm 0303.152.7 \pm 0.32.4 \pm 0.93.1 \pm 0.91.5 \pm 0.32.4 \pm 0.13.8 \pm 0.98.0 \pm 0308.152.7 \pm 0.22.4 \pm 0.83.1 \pm 0.81.5 \pm 0.32.4 \pm 0.13.8 \pm 0.98.0 \pm 0313.152.7 \pm 0.22.4 \pm 0.83.1 \pm 0.81.5 \pm 0.22.3 \pm 0.93.8 \pm 0.98.0 \pm 0318.152.7 \pm 0.12.4 \pm 0.73.1 \pm 0.81.5 \pm 0.12.3 \pm 0.93.8 \pm 0.98.0 \pm 0318.152.7 \pm 0.012.4 \pm 0.73.1 \pm 0.71.5 \pm 0.12.3 \pm 0.93.8 \pm 0.98.0 \pm 0	± 0.3 ± 0.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	± 0.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\pm 0.7
328.15 16.8 ± 0.3 21.7 ± 0.6 15.0 ± 0.2 11.5 ± 0.3 6.8 ± 0.3 9.8 ± 0.7 14.6 ± 0.6 AH-5298.15 2.7 ± 0.4 2.4 ± 0.9 3.1 ± 0.9 1.5 ± 0.4 2.4 ± 0.1 3.8 ± 0.9 8.0 ± 0.6 303.15 2.7 ± 0.3 2.4 ± 0.9 3.1 ± 0.9 1.5 ± 0.3 2.4 ± 0.1 3.8 ± 0.9 8.0 ± 0.6 308.15 2.7 ± 0.2 2.4 ± 0.8 3.1 ± 0.8 1.5 ± 0.3 2.4 ± 0.1 3.8 ± 0.9 8.0 ± 0.6 313.15 2.7 ± 0.2 2.4 ± 0.8 3.1 ± 0.8 1.5 ± 0.2 2.3 ± 0.9 3.8 ± 0.9 8.0 ± 0.6 318.15 2.7 ± 0.1 2.4 ± 0.7 3.1 ± 0.8 1.5 ± 0.1 2.3 ± 0.9 3.8 ± 0.9 8.0 ± 0.6 312.15 2.7 ± 0.01 2.4 ± 0.6 3.1 ± 0.7 1.5 ± 0.1 2.3 ± 0.9 3.8 ± 0.9 8.0 ± 0.6	\pm 0.2
AH-5298.15 2.7 ± 0.4 2.4 ± 0.9 3.1 ± 0.9 1.5 ± 0.4 2.4 ± 0.1 3.8 ± 0.9 8.0 ± 0 303.15 2.7 ± 0.3 2.4 ± 0.9 3.1 ± 0.9 1.5 ± 0.3 2.4 ± 0.1 3.8 ± 0.9 8.0 ± 0 308.15 2.7 ± 0.2 2.4 ± 0.8 3.1 ± 0.8 1.5 ± 0.3 2.4 ± 0.1 3.8 ± 0.9 8.0 ± 0 313.15 2.7 ± 0.2 2.4 ± 0.8 3.1 ± 0.8 1.5 ± 0.2 2.3 ± 0.9 3.8 ± 0.9 8.0 ± 0 318.15 2.7 ± 0.1 2.4 ± 0.7 3.1 ± 0.8 1.5 ± 0.1 2.3 ± 0.9 3.8 ± 0.9 8.0 ± 0 323.15 2.7 ± 0.01 2.4 ± 0.6 3.1 ± 0.7 1.5 ± 0.1 2.3 ± 0.9 3.8 ± 0.9 8.0 ± 0	± 0.7
298.15 2.7 ± 0.4 2.4 ± 0.9 3.1 ± 0.9 1.5 ± 0.4 2.4 ± 0.1 3.8 ± 0.9 8.0 ± 0.9 303.15 2.7 ± 0.3 2.4 ± 0.9 3.1 ± 0.9 1.5 ± 0.3 2.4 ± 0.1 3.8 ± 0.9 8.0 ± 0.9 308.15 2.7 ± 0.2 2.4 ± 0.8 3.1 ± 0.8 1.5 ± 0.3 2.4 ± 0.1 3.8 ± 0.9 8.0 ± 0.9 313.15 2.7 ± 0.2 2.4 ± 0.8 3.1 ± 0.8 1.5 ± 0.2 2.3 ± 0.9 3.8 ± 0.9 8.0 ± 0.9 318.15 2.7 ± 0.1 2.4 ± 0.7 3.1 ± 0.8 1.5 ± 0.1 2.3 ± 0.9 3.8 ± 0.9 8.0 ± 0.9 323.15 2.7 ± 0.01 2.4 ± 0.6 3.1 ± 0.7 1.5 ± 0.1 2.3 ± 0.9 3.8 ± 0.9 8.0 ± 0.9	
303.15 2.7 ± 0.3 2.4 ± 0.9 3.1 ± 0.9 1.5 ± 0.3 2.4 ± 0.1 3.8 ± 0.9 8.0 ± 0 308.15 2.7 ± 0.2 2.4 ± 0.8 3.1 ± 0.8 1.5 ± 0.3 2.4 ± 0.1 3.8 ± 0.9 8.0 ± 0 313.15 2.7 ± 0.2 2.4 ± 0.8 3.1 ± 0.8 1.5 ± 0.2 2.3 ± 0.9 3.8 ± 0.9 8.0 ± 0 318.15 2.7 ± 0.1 2.4 ± 0.7 3.1 ± 0.8 1.5 ± 0.1 2.3 ± 0.9 3.8 ± 0.9 8.0 ± 0 323.15 2.7 ± 0.01 2.4 ± 0.6 3.1 ± 0.7 1.5 ± 0.1 2.3 ± 0.9 3.8 ± 0.9 8.0 ± 0	± 0.4
308.15 2.7 ± 0.2 2.4 ± 0.8 3.1 ± 0.8 1.5 ± 0.3 2.4 ± 0.1 3.8 ± 0.9 8.0 ± 0 313.15 2.7 ± 0.2 2.4 ± 0.8 3.1 ± 0.8 1.5 ± 0.2 2.3 ± 0.9 3.8 ± 0.9 8.0 ± 0 318.15 2.7 ± 0.1 2.4 ± 0.7 3.1 ± 0.8 1.5 ± 0.1 2.3 ± 0.9 3.8 ± 0.9 8.0 ± 0 323.15 2.7 ± 0.01 2.4 ± 0.6 3.1 ± 0.7 1.5 ± 0.1 2.3 ± 0.9 3.8 ± 0.9 8.0 ± 0	± 0.5
313.15 2.7 ± 0.2 2.4 ± 0.8 3.1 ± 0.8 1.5 ± 0.2 2.3 ± 0.9 3.8 ± 0.9 8.0 ± 0 318.15 2.7 ± 0.1 2.4 ± 0.7 3.1 ± 0.8 1.5 ± 0.1 2.3 ± 0.9 3.8 ± 0.9 8.0 ± 0 323.15 2.7 ± 0.01 2.4 ± 0.6 3.1 ± 0.7 1.5 ± 0.1 2.3 ± 0.9 3.8 ± 0.9 8.0 ± 0	± 0.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	± 0.5 ± 0.5
0 0 T 0	± 0.5 + 0.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	± 0.5
AH-6	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	± 0.2
$303.15 \qquad 26.4 \pm 0.7 \qquad 22.4 \pm 0.3 \qquad 10.5 \pm 0.1 \qquad 17.2 \pm 0.5 \qquad 19.2 \pm 0.1 \qquad 24.0 \pm 0.5 \qquad 115.9 \pm 0.1 \qquad 115.9 \pm 0.1 \qquad 0.5 = 0.1$) ± 0.1
$308.15 \qquad 23.9 \pm 0.1 \qquad 20.6 \pm 0.5 \qquad 11.2 \pm 0.3 \qquad 16.6 \pm 0.7 \qquad 19.8 \pm 0.4 \qquad 21.2 \pm 0.8 \qquad 88.7 \pm 0.5 \qquad 10.4 \pm $	± 0.02
$313.15 21.3 \pm 0.4 18.8 \pm 0.7 11.9 \pm 0.6 16.0 \pm 0.9 20.4 \pm 0.7 18.5 \pm 0.1 61.4 \pm 0.5 11.5 $	± 0.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	± 0.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	± 0.8
$526.15 15.0 \pm 0.0 15.3 \pm 0.4 14.1 \pm 0.4 14.5 \pm 0.7 22.5 \pm 0.7 10.1 \pm 0.9 -20.1 \pm 0.7 20.1 \pm$	1 ± 0.2
AH-7	- 07
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	± 0.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	± 0.1 ± 0.6
313.15 5.4 ± 0.3 6.5 ± 0.8 6.7 ± 0.3 3.5 ± 0.5 5.4 ± 0.3 3.8 ± 0.5 20.7 ± 0.3	+ 0.03
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	± 0.05
323.15 5.4 ± 0.2 6.5 ± 0.8 6.7 ± 0.3 3.5 ± 0.2 5.4 ± 0.3 3.8 ± 0.1 13.9 ± 0.2	± 0.9
328.15 5.4 ± 0.1 6.5 ± 0.7 6.7 ± 0.2 3.5 ± 0.1 5.4 ± 0.3 3.8 ± 0.1 11.7 ± 0.2	± 0.3
AH-8	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	± 0.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	± 0.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	± 0.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	± 0.03 ± 0.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+ 0.2
328.15 13.5 ± 0.8 23.3 ± 0.2 13.2 ± 0.8 16.1 ± 0.8 14.5 ± 0.6 11.7 ± 0.3 15.3 ± 0.6	± 0.7

The excess of enthalpy derived from thermodynamics data using Eq. (14).

Temp(K)	Methanol	Ethanol	1-propanol	1-butanol	1-pentanol	Ethyl acetate	Acetonitrile
$\overline{H^E / (kJ \cdot mol^{-1})}$							
AH-1							
298.15	1.1 ± 0.3	0.9 ± 0.8	1.3 ± 0.5	9.6 ± 0.7	1.0 ± 0.2	1.0 ± 0.6	0.6 ± 0.2
303.15	1.2 ± 0.5	1.0 ± 0.8	1.4 ± 0.9	10.5 ± 0.03	1.1 ± 0.5	1.0 ± 0.9	0.7 ± 0.2
308.15	1.3 ± 0.7	1.2 ± 0.5	1.6 ± 0.5	11.9 ± 0.3	1.2 ± 0.5	1.1 ± 0.5	0.8 ± 0.5
313.15	1.5 ± 0.1	1.3 ± 0.7	1.81 ± 0.2	12.9 ± 0.3	1.4 ± 0.4	$1. \pm 0.9$	0.9 ± 0.8
318.15	1.6 ± 0.4	1.4 ± 0.9	1.9 ± 0.6	14.4 ± 0.8	1.5 ± 0.6	1.2 ± 0.6	1.1 ± 0.001
323.15	1.7 ± 0.8	1.5 ± 0.9	2.1 ± 0.5	15.9 ± 0.5	1.6 ± 0.5	1.3 ± 0.2	1.2 ± 0.4
328.15	1.9 ± 0.6	1.7 ± 0.3	2.2 ± 0.5	17.3 ± 0.7	1.7 ± 0.6	1.3 ± 0.9	1.3 ± 0.3
AH-2	0.5 + 0.01	07 00	0.0 + 0.2	62 - 02	02 + 04	02 + 01	05 + 02
298.15	0.5 ± 0.01	0.7 ± 0.9	0.8 ± 0.2	6.2 ± 0.2	0.3 ± 0.4	0.2 ± 0.1	0.5 ± 0.3
308.15	0.3 ± 0.8 0.7 + 0.07	0.8 ± 0.8 0.9 + 0.8	0.9 ± 0.1 10 + 0.5	0.8 ± 0.9 74 + 09	0.4 ± 0.2 0.4 + 0.9	0.2 ± 0.4 0.2 + 0.8	0.5 ± 0.9 0.6 + 0.9
313.15	0.7 ± 0.07	1.1 ± 0.2	1.0 ± 0.0 1.1 + 0.1	8.3 ± 0.9	0.1 ± 0.0 0.5 + 0.7	0.2 ± 0.0 0.3 + 0.4	0.8 ± 0.2
318.15	0.8 ± 0.5	1.2 ± 0.2	1.2 ± 0.6	9.3 ± 0.6	0.6 ± 0.3	0.3 ± 0.8	0.8 ± 0.9
323.15	0.9 ± 0.8	1.3 ± 0.2	1.3 ± 0.1	10.6 ± 0.2	0.6 ± 0.9	0.4 ± 0.1	1.0 ± 0.3
328.15	1.0 ± 0.4	1.4 ± 0.3	1.4 ± 0.7	11.6 ± 0.2	0.7 ± 0.3	0.4 ± 0.6	1.1 ± 0.3
AH-3							
298.15	0.1 ± 0.8	1.0 ± 0.6	0.7 ± 0.9	5.5 ± 0.5	0.9 ± 0.6	0.5 ± 0.5	0.8 ± 0.8
303.15	0.2 ± 0.3	1.1 ± 0.8	0.9 ± 0.8	6.4 ± 0.5	1.0 ± 0.4	0.6 ± 0.2	1.0 ± 0.2
308.15	0.3 ± 0.008	1.2 ± 0.6	1.1 ± 0.5	7.4 ± 0.4	1.1 ± 0.4	0.6 ± 0.9	1.1 ± 0.6
313.15	0.3 ± 0.5	1.3 ± 0.9	1.2 ± 0.5	7.9 ± 0.6	1.3 ± 0.4	0.8 ± 0.1	1.2 ± 0.9
318.15	0.4 ± 0.1	1.5 ± 0.5	1.4 ± 0.2	8.8 ± 0.6	1.4 ± 0.6 1.5 ± 0.0	0.9 ± 0.1	1.3 ± 0.8 1.4 ± 0.6
328.15	0.4 ± 0.0 0.5 ± 0.1	1.0 ± 0.2 1.8 ± 0.01	1.4 ± 0.9 1.5 ± 0.8	9.5 ± 0.01 10.9 + 0.001	1.5 ± 0.5 1.6 ± 0.6	1.0 ± 0.1 1.1 ± 0.07	1.4 ± 0.0 1.5 ± 0.9
298.15	0.8 ± 0.5	0.4 ± 0.1	1.3 ± 0.2	3.3 ± 0.5	1.3 ± 0.1	1.2 ± 0.6	0.9 ± 0.01
303.15	0.9 ± 0.7	0.4 ± 0.6	1.4 ± 0.5	4.3 ± 0.2	1.3 ± 0.8	1.4 ± 0.6	1.0 ± 0.3
308.15	1.0 ± 0.6	0.5 ± 0.1	1.5 ± 0.4	5.0 ± 0.2	1.4 ± 0.7	1.5 ± 0.9	1.1 ± 0.3
313.15	1.1 ± 0.5	0.5 ± 0.7	1.6 ± 0.9	5.7 ± 0.1	1.5 ± 0.5	1.7 ± 0.4	1.2 ± 0.4
318.15	1.2 ± 0.6	0.6 ± 0.4	1.8 ± 0.5	6.5 ± 0.1	1.6 ± 0.2	1.8 ± 0.4	1.3 ± 0.6
323.15	1.3 ± 0.6 1.5 ± 0.8	0.7 ± 0.2 0.7 ± 0.7	1.9 ± 0.8 2.1 \pm 0.5	7.0 ± 0.8 7.8 ± 0.7	1.6 ± 0.8 1.7 ± 0.4	1.9 ± 0.5 2.0 ± 0.6	1.4 ± 0.9 1.6 ± 0.1
520.15	1.5 ± 0.0	0.7 ± 0.7	2.1 ± 0.5	7.0 ± 0.7	1.7 ± 0.4	2.0 ± 0.0	1.0 ± 0.1
AH-5 298 15	17 ± 0.4	16 ± 05	18 ± 0.7	96 ± 01	16 ± 0.4	19 ± 09	18 ± 0.7
303 15	1.7 ± 0.4 1.7 ± 0.6	1.0 ± 0.3 1.6 ± 0.7	1.0 ± 0.07 1.9 ± 0.005	97 ± 0.1	1.0 ± 0.4 1.6 ± 0.6	2.0 ± 0.3	1.0 ± 0.7 1.9 ± 0.9
308.15	1.7 ± 0.0 1.7 + 0.9	1.6 ± 0.9	1.9 ± 0.000	9.8 ± 0.2	1.6 ± 0.8	2.0 ± 0.0 2.0 + 0.8	2.1 ± 0.2
313.15	1.8 ± 0.3	1.7 ± 0.2	1.9 ± 0.6	10.0 ± 0.1	1.7 ± 0.1	2.1 ± 0.3	2.1 ± 0.9
318.15	1.8 ± 0.5	1.7 ± 0.5	2.0 ± 0.01	10.0 ± 0.1	1.7 ± 0.3	2.1 ± 0.8	2.3 ± 0.2
323.15	1.8 ± 0.8	1.7 ± 0.7	2.0 ± 0.5	10.0 ± 0.4	1.7 ± 0.5	2.2 ± 0.3	2.3 ± 0.8
328.15	1.9 ± 0.2	1.7 ± 0.9	2.0 ± 0.9	10.1 ± 0.7	1.7 ± 0.8	2.2 ± 0.7	2.4 ± 0.8
AH-6							
298.15	0.4 ± 0.6	0.6 ± 0.3	1.4 ± 0.4	7.0 ± 0.6	0.5 ± 0.6	0.6 ± 0.4	0.0 ± 0.7
303.15	0.5 ± 0.7	0.7 ± 0.4	1.5 ± 0.3	7.8 ± 0.5	0.6 ± 0.3	0.7 ± 0.8	0.0 ± 0.7
308.15	0.6 ± 0.4 0.7 + 0.1	0.8 ± 0.4	1.0 ± 0.3 1.7 ± 0.6	8.7 ± 0.3	0.6 ± 0.9	0.8 ± 0.7	0.0 ± 0.7
318 15	0.7 ± 0.1 07 + 09	10 ± 0.2	1.7 ± 0.0 1.8 ± 0.9	5.5 ± 0.4 106 + 05	0.7 ± 0.0 0.8 + 0.9	0.5 ± 0.0 1.0 ± 0.7	0.0 ± 0.7 0.0 ± 0.7
323.15	0.8 ± 0.8	1.0 ± 0.2 1.1 + 0.2	2.0 ± 0.3	10.0 ± 0.3 11.6 ± 0.3	1.0 ± 0.08	1.0 ± 0.7 1.1 + 0.5	0.0 ± 0.7 0.0 + 0.7
328.15	0.9 ± 0.7	1.2 ± 0.3	2.1 ± 0.9	12.7 ± 0.6	1.1 ± 0.08	1.2 ± 0.4	0.0 ± 0.7
AH-7							
298.15	2.0 ± 0.9	1.9 ± 0.9	5.4 ± 0.3	15.6 ± 0.3	2.0 ± 0.7	1.9 ± 0.6	0.6 ± 0.6
303.15	2.1 ± 0.4	2.1 ± 0.07	5.5 ± 0.3	15.9 ± 0.2	2.1 ± 0.5	2.0 ± 0.02	0.7 ± 0.9
308.15	2.2 ± 0.3	2.1 ± 0.8	5.6 ± 0.4	16.2 ± 0.2	2.2 ± 0.3	2.0 ± 0.5	0.8 ± 0.9
313.15	2.3 ± 0.0	2.2 ± 0.9	5.7 ± 0.9	16.6 ± 0.6	2.3 ± 0.02	2.1 ± 0.03	0.9 ± 0.9
318.15	2.3 ± 0.9	2.3 ± 0.8	5.9 ± 0.3	17.0 ± 0.5	2.3 ± 0.7	2.1 ± 0.5	1.1 ± 0.09
323.15	2.4 ± 0.4 2.5 ± 0.4	2.4 ± 0.4 2.5 ± 0.7	6.0 ± 0.8 6.1 ± 0.6	17.4 ± 0.8 17.7 ± 0.3	2.4 ± 0.5 2.5 ± 0.2	2.2 ± 0.03 2.2 ± 0.6	1.1 ± 0.8 1.2 ± 0.9
320.13	2.3 - 0.4	2.5 ± 0.7	0.1 ± 0.0	17.7 ± 0.5	2.5 ± 0.2	2.2 ± 0.0	1.2 ± 0.3
AH-8 298 15	0.8 ± 0.3	0.6 ± 0.7	0.6 ± 0.6	43 ± 04	0.8 ± 0.5	0.7 ± 0.2	0.5 ± 0.9
303.15	0.9 ± 0.9	0.7 ± 0.7	0.0 ± 0.0 0.7 ± 0.6	5.0 ± 0.3	0.9 ± 0.5	0.8 ± 0.06	0.6 ± 0.8
308.15	1.0 ± 0.9	0.8 ± 0.2	0.8 ± 0.9	5.9 ± 0.3	1.0 ± 0.8	0.9 ± 0.03	0.7 ± 0.9
313.15	1.1 ± 0.6	0.9 ± 0.6	0.9 ± 0.5	6.8 ± 0.8	1.2 ± 0.3	1.0 ± 0.1	0.8 ± 0.6
318.15	1.2 ± 0.8	1.0 ± 0.6	1.0 ± 0.9	7.6 ± 0.07	1.3 ± 0.1	1.1 ± 0.1	0.9 ± 0.8
323.15	1.4 ± 0.3	1.1 ± 0.4	1.1 ± 0.9	8.5 ± 0.8	1.4 ± 0.6	1.2 ± 0.4	1.1 ± 0.03
328.15	1.5 ± 0.7	1.3 ± 0.1	1.3 ± 0.02	9.3 ± 0.9	1.5 ± 0.7	1.3 ± 0.9	1.1 ± 0.8

3.3. Excess enthalpy of solutions

The excess enthalpy (H^E) of solution can provide a more detail information on understanding the behaviour of a solution. This excess enthalpy (H^E) of solution can be evaluated by experimental solubility data and λ parameter of Buchowski-Ksiazczak λh model using the following equation [32]:

$$hR = \Delta_{fus}H + {}^{H^{E}} \Big/_{\chi^{osp}}$$
(14)

where $\Delta_{fus}H$ is the fusion of enthalpy of compounds, x_{exp} is the solubility data in mole fraction of in solvents and *R* is gas constant. *h* refers the parameter in the Buchowski-Ksiazczak λh model.

The calculated H^E values for all the compounds are listed in Table 9 for the studied solvents in different temperatures. It is observed that table that H^E is positive which increases with increase in temperature. This may be due to contribution of several interactions in the solution. The cavity formation at compounds dissolution requires the absorption of heat to overcome the interactions between the solvents. The intermolecular interactions between compound and solvent molecules are again proved by the positive enthalpy. Therefore, the dissolution of studied compounds needs to absorb energy, so dissolution of compounds is endothermic [33].

4. Conclusions

The solubility of studied compounds is found to increases with increase in temperature. The agreement between experimental solubility data with those evaluated by modified Apelblat and Buchowski– Ksiazczak models is satisfactory. The positive enthalpy and Gibb's free energy of dissolution suggest endothermic and spontaneous dissolution of compounds in all the studied solvents respectively. In all the solvents except 1-butanol, entropy values are found to be negative for the studied compounds, suggesting thereby more ordered structure in solutions.

Acknowledgments

Authors are thankful to Department of Chemistry, Saurashtra University-Rajkot for providing research facilities also NFDD, Rajkot for providing the spectra of compounds.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi. org/10.1016/j.molliq.2018.12.081.

References

- P. Venkatesan, T. Maruthavanan, Piperidine-mediated synthesis of thiazolyl chalcones and their derivatives as potent antimicrobial agents, J. Heterocyclic Chem. 48 (2011) 1181–1186.
- [2] M. Pandya, K. Kapdiya, C. Pandit, D. Purohit, Synthesis of halogenated chalcones, pyrazolines and microbial evaluation of derived scaffolds, J. Sci. Ind. Res. 76 (2017) 173–178.
- [3] B.M. Sahoo, M. Rajeswari, P. Jnyanaranjan, S. Binayani, Green expedient synthesis of pyrimidine derivatives via chalcones and evaluation of their anthelmintic activity, Indian J. Pharm. Educ. Res. 51 (2017) S700–S706.
- [4] H. Rücker, N. Al-Rifai, A. Rascle, E. Gottfried, L. Brodziak-Jarosz, C. Gerhäuser, T.P. Dick, S. Amslinger, Enhancing the anti-inflammatory activity of chalcones by tuning the Michael acceptor site, Org. Biomol. Chem. 14 (2015) 3040–3047.
- [5] C. Díaz-tielas, E. Graña, M.J. Reigosa, A.M. Sánchez-Moreiras, Biological activities and novel applications of chalcones, Planta Daninha 34 (2016) 607–616.

- [6] C. McGuigan, T.J. O'Oonnor, R. Nicholls, C. Nickson, D. Klnchlnqton, Synthesis and anti-HIV activity of some novel substituted dialkyl phosphate derivatives of AZT and dd Cyd, Antivir. Chem. Chemother. 6 (1990) 355–360.
- [7] K.V. Sashidhara, S.R. Avula, V. Mishra, G.R. Palnati, L.R. Singh, N. Singh, Y.S. Chhonker, P. Swami, R.S. Bhatta, G. Palit, Identification of quinoline-chalcone hybrids as potential antiulcer agents, Eur. J. Med. Chem. 89 (2015) 638–653.
- [8] A. Kamal, G. Ramakrishna, P. Raju, A. Viswanath, M.J. Ramaiah, G. Balakishan, M. Pal-Bhadra, Synthesis and anti-cancer activity of chalcone linked imidazolones, Bioorg. Med. Chem. Lett. 20 (2010) 4865–4869.
- [9] C.A. Lipinski, F. Lombardo, B.W. Dominy, P.J. Feeney, Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings, Adv. Drug Deliv. Rev. 64 (2012) 4–17.
- [10] A. Chaudhary, U. Nagaich, N. Gulati, V.K. Sharma, R.L. Khosa, Enhancement of solubilization and bioavailability of poorly soluble drugs by physical and chemical modifications: a recent review, J. Adv. Pharm. Educ. Res. 2 (2012) 32–67.
- [11] S.M. Honmane, Y.D. Dange, R. Ali, M. smani, D.R. Jadge, General considerations of design and development of dosage forms: pre-formulation review, Asian J. Pharm. 11 (2017) 479–488.
- [12] Y.V. Yushkova, E.I. Chernyak, Y.V. Gatilov, V.G. Vasil'ev, S.V. Morozov, I.A. Grigor'ev, Synthesis, structure, antioxidant activity, and water solubility of trolox ion conjugates, Saudi, Pharm. J. 26 (2018) 84–92.
- [13] S. Akay, B. Kayan, Y. Yang, Solubility and chromatographic separation of 5fluorouracil under subcritical water conditions, J. Chem. Eng. Data 62 (2017) 1538–1543.
- [14] A.R. Holguín, D.R. Delgado, F. Martínez, Thermodynamic study of the solubility of triclocarban in ethanol + propylene glycol mixtures, Quim Nova 35 (2012) 280–285.
- [15] F.L. Mota, A.P. Carneiro, A.J. Queimada, S.P. Pinho, E.A. Macedo, Temperature and solvent effects in the solubility of some pharmaceutical compounds: measurements and modeling, Eur. J. Pharm. Sci. 37 (2009) 499–507.
- [16] A.V. Yadav, V.B. Yadav, Preparation and evaluation of polymeric carbama zepin spherical crystals by emulsion solvent diffusion technique, Asian J. Pharm. 3 (2009) 18–25.
- [17] R. Ferrer, G. Lobo, N. Gamboa, J. Rodrigues, C. Abramjuk, K. Jung, M. Lein, J.E. Charris, Synthesis of [(7-Chloroquinolin-4-yl)amino]chalcones: potential anti-malarial and anticancer agents, Sci. Pharm. 77 (2009) 725–741.
- [18] R. Abonia, D. Insuasty, J. Castillo, B. Insuasty, J. Quiroga, M. Nogueras, J. Cobo, Synthesis of novel quinoline-2-one based chalcones of potential anti-tumor activity, Eur. J. Med. Chem. 57 (2012) 29–40.
- [19] J.A. Riddick, W.B. Bunger, T. Sakano, J. Wiley, Organic solvents: Physical Properties and Methods of Purification, Fourth edition, 1986 109 (New York).
- [20] J. Wang, A. Xu, R. Xu, Solubility of 2-nitro-*p*-phenylenediamine in nine pure solvents and mixture of (methanol + *N*-methyl-2-pyrrolidone) from T = (283.15 to 318.15) K: determination and modelling, J. Chem. Thermodyn. 108 (2017) 45–48.
- [21] A. Apelblat, E. Manzurola, Solubility of oxalic, malonic, succinic, adipic, maleic, malic, citric, and tartaric acids in water from 278.15 to 338.15 K, J. Chem. Thermodyn. 19 (1987) 317–320.
- [22] H. Buchowski, A. Ksiazczak, S. Pietrzyk, Solvent activity along a saturation line and solubility of hydrogen-bonding solids, J. Phys. Chem. 84 (1980) 975–979.
- [23] F. Wang, Y. Jang, Molecular Thermodynamics and Chromatography Reaction, Metereology Press, Beijing, 2001.
- [24] M. Gantiva, F. Martinez, Thermodynamic analysis of the solubility of ketoprofen in some propylene glycol + water cosolvent mixtures, Fluid Phase Equilib. 293 (2010) 242–250.
- [25] R.R. Krug, W.G. Hunter, R.A. Grieger, Enthalpy-entropy compensation. Separation of the chemical from the statistical effects, J. Phys. Chem. 80 (1976) 2341–2351.
- [26] S.P. Bustamante, A.P. Romero, B. Escalera, A. Reillo, Nonlinear enthalpyentropy compensation for the solubility of drugs in solvent mixtures:paracetamol, acetanilide and nalidixic acid in dioxane-water, J. Pharm. Sci. 87 (1998) 1590–1596.
- [27] A.R. Holguin, G.A. Rodriguez, D.M. Cristancho, D.R. Delgado, F. Martinez, Solution thermodynamics of indomethacin in propylene glycol + water mixture, Fluid Phase Equilib. 314 (2012) 134–139.
- [28] D.R. Delgado, R.G. Sotomayor, D.R. Monterroza, C.P. Mora, E.F. Vargar, F. Martinez, Thermodynamics of mixing of sodium naproxen and procaine hydrochloride in ethanol + water co-solvent mixtures, Rev. Colomb. Cienc. Quim. Farm. 39 (2010) 132–148.
- [29] M. Abbasi, F. Martinez, A. Jouybanm, Prediction of deferiprone solubility in aqueous mixtures of ethylene glycol, propylene glycol and polyethylene glycol 400 at various temperatures, J. Mol. Liq. 197 (2014) 171–175.
- [30] D.A. McQuarrie, J.P. Chemistry, A Molecular Approch, University Science Book, USA, 1997.
- [31] Phillip Carlson, Hazardous Chemicals Handbook, 2nd edition Elsevier, 2002 52.
- [32] Y. Xie, H. Shi, C. Du, Y. Cong, H. Zhao, Modeling of solubility of 1, 5-dinitronaphthaline in eight organic solvents from T = (272.15 to 313.15) K and dissolution properties, J. Mol. Liq. 221 (2016) 1054–1062.
- [33] K. Ray Sinnot, Chemical Engineering Design- SI Edition, 5th edition Elsevier, 2009 95.