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Simple Summary: Sulfonate derivatives have limited application in pharmacology. Only few
examples of small-molecule alkylating agents used as DNA poisons are known. This is the first report
presenting strong anticancer activity of aromatic sulfonates based on quinazolines. The screening
revealed that compounds expressed good submicromolar activity exceeding imatinib against a panel
of cancer cell lines, including leukemia, colon, pancreatic cancers and glioblastoma, and minimal
effect on proliferation of non-cancer cells. This activity corresponds with strong cell cycle arrest and
mitotic inhibition similar or higher than that of paclitaxel. Further investigation revealed a more
multitargeted mechanism of action. This structure may be an effective, novel scaffold for drug design.

Abstract: Sulfonates, unlike their derivatives, sulphonamides, have rarely been investigated for
their anticancer activity. Unlike the well-known sulphonamides, esters are mainly used as conve-
nient intermediates in a synthesis. Here, we present the first in-depth investigation of quinazoline
sulfonates. A small series of derivatives were synthesized and tested for their anticancer activity.
Based on their structural similarity, these compounds resemble tyrosine kinase inhibitors and the p53
reactivator CP-31398. Their biological activity profile, however, was more related to sulphonamides
because there was a strong cell cycle arrest in the G2/M phase. Further investigation revealed a
multitargeted mechanism of the action that corresponded to the p53 protein status in the cell. Al-
though the compounds expressed a high submicromolar activity against leukemia and colon cancers,
pancreatic cancer and glioblastoma were also susceptible. Apoptosis and autophagy were confirmed
as the cell death modes that corresponded with the inhibition of metabolic activity and the activation
of the p53-dependent and p53-independent pathways. Namely, there was a strong activation of the
p62 protein and GADD44. Other proteins such as cdc2 were also expressed at a higher level. More-
over, the classical caspase-dependent pathway in leukemia was observed at a lower concentration,
which again confirmed a multitargeted mechanism. It can therefore be concluded that the sulfonates
of quinazolines can be regarded as promising scaffolds for developing anticancer agents.

Keywords: styrylquinazoline; sulfonic derivatives; anticancer activity; cell cycle inhibition; G2/M
phase; apoptosis; autophagy

1. Introduction

Quinazoline has become one of the most frequently used scaffolds in medicinal chem-
istry and drug design. Its prevalence in natural sources and its resemblance to purines
and pteridine as well as its synthetic availability strengthened our belief in the privileged
nature of this motif [1–3]. The spectrum of activity for quinazoline derivatives is broad
and covers the antiparasitic [4,5], anti-inflammatory [6], antimicrobial and antiviral [7]
fields, among others. However, during the last two decades, a substantial interest has
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been focused on the anticancer quinazolines. Since the development of gefitinib, the first
EGFR inhibitor that was approved in Japan and the USA in 2002 and 2003, respectively,
worldwide interest in quinazoline-based tyrosine kinase inhibitors (TKI) has grown sub-
stantially [8,9]. However, quinazolines with an anticancer activity are not limited to TKI
and also include the serine-threonine kinase inhibitors, p53 reactivators [10], folate in-
hibitors as well as the Wnt or Hedgehog pathway blockers [3]. Among these, the structure
of 4-anilinoquinazoline is often particularly perceived as offering both a broad spectrum
and high level of activity [9,11,12]. For example, 4-phenethylamine derivatives have been
described as inhibitors of NF-kappa B activation [6]. In our team, several quinazoline
derivatives were investigated as antimicrobial [13] and anticancer [14] agents. More re-
cently, we investigated the p53 stabilizing agent CP-31398 (Figure 1I) as a foundation for
styrylquinazoline multi-kinase inhibitors [15]. During our work on 4-anilinoquinazolines,
we found that its synthetic availability through tosylates is more effective than the direct
substitution of 4-chloroderivative, which is used more often in the literature [16–18]. More-
over, the intermediate tosylates that were generated during the synthetic procedure were
resistant to hydrolysis in a water environment, which prompted us to test their activity
on a panel of cancer cells. Our results became increasingly interesting as tosylate was not
only active at the submicromolar level but also had a good selectivity profile and a specific
mechanism of action.
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PRIMA-1. Structures (II) and (III,V) are drugs used in anticancer therapy. Compounds (IV) and (VI,VIII) are preclinical
drugs. Structure (VII) is potent anticancer sulfonamide described in [19].

Generally, sulfonic esters are commonly exploited as substrates/leaving groups in
organic synthesis. The para-toluenesulfonic moiety, which is prone to nucleophilic dis-
placement reactions, is often used in various substitution reactions. Sulfonic acids are
used for counter-ions in drug development and for obtaining pharmaceutically acceptable
forms with the desired solubility, stability and advantages in processing [20]. By con-
trast, the intentional use of these fragments in the design of bioactive substances such as
drugs is rather unusual. The small molecule alkyl esters of sulfonic acids are known for
their genotoxic properties, and their residual level in an end product is strictly limited.
For example, the presence of ethyl methanesulfonate (EMS) resulted in the suspension of
the authorization for nelfinavir mesylate by the European Medicines Agency in 2007 [21].
However, when substituted with the more resistant aryl molecule, sulfonic acid esters
may afford an interesting group bioisosteric to the carboxyl or sulfonamide groups. Cy-



Cancers 2021, 13, 1790 3 of 24

clodisone (Figure 1II) is a sulfone that should be mentioned when discussing anticancer
drug design. This cyclic dithiepane derivative has been investigated as a DNA poison that
forms a DNA interstrand and DNA–protein crosslinks, which is a more typical activity
for the small molecular aliphatic sulfones [22,23]. Other aliphatic sulfones that should be
mentioned here are treosulfan and busulfan. Both of them are based on butane derivatives
and are used as typical alkylating agents in preparation for bone marrow transplantations
as their anticancer administration was limited by newer, less toxic drugs.

Unlike sulfonates, sulphonamides have become increasingly popular in medicinal
chemistry since they were introduced by G. Domagk in 1935 [24]. They have evolved
from antibacterial chemotherapeutics to a selective anticancer agent, of which the kinase
inhibitor pazopanib (Figure 1III) is a prime example. Although the sulphonamide group
is in pazopanib, which is an ornamentation of the terminal phenyl ring, its importance
has been revealed via its interaction with the target vascular endothelial growth factor
receptor (VEGFR) [25]. The sulfonamide derivatives of 6-phenyl-quinazoline (Figure 1IV)
have been described as being effective inhibitors of PI3K kinase with a similar level of
activity as dactolisib [26]. Its anticancer activity has been tested on a few cancer cell lines,
which confirmed its potential in a micromolar range (i.e., IC50 = 2.18 µM on A549 cells).
Indisulam (E7070; Figure 1V) is a bisulfonamide compound that interacts with cellular
dehydrogenases and destabilizes the mitochondrial redox control system, which causes
cell cycle arrest in the G1 phase and a delay in the G1/S cycle [27]. Recently, a second
phase of clinical trials for indisulam ended with a good overall outcome for patients
with leukemia that had a strong treatment history [28]. Some structural resemblance
can also be found in the carbazole [29] or benzimidazole [19] sulfonamide derivatives
(Figure 1VI,VII) that have recently been published. Both classes of these compounds caused
cell cycle arrest in the G2/M phase and apoptosis at low concentrations. An interesting
combination of sulfonate and sulfonamide is KN-62 (Figure 1VIII), which is an inhibitor of
Ca2+/calmodulin-dependent kinase type II (CaMKII). CaMK is a class of enzymes that are
activated by elevated levels of Ca2+ and are therefore responsible for promoting signaling in
a cell [30]. The first reports highlighted the importance of CaMKII in learning and memory
functions, while some benefits were also observed in research on the cardiac physiology.
Later, connections between CaMKII and cancer progression as well as its diagnosis and
treatment options were also highlighted [31].

In the present work, we propose the styrylquinazoline tosylates as potential scaffolds
for designing anticancer agents. As was mentioned earlier, when screening our interme-
diate sulfonate esters, we found some good antiproliferative activity against various cell
lines. Further investigation revealed an inhibitory activity on the tyrosine kinases and a
strong blocking activity on the cell cycle in the G2/M phase. A more in-depth mechanism
was studied in order to reveal its metabolic reaction on sulfonates, which were found to be
active. These results confirmed a strong anticancer activity especially against leukemia and
brain cancer. Thus, quinazoline sulfonates can be used as new, easily accessible scaffolds
for developing potent anticancer agents.

2. Results and Discussion
2.1. Synthesis of Sulfonic Styrylquinazolines

As was mentioned earlier, our approach was primarily focused on the styrylquinazoline
derivatives. During the synthetic works we obtained several sulfonic esters of 4-quinazolines
that were tested and evaluated for their antiproliferative potency. The general synthesis
pathways of the 1,3-benzodioxol-5-sulfonate (BS1-2) and 4-methylbenzenesulfonate (BS3-6)
derivatives are presented in Section 3.

The structures of the novel compounds (Figure 2) were confirmed using 1H and 13C
NMR spectroscopy and mass spectrometry, which is presented in the Supporting Information.
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2.2. Sulfonates Demonstrate Antiproliferative Activity toward Cancer Cell Lines

The ability of the newly synthesized compounds to inhibit the proliferation of the
human cancer cells was verified on a panel of seven cell lines with different genetic and
protein profiles. We focused on leukemia (K562), the colon wild type (HCT 116 p53+/+)
and one with a deletion of the TP53 gene (HCT 116 p53−/−), breast (MCF-7), lung (A549),
glioblastoma (U-251) and pancreatic (PANC-1) cancers. This panel represents some of the
most common types of cancers, and glioblastoma (GBM) and pancreatic adenocarcinoma
are extremely aggressive types of solid tumors with a poor prognosis and a five-year
survival rate of less than 5%. In order to characterize the selectivity towards normal
cells, we performed the experiments with healthy fibroblasts (NHDF) and calculated
the selectivity index (SI) (Supporting Information Table S1). As is presented in Table 1,
most of the synthetized compounds showed a good activity against the different types
of cancers with only a few exceptions. The K562 cells were the most vulnerable to the
tested compounds, which can at least be partly explained by their non-adhesive nature.
For this cell line, we detected the lowest IC50 value (0.078 µM) for BS3 with a chloride
substituent in the quinazoline ring that belongs to the 4-methylbenzenesulfonate group.
This activity was almost two-fold higher than the reference imatinib and 40-fold higher
than CP-31398. For the rest of the derivatives, the IC50 values were below 0.3 µM (0.172 µM
for BS1, 0.173 µM for BS4 and 0.246 µM for BS2) or below 3 µM (2.699 µM for BS6).
The BS5 derivative was moderately active (IC50 = 10.19 µM) on the K562 cells. Generally,
this 4-methylbenzenesulfonate derivative with a p-methoxy substituent in the phenyl
ring of the styryl moiety had the lowest activity for the other cell lines that were tested
(IC50 > 25 µM). Moreover, for the K562 cell line, we calculated the highest SI values: 144.51
for BS4 and 120.71 for BS3. For the rest of the active compounds, the SI values were high
as well: 72.91 for BS1 and 63.70 for BS2. No significant differences in the activity between
the HCT 116 p53+/+ and HCT 116 p53−/− cell lines were detected, which may suggest the
p53 independent mechanism of action. The colon cancer cell lines were second in their
susceptibility to the tested compounds. For four derivatives (BS1, BS2, BS3, BS4), the IC50
values were in the range of 0.239 µM (BS3) to 3.724 µM (BS4) and had high SI values
(in the range of 13.06–25.94). As was mentioned above, the p-methoxy substituent in the
phenyl ring of the styryl moiety (BS5) had a negative influence on the activity. A double
substitution of the methoxy substituent in the ortho and para positions (BS6) also did
not improve the activity. For the PANC-1 cell lines, the second IC50 value (0.097 µM)
for BS3 was also detected. This derivative also had a low toxicity towards the normal
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cells (SI = 97.06). Generally, the ortho substitution of the methoxy group in the phenyl
ring of the styryl moiety seems to be crucial for the activity. Very similar IC50 values
(range 1.757 µM to 2.303 µM) were obtained for the U-251 cell line for the four derivatives
with the o-methoxy substitution. The breast cancer cell line (MCF-7) was rather resistant
to the tested compounds. The lowest IC50 value was 4.599 µM for BS3. The A549 cell
line was the least vulnerable to the tested compounds. Only two representatives of the 4-
methylbenzenesulfonate group, the BS3 and BS4 derivatives, expressed a moderate activity
(IC50 = 7.65 µM and 11.34 µM, respectively). Generally, BS3 was the most active compound
on all of the tested cell lines. It is worth noting that most of the active compounds were
more active than the reference drugs, CP-31398 and imatinib.

Table 1. The antiproliferative activity of the studied compounds on a panel of human cancer cell lines and normal human
fibroblast cells.

No.
Activity IC50 Value [µM]

K562 HCT 116 p53+/+ HCT 116 p53−/− MCF-7 A549 U-251 PANC-1 NHDF

BS1 0.172 ± 0.034 0.880 ± 0.086 0.563 ± 0.121 8.325 ± 1.940 >25 1.897 ± 0.649 3.981 ± 0.597 12.540 ± 0.855
BS2 0.246 ± 0.055 1.200 ± 0.132 1.312 ± 0.290 16.760 ± 2.060 >25 2.303 ± 0.234 2.905 ± 0.622 15.670 ± 1.410
BS3 0.078 ± 0.027 0.363 ± 0.028 0.239 ± 0.030 4.599 ± 1.022 7.652 ± 0.987 1.757 ± 0.388 0.097 ± 0.030 9.415 ± 1.652
BS4 0.173 ± 0.031 1.567 ± 0.357 3.724 ± 0.487 9.128 ± 2.053 11.340 ± 1.760 1.907 ± 0.214 0.235 ± 0.042 >25
BS5 10.190 ± 0.819 >25 >25 >25 >25 >25 >25 >25
BS6 2.699 ± 0.519 >25 21.670 ± 1.185 9.791 ± 1.232 >25 >25 >25 >25

CP-31398 3.087 ± 0.360 18.63 ± 0.92 26.28 ± 1.41 26.96 ± 2.10 >25 18.77 ± 1.65 >25 12.26 ± 0.54
Imatinib 0.133 ± 0.030 44.55 ± 2.41 51.21 ± 4.09 >25 >25 >25 >25 >25

2.3. Sulfonates Modulate Tyrosine Kinases Activity

As was mentioned above, the sulfonic derivatives had an inhibitory potential against
the serine-threonine or lipid (PI3K) kinases. Additionally, in our previous work, we de-
scribed a novel series of 2-styrylquinazolines that had been designed as CP-31398 analogs,
which showed a significant ability to inhibit a panel of non-receptor tyrosine kinases [15].
Therefore, in this work, we also decided to examine the effect of all of the tested derivatives
on their activity on the ABL, BRK and BTK enzymes as well as five kinases from the Src fam-
ily. Generally, when the 4-tosylates derivatives were applied at a concentration of 0.5 µM,
they had moderate or weak inhibitory properties. Interestingly, all of the compounds
interacted with the BTK and Lck kinases in an inhibition range from 9% to 43% (see in
Table 2). It is worth noting that oncogenic BTK kinase is highly expressed in leukemia
cells, which may explain the susceptibility of these cells to the tested compounds to some
degree [32,33]. Moreover, several reports have shown that BTK kinase is an important
element of the cascade of the signal transduction from BCR-ABL through Lyn and Syk,
which leads to calcium release, cell proliferation and the activation of the NF-κB path-
way [34,35]. However, it is surprising that only one compound (BS1) was able to inhibit the
ABL enzyme, which plays a key role in CML development. On the other hand, it is worth
mentioning that recent studies have also shown BTK kinase might become a major target
in glioblastoma therapy [36,37]. Moreover a high expression of Lck kinase is involved
in regulating the processes of glioblastoma cell migration as well as tumor survival and
growth [38].

However, at a concentration of 0.5 µM, which is the level of activity for the active
compounds, only a partial kinase inhibition was observed (Table 2). Therefore, it can
be concluded that although our results indicate a high anticancer activity of the tosylate
derivatives on the U-251 cell line, it seems that their mechanism does not rely on an
interaction with the kinases. Therefore, we are convinced that the obtained derivatives
have a different, more complex molecular mechanism of action, which we decided to
investigate on two cell lines: leukemia (K562) and glioblastoma (U-251).
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Table 2. The anti-enzymatic activity of the tested styrylquinazolines against a panel of eight non-
receptor tyrosine kinases.

No.
Inhibitory Effect of the Tyrosine Kinase Activity [%] at 0.5 µM

ABL1 BRK BTK CSK Fyn A Lck Lyn B Src

BS1 28.39 15.30 18.80 0 23.68 25.78 0 0.19
BS2 0 9.33 40.18 34.25 0 9.93 37.96 26.32
BS3 0 26.46 30.66 0 34.07 42.65 0 2.73
BS4 0 35.45 26.89 28.30 3.51 19.50 0 0
BS5 0 20.23 8.59 20.10 0 11.20 0 0
BS6 0 0 17.95 21.14 62.60 37.26 0 0

CP-31398 10.02 34.70 36.83 0.98 30.65 27.87 47.10 15.73
Imatinib 77.17 0 0 0 0 0 0 0

2.4. Sulfonates Inhibit Cell Cycle Progression

We selected two candidates for a more in-depth analysis of the molecular mecha-
nism of action of the sulfonic styrylquinazoline derivatives. BS1 was selected from the
1,3-benzodioxol-5-sulfonate group and BS4 as the 4-methylbenzenesulfonate derivative.
Both are characterized by one of the highest anticancer activities among the tested com-
pounds as well as a high selectivity against normal cells. In the first step, we analyzed
the cell cycle distribution in the K562 and U-251 cells using a flow cytometer after a 24 h
treatment with the BS1 and BS4 derivatives at two different concentrations. As is presented
in Figure 3, we observed cell cycle arrest in the G2/M phase in both of the tested cancer cell
lines after incubation with the 4-tosylates. However, the susceptibility of the cells and the
strength of the response to these agents were slightly different. Namely, for the K562 cell
line, we noticed that BS1 at 0.35 µM caused a statistically significant increase in the percent-
age of cells in the G2/M phase from 27.78% (untreated control cells) to 43.46%, which was
accompanied by a decrease in the S and G0/G1 DNA content. Interestingly, the higher
concentration of BS1 caused a smaller increase in the percentage of cells arrested in the
G2/M phase (from 27.78% to 37.20%). In turn, the second tested derivative (BS4) caused
a significant increase in the fraction of G2/M cells in a concentration-dependent manner.
The greatest effect was observed for that had been cells exposed to 0.5 µM BS4, while the
percentage of cells in the G2/M phase increased to 58.73%. As was expected, there was a
decrease in the population of cells in the G0/G1 and S phases to 21.80% (from 49.82% in
the control cells) and 18.32% (from 25.34% in the control cells), respectively.

A similar but more profound behavior was observed in U-251, the second analyzed
cell line. As is presented in Figure 3II(B), the percentage of the cells that were arrested in the
G2/M phase increased in a concentration-dependent manner for both sulfonic derivatives.
For example, at 6 µM, BS1 caused a remarkable accumulation of cells in the G2/M phase
to 90.68% (from 27.78% in the untreated cells), which was accompanied by a significant
decrease in the number of cells in the G0/G1 and S phases to 1.52% (from 48.82% and 17.90%
in the control cells, respectively). Interestingly, the percentage of cells in the G2/M phase
was still very high (85.40%) when the U-251 cells were treated with the same derivative at a
4 µM concentration. It is noteworthy that the observed strong cell cycle arrest effect in the
G2/M phase by the BS1 derivative is greater than that of the antimitotic drug paclitaxel
(Figure S19 in the Supporting Information). Our experiments showed that paclitaxel in a
wide range of concentrations (0.13 µM to 2 µM) caused a strong increase in the fraction of
cells in the G2/M phase to about 69.9% (from 32.3% in untreated cells). In turn, for BS4,
there was a significant increase in the fraction of cells in the G2/M phase of about 40.92%
and 23.1% (compared to the control) at a 6 µM and 4 µM concentration, respectively.
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Figure 3. Effect of the treatment with the selected compounds (BS1, BS4) at various concentrations on regulating the cell
cycle in the K562 (I) and U-251 (II) cells. The representative histograms with the distribution of the cells in the respective
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using a one-way ANOVA with Bonferroni’s post-hoc test: * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001 compared to the
untreated cells (control) (C).

As was mentioned earlier, sulfonamide and sulfonic fragments are often used to de-
sign novel anticancer agents to improve their biological effectiveness. Among them, several
derivatives have shown interesting abilities for inhibiting carbon anhydrase, the HIF-1
pathway and the antimitotic properties against the cell cycle proteins and tubulin [39–42].
Interestingly, Shaik et al. also reported that quinazoline derivatives were microtubule-
disrupting agents [43]. Our results may suggest an interaction with the cell cycle proteins
such as the CDKs, cyclins, Auroras, which may cause a strong cell cycle arrest in the G2/M
phase. Moreover, the cell cycle arrest may be possibly, if not exclusively, associated with
the interaction with microtubules. This, in turn, changes the dynamics of their assembling,
which causes the observed cytotoxic effects. With this in mind, we performed in vitro
tubulin polymerization assay with BS1, BS4 and reference drugs: paclitaxel (enhancer of
tubulin polymerization) and nocodazole (inhibitor of tubulin polymerization). As is pre-
sented in Figure 4, we observed that both tested sulfonate derivatives can influence on
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tubulin polymerization process. In particular, the BS1 derivative caused a significant
enhancement of tubulin polymerization (increase about 47% in compare to control). Inter-
estingly, the observed effect was much stronger than that of the well-known enhancer of
this process, paclitaxel.
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Although antimitotic mechanism of action of paclitaxel is well established, it can also
cause G1 arrest at low concentrations [44]. This can be partially connected with metabolic
checkpoints arrest that is triggered downstream the mTOR pathway [45,46]. Glutamine de-
privation was proposed as mechanism of G1 or S-phase arrest. Interestingly no similar
effect can be observed in case of BS1 or BS4. These observations reveal also potentially
valuable direction of further investigation of use benzenesulfonates in combination with
other cell cycle targeted drugs.

2.5. Sulfonates Induce Apoptosis and Autophagy

In further experiments, we decided to explore the type of cell death that was induced
by derivatives that were tested. Firstly, we performed apoptosis assays, which were
based on the quantitative measurements of the green fluorescence that was emitted by
the damaged cells, which had previously been labeled with FITC dye conjugated with
the Annexin V protein. This protein has a high affinity for phosphatidylserine, which is
translocated from the inner face of the plasma membrane to the cell surface soon after
the initiation of apoptosis. In the leukemia cells, the percentage of apoptotic cells after
they had been exposed to BS1 and BS4 increased in a concentration-dependent manner
(Figure 5I). However, the population of cells in which the apoptosis process was initiated
was relatively low. For the highest applied concentration of the tested tosylates, 5 µM,
we observed a significant increase in the number of total (early and late) apoptotic cells
from 5.56% (in the control cells) to 31.99% for BS1 and 26.51% for BS4. In turn, for the
lowest concentrations of both compounds (0.5 µM and 0.35 µM), the percentage of the total
apoptotic cell population did not exceed 16%.

On the other hand, we registered a slightly different situation for the glioblastoma
cells (Figure 5II). The highest effect was observed when cells were exposed to BS1 at
a 6 µM concentration, in which there was a significant increase the percentage of early
apoptotic cells to 39.80% (from 4.60% in the untreated cells) and late apoptotic cells to
11.40% (from 3.36% in the control cells). The second analyzed derivative at 6 µM caused a
significant increase in the percentage of early apoptotic cells to 17.44% and late apoptotic
cells to 10.37%. A very similar effect was observed for a lower concentration.
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Figure 5. Assessment of the effect on the induction of apoptosis in the K562 (I) and U-251 (II) cells after a 48 h incubation with
the tested compounds (BS1, BS4) at various concentrations. The representative histograms from one of several independent
experiments include the percentage of live and apoptotic cells (A). The table contains the mean ± SD percentage of the live,
early and late apoptotic cells from all of conducted experiments (B). Data chart with the statistical analysis using a one-way
ANOVA with Bonferroni’s post-hoc test: * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001 compared to the untreated cells
(control) (C).

Importantly, the effect of antimitotic drugs on the disruption of organization and
stabilization of tubulin can induce a mitotic catastrophe. Additionally, a prolonged state of
mitotic arrest may lead to cell death via a p53-dependent apoptosis, which is associated
with the mitochondria signaling pathway [47].

The interesting differences in the behavior of the compounds and the degree of behav-
ior induction of apoptosis on the studied cell lines prompted us to consider the possibility
of activating another type of cell death. Additionally, several reports have indicated that
sulfonamide derivatives are able to induce cell death via autophagy [48,49]. Autophagy,
like apoptosis, is regarded as being an essential mechanism in maintaining cellular home-
ostasis. This process is necessary for removing damaged molecular structures, organelles
or protein aggregates, which enables macromolecules to be recycled in order to sustain
proper cell function and metabolism [50]. In turn, in the case of long-term cellular stress
or the influence of the factors that lead to continuous or excessively induced autophagy,
cell death may be triggered [51–53]. Therefore, the pro-death and pro-survival functions of
autophagy can indicate a new direction for the design of novel anticancer compounds [54].
Many reports have also indicated that inducing autophagy may be a solution to the problem
of treating apoptosis-resistant cancers such as pancreatic cancers and glioblastoma [55,56].



Cancers 2021, 13, 1790 10 of 24

Additionally, when autophagy is triggered, it may disrupt the chemokine-mediated mi-
gration and invasion in GBM cells [57]. To evaluate the ability of the tested 4-tosylates to
induce autophagy cell death, we performed an assay, which was based on staining the
cells with the anti-LC3 Alexa Fluor555 conjugated antibody. The LC3-II protein, which is
generated via the conjugation of cytosolic LC3-I to phosphatidylethanolamine, which is
then embedded on both sides of the autophagosomal membrane, is a characteristic marker
of autophagosomes. The LC3-II expression is strictly correlated with the number of au-
tophagic vesicles [58]. As is presented in Figure 6, patterns of autophagy induction are
visible in both of the analyzed cell lines. For the leukemia cells, we recorded a statistically
significant increase in the expression of the LC3 protein after 24 h and 48 h treatments
with BS1. The calculated autophagy induction ratios were 2.26 and 1.96, respectively,
compared to the control cells. A similar result was observed for the positive control, ima-
tinib, after a 24 h incubation (ratio = 2.33). On the other hand, we observed a strong effect
on autophagosome formation and autophagy induction after a 24 h treatment with both
of the tested derivatives in the glioblastoma cell line. The BS4, for which the calculated
autophagy ratio was 5.03, had the higher effect.
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Figure 6. Assessment of the effect on inducing autophagy in the K562 (I) and U-251 (II) cells after a 24 and 48 h incubation
with the tested compounds (BS1, BS4) at various concentrations. The representative histograms from one of several
independent experiments include the autophagy induction profile (A). The autophagy induction ratio chart with the
statistical analysis using a one-way ANOVA with Bonferroni’s post-hoc test: ** p < 0.01, **** p < 0.0001 compared to the
untreated cells (control) (B). The table contains the mean ± SD percentage of the autophagy induction ratio from all of
conducted experiments (C).
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To summarize, these results suggest that the sulfonic derivatives have the ability to
induce apoptosis and the autophagy pathways. The dual activation of programmed cell
death may help to overcome multidrug resistance in several types of cancers.

2.6. Sulfonates Change Expression of Genes and Proteins Associated with Cell Metabolism,
Cell Cycle and Cell Death

To further clarify the molecular mechanism of action of the sulfonic styrylquinazolines,
we examined their influence on the mRNA and protein expression associated with cell
metabolism, progression of cell cycle and cell death induction via apoptosis and autophagy.
The results from the qRT-PCR experiments are presented in Figure 7, and the immunoblot-
ting in Figures 8 and 9. At the mRNA level, we primarily investigated the effect of the
tested tosylates on altering the expression of IDH1, GADD45, calreticulin, LC3 and p62.
In turn, at the protein level, we mainly explored the cell cycle (p53, p21, cyclin E1, cdc2)
and apoptosis (BID, caspase, PARP) targets.
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Figure 7. mRNA expression of selected genes, IDH1 (A), GADD45 (B), calreticulin (C), p62 and LC3 (D), in the K562 (I)
and U-251 (II) cells after incubation with tested compounds (BS1, BS4) at various concentrations. Data are shown as the
mean ± SD of several independent measurements. The statistical analysis was performed using a two- (A,D) or one-way
ANOVA (B,C) with Bonferroni’s post-hoc test: * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001 compared to the untreated
cells (control).

The qRT-PCR analysis revealed that the tested compounds caused a statistically
significant decrease in the expression of IDH1 in the K562 cells (Figure 7I(A)). In detail,
we observed an almost 2.4-fold decrease in the IDH1 level for BS1 at 0.5 µM and about
a two-fold decrease for BS4 (0.5 µM and 0.35 µM). In the glioblastoma cells, there was a
decrease in the IDH1 mRNA expression, although to a lesser extent. The change in this
transcript’s level was related to the influence of the sulfonic styrylquinazolines on the
overall cellular metabolism and the inhibition of cell proliferation and growth. This is
supported by several reports, which revealed the potency of the sulfonamide analogs as
mutant IDH1 or dual IDH1/ABL inhibitors [32,59,60]. It is worth noting that a decreased
IDH1 expression may prevent the overproduction of onco-metabolites, which can usually
positively regulate the HIF pathways that are involved in angiogenesis, invasion and
metastasis [61]. Our results showed that both BS1 and BS4 caused a significant decrease
in the expression of the HIF-1α protein in the glioblastoma cells (Figure 8). In turn, in the
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leukemia cells, the protein did not activate and was undetectable when the Western blot
method was used.
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are associated with cell cycle, apoptosis and oxidative stress in the U-251 cells (A). The densitometric analysis charts of
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using a one-way ANOVA with Bonferroni’s post-hoc test: * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001 compared to the
untreated cells (control, Ctr).

The tested sulfonic styrylquinazoline derivatives contributed to cell cycle arrest in
the G2/M phase. In the glioblastoma cell line, this effect was much greater than in the
K562. To a large extent, this behavior is desirable due to the brisk mitotic activity, the high
rate of tumor growth, the abnormal activity of the cell division regulators and, lastly,
the genome instability that characterizes the GBM cells [62,63]. One of the key molecular
nodes between several critical pathways including the aforementioned cell cycle as well
as apoptosis, DNA repair and cellular senescence is the p53 protein. It is known as the
guardian of the genome and is essential for normal cellular homeostasis and for maintaining
genome integrity. It is worth mentioning that the U-251 cells contain a missense point
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mutation in the TP53 gene, which results in a change of arginine into histidine at codon
273. Therefore, the mutated p53 protein loses its tumor suppression function and can enter
into new interactions with other genes and transcription regulators [64]. On the other
hand, literature data indicate that the K562 cell line does not express the wild-type p53
protein. The loss of one allele and an insertion mutation in exon 5 of the second allele
produces a truncated form of the p53 protein with 148 amino acids [65]. This mutated form
inactivates p53 and can lead to the development of drug resistance to treatment as well as
to the suppression of apoptosis and progression into the blastic phase [66]. With this in
mind, we determined the influence of the two tested tosylates on the p53 expression and
its downstream targets. For the U-251 cells, there was a statistically significant increase
in the p53 levels after the treatment with BS4. Interestingly, a similar styrylquinazoline,
CP-31398, exhibited a potency in restoring the sequence-specific DNA-binding ability of
the p53–273H mutant, which induced a pro-apoptotic response [67]. In turn, the second
analyzed derivative, BS1, caused a slight increase in the expression of this protein. In the
leukemia cells, there was no p53 activation as was expected. These results suggest that
the p53-dependent and p53-independent mechanisms of apoptotic cell death pathway are
activated by the sulfonic styrylquinazolines.
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(control, Ctr).
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Other important molecules that interact with the p53 protein in cell cycle arrest in the
G2/M phase are GADD45 and p21CIP/WAF1. As can be assumed, due to the differences
in the p53 protein activation, the behavior of the U-251 and K562 cells that had been
incubated with the tested derivatives was quite different. Namely, at 4 µM both BS1 and
BS4 caused an almost 1.5-fold increase in the GADD45α expression in the glioblastoma
cells (Figure 7). The situation was reversed for the leukemia cells, in which there was
an almost two-fold decrease in the GADD45α mRNA expression for BS4 at the higher
concentration of 0.5 µM. A similar result was recorded for BS1 at 0.5 µM, while much
smaller differences were observed for both compounds at lower concentrations. As was
mentioned above, GADD45 may be regulated by the p53 protein and plays a key role in
the G2/M checkpoint in response to DNA damage. Several reports have indicated that
GADD45 may inhibit the nuclear cyclin B1 protein expression, which is correlated with the
activity of the cdc2/cyclin B1 complex as well as the cdc2 activity itself [68]. Surprisingly,
our results showed an increase in the cdc2 protein expression after the incubation with
4-tosylates. A strong effect was observed for both compounds in the U-251 cells in which
the cdc2 levels were increased by more than two-fold (Figure 8). There was a significantly
enhanced cdc2 level in the K562 cells, which was responsible for entering mitosis after
incubation with BS4 at 0.35 µM (Figure 9). One explanation for this phenomenon may
be related to the disorganization and damage to the microtubules that can be caused by
the factors that stabilize or destabilize their polymerization. For example, Chadebech et al.
indicated that an enhancer of tubulin polymerization, paclitaxel, may increase the cdc2
levels and prevent cyclin B degradation [69]. Another nocodazole may induce mitotic
prometaphase arrest by up-regulating the cdc2 levels [70]. Moreover, prolonged mitotic
arrest and cdc2 accumulation have also previously been reported elsewhere [71]. In ad-
dition, both GADD45 and p53 can interact with the p21CIP/WAF1 protein, which plays a
dual role in determining cell fate. Several reports have indicated that an increase in the
p21 accumulation may lead to the activation of apoptosis signaling via p53-dependent or
p53-independent pathways [67,72]. Moreover, Zhong et al. revealed that the induction of
cell cycle arrest in the G2/M phase by the known CP-31398 was attributable to the p21
activation [73]. In our experiments, an enhancement of the p21 level was only observed
in the U-251 cells (Figure 8). The greatest effect was observed for the BS4 compound,
which caused a more than two-fold increase in its expression. In the leukemia cells, the p21
protein level was undetectable when the Western blot technique was used. On the other
hand, there was a significant activation of the cyclin E1 protein in the K562 cells after the
incubation with BS1 and BS4 at 0.35 µM (Figure 9). Contrarily, we recorded an almost
two-fold decrease in the expression of cyclin E1 in the U-251 cell line after treatment with
both derivatives (Figure 8). It is worth noting that modulating the cyclin E1 expression
leads to cell cycle arrest or triggers apoptosis as has been reported elsewhere [51,74].

To confirm our earlier results from the autophagy experiments using flow cytometry,
we further explored three other molecules LC3, p62 and calreticulin at the mRNA level.
As is shown in Figure 7, we observed a more than two-fold increase in the expression of
LC3 in the U-251 cells after treatment with both the BS1 and BS4 derivatives. In the second
analyzed cell line, although there was no increase in the LC3 transcript levels, the LC3
levels decreased after the incubation with BS4 at 0.35 µM. The situation was different for
the p62 gene, which was activated in both cancer cell lines. Namely, we recorded an almost
four-fold increase in the p62 expression when the U-251 cells were exposed to 4 µM BS1 and
6 µM BS4. In those leukemia cells, there was a similar increase (about three-fold) in the p62
level after incubation with BS1 at 0.5 µM. These changes may be related to the extremely
highly dynamic autophagic process that is initiated by the interplay of the PI3K/Beclin1
complex, Atg5–Atg12 and LC3-phosphatidylethanolamine, which results in the formation
of an autophagosomal vesicle after which the p62 receptor, whose role is to selectively target
and shuttle proteins/organelles into the autophagosome, is activated [75,76]. In addition,
the autophagosome formation may be enhanced by the interaction of calreticulin with the
LC3 [77]. Our results show more than a two-fold increase in the calreticulin levels in the
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U-251 cells after incubation with both tosylates. By contrast, there were no changes in
the calreticulin expression in the K562 cell line, except for incubation with BS4 at 0.35 µM.
However, these results might correlate well with the greater autophagy induction in
glioblastoma than in the leukemia cells.

In the final phase of autophagy, the autophagosome is fused with the lysosome,
which results in the degradation of any unwanted material by the hydrolases. Inside the
lysosomes, cathepsin b, which is normally involved in autophagy, occurs due to the acidic
environment. However, when released from the lysosome into the cytoplasm, it can
activate the apoptotic pathway through a BID cleavage and cytochrome c release from
the mitochondria [78]. Surprisingly, both 4-tosylates increased the accumulation of pro-
cathepsin b (44 kDa) in the U-251 cells but did not modify the expression level of cathepsin
b (27 and 24 kDa) (Figure 8). There were significant fluctuations in the total BID levels after
incubation with BS1 and BS4 for both of the tested cell lines (Figures 8 and 9).

Additionally, we explored the targets that are directly associated with apoptosis in-
duction: caspase-9, AIF and PARP. Our results indicate that the cleavage of caspase-9,
which initiates apoptosis, was induced after incubation with the tested derivatives in
the U-251 and K562 cell lines. In detail, there was an approximately three-fold increase
in the expression of the cleavage product of caspase-9 after the U-251 cells were treated
with BS1 (4 µM) and BS4 (6 µM) (Figure 8). In the K562 cell line, the observed effect
was greater; BS1 at 0.35 µM caused a more than six-fold increase in the level of cleavage
caspase-9 proteins (Figure 9). Interestingly, in the leukemia cells, there was a significant
increase in the AIF protein expression, which is a caspase-independent apoptosis death
effector. In the case of glioblastoma, the AIF protein was not activated. The last examined
protein was PAPR, which is responsible for DNA repair as well as in transcriptional regula-
tion or chromatin remodeling. This molecule is cleaved and inactivated by the caspases,
which leads to cell disintegration followed by the activation of apoptosis. As was expected,
the cleavage product of PARP was present in the analyzed U-251 and K562 cell lines after
they had been incubated with BS1 and BS4. To summarize, the sulfonic styrylquinazo-
lines are capable of activating the p53-dependent or p53-independent apoptosis pathway.
Additionally, they can induce apoptosis via effectors that act in a caspase-dependent or
independent manner.

3. Materials and Methods

The 1H and 13C NMR spectra were recorded on a Brucker 500 (126 MHz) spectrom-
eter. The chemical shifts are reported in ppm (δ) relative to TMS with the respective
solvent resonance as the internal standard, (CD3)2SO δ 2.50 and 40.03 ppm, respectively.
Coupling constants < 0.5 Hz were not taken into account when determining multiplicity.
The samples were prepared in concentrations in the range 5–10 mM. The representative
preparation protocols of the precursors were published elsewhere.

3.1. Synthesis

The 2-[(E)-2-phenylethenyl]quinazolin-4(3H)-one precursors were synthesized by con-
densing aromatic aldehydes (2 mmol) with a 2-methyl-4(3H)-quinazolinone core (1 mmol).
The reactions were conducted in acetic acid (3 mL, 99.5%) under microwave irradiation
(sealed vial, 80 W, 140 ◦C, 90 min) after which the vial was cooled, and the precipitate
was separated via filtration and washed with 2-propanol. The target compounds were
synthesized according to a modified procedure that had been reported in our previous
work [15] or that had been published elsewhere [79]. Generally, N,N-diisopropylethylamine
(26 mg, 0.4 mmol), benzenesulfonic chloride (0.4 mmol) and 4-dimethylaminopyridine
(2 mg, 0.02 mmol) were added to a suspension of 2-[(E)-2-phenylethenyl]quinazolin-4(3H)-
one precursor (0.2 mmol) in 2 mL of CH2Cl2. The reaction mixture was stirred at room
temperature until the mixture had become homogenous or until the substrate had disap-
peared (TLC). The reactions were quenched by adding the solution to 20 mL of 2-propanol.
The precipitate was collected, washed with two portions (2 mL) of alcohol and dried under
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a stream of argon. The general synthesis pathways of the sulfonic derivatives are presented
in Figure 10.
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(BS1) 2-((E)-2-(2-methoxyphenyl)ethenyl)quinazolin-4-yl 1,3-benzodioxole-5-sulfonate 1H
NMR (500 MHz, (CD3)2SO) δ 8.26 (d, J = 16.2 Hz, 1H), 8.15 (dd, J = 8.0, 1.5 Hz, 1H),
7.89 (ddd, J = 8.5, 7.2, 1.6 Hz, 1H), 7.73 (dd, J = 8.3, 1.1 Hz, 1H), 7.63 (dd, J = 7.8,
1.7 Hz, 1H), 7.56 (ddd, J = 8.1, 7.1, 1.1 Hz, 1H), 7.47 (ddd, J = 8.8, 7.4, 1.7 Hz, 1H),
7.17 (d, J = 8.4 Hz, 1H), 7.15 (d, J = 16.3 Hz, 1H), 7.13 (dd, J = 8.0, 1.7 Hz, 1H), 7.08 (td,
J = 7.5, 1.0 Hz, 1H), 7.04 (d, J = 1.6 Hz, 1H), 6.83 (d, J = 8.0 Hz, 1H), 6.01 (s, 2H),
3.94 (s, 3H); 13C NMR (126 MHz, (CD3)2SO) δ 161.16, 158.94, 154.16, 147.71, 146.93,
143.74, 143.06, 139.23, 136.01, 133.18, 129.90, 127.84, 126.88, 123.54, 123.01, 121.53,
120.59, 119.88, 117.78, 112.61, 107.61, 106.72, 101.55, 56.28; HRMS (ESI) calcd for
C24H18N2O6S [M − H]− 461.0813; found 461.0821; m.p. 223–225 ◦C.

(BS2) 2-((E)-2-(2-methoxyphenyl)ethenyl)quinazolin-4-yl 6-bromo-1,3-benzodioxole-5-
sulfonate 1H NMR (500 MHz, (CD3)2SO) δ 8.18 (ddd, J = 8.3, 1.5, 0.7 Hz, 1H), 8.08 (ddd,
J = 8.4, 6.9, 1.4 Hz, 1H), 8.01 (appdt, J = 8.4, 1.0 Hz, 1H), 7.92 (d, J = 16.1 Hz, 1H),
7.86 (s, 1H), 7.78 (ddd, J = 8.1, 6.9, 1.2 Hz, 1H), 7.70 (dd, J = 7.7, 1.7 Hz, 1H), 7.62 (s, 1H),
7.41 (ddd, J = 8.9, 7.3, 1.7 Hz, 1H), 7.26 (d, J = 16.0 Hz, 1H), 7.13 (dd, J = 8.4, 1.1 Hz,
1H), 7.03 (apptd, J = 7.5, 1.1 Hz, 1H), 6.12 (s, 2H), 3.95 (s, 3H); 13C NMR (126 MHz,
DMSO) δ 162.00, 158.43, 152.80, 148.39, 146.40, 141.67, 135.23, 132.10, 128.99, 126.86,
126.46, 123.66, 121.39, 121.27, 113.80, 112.41, 111.15, 109.47, 102.45, 56.16; HRMS (ESI)
calcd for C24H17BrN2O6S [M + H]− 541.0063; found 541.0079; m.p. 149–151 ◦C.

(BS3) 7-chloro-2-((E)-2-(2-methoxyphenyl)ethenyl)quinazolin-4-yl 4-methylbenzenesulfonate
1H NMR (500 MHz, (CD3)2SO) δ 8.19 (d, J = 16.2 Hz, 1H), 8.09 (d, J = 8.5 Hz, 1H),
7.74 (d, J = 2.0 Hz, 1H), 7.61 (dd, J = 7.7, 1.9 Hz, 1H), 7.50 (dd, J = 8.5, 2.1 Hz, 1H),
7.49–7.46 (m, 2H), 7.43 (ddd, J = 8.9, 7.5, 1.8 Hz, 1H), 7.14 (d, J = 8.2 Hz, 1H), 7.13–7.10
(m, 2H), 7.08 (d, J = 16.2 Hz, 1H), 7.04 (appt, J = 7.3 Hz, 1H), 3.92 (s, 2H), 2.29 (s, 3H);
13C NMR (126 MHz, (CD3)2SO) δ 161.64, 158.38, 153.86, 150.28, 146.25, 139.60, 138.04,
135.35, 132.05, 128.88, 128.51 (2H), 128.42, 126.76, 126.33, 125.97 (2H), 128.51, 123.65,
121.37, 121.18, 120.25, 112.38, 56.14, 21.25; HRMS (ESI) calcd for C24H19ClN2O4S
[M − H]− 465.0681; found 465.0685; m.p. 196–197 ◦C.

(BS4) 2-((E)-2-(2-methoxyphenyl)ethenyl)quinazolin-4-yl 4-methylbenzenesulfonate 1H
NMR (500 MHz, (CD3)2SO) δ 1H NMR (500 MHz, DMSO) δ 8.26 (d, J = 16.3 Hz, 1H),
8.14 (dd, J = 8.0, 1.5 Hz, 1H), 7.88 (ddd, J = 8.5, 7.1, 1.6 Hz, 1H), 7.73 (dd, J = 8.3, 1.1 Hz,
1H), 7.63 (dd, J = 7.7, 1.7 Hz, 1H), 7.56 (ddd, J = 8.1, 7.1, 1.1 Hz, 1H), 7.49–7.47 (m, 2H),
7.47 (ddd, J = 6.9, 1.8 Hz, 1H), 7.17 (dd, J = 8.4, 1.1 Hz, 1H), 7.15 (d, J = 16.4 Hz, 1H),
7.13–7.11 (m, 1H), 7.08 (td, J = 7.5, 1.0 Hz, 1H), 3.94 (s, 3H), 2.29 (s, 3H); 13C NMR
(126 MHz, (CD3)2SO) δ 161.40, 159.96, 158.05, 153.16, 146.79, 136.23, 134.66, 131.60,
130.57, 129.26, 128.99, 128.40, 128.10, 127.13, 124.08, 123.55, 121.34, 114.50, 112.24,
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56.24, 21.70; HRMS (ESI) calcd for C24H21N2O4S [M − H]− 431.1070; found 431.1068;
m.p. 168–169 ◦C.

(BS5) 2-((E)-2-(4-methoxyphenyl)ethenyl)quinazolin-4-yl 4-methylbenzenesulfonate 1H
NMR (500 MHz, (CD3)2SO) δ 8.16 (dd, J = 8.0, 1.5 Hz, 1H), 8.12 (d, J = 16.3 Hz, 1H),
7.92 (ddd, J = 8.5, 7.2, 1.5 Hz, 1H), 7.73 (d, J = 7.5 Hz, 1H), 7.69–7.64 (m, 2H), 7.60 (ddd,
J = 8.1, 7.2, 1.1 Hz, 1H), 7.52–7.48 (m, 2H), 7.13 (dd, J = 8.5, 0.8 Hz, 2H), 7.10–7.06 (m,
2H), 6.91 (d, J = 16.3 Hz, 1H), 3.84 (s, 3H), 2.29 (s, 3H); 13C NMR (126 MHz, (CD3)2SO)
δ 161.80, 160.20, 153.64, 145.17, 143.61, 142.35, 137.76, 135.42, 130.17, 127.95, 127.23,
126.56, 126.31, 125.36, 122.21, 119.72, 114.76, 113.19, 55.36, 20.56. HRMS (ESI) calcd for
C24H20N2O4S [M + H]− 433.1217; found 433.1214; m.p. 176–178 ◦C

(BS6) 2-((E)-2-(2,4-dimethoxyphenyl)ethenyl)quinazolin-4-yl 4-methylbenzenesulfonate
1H NMR (500 MHz, (CD3)2SO) δ 8.18–8.14 (m, 2H), 8.09 (ddd, J = 8.2, 1.4, 0.7 Hz,
1H), 8.03 (ddd, J = 8.2, 7.0, 1.4 Hz, 1H), 8.01 (d, J = 16.2 Hz, 1H), 7.95 (appdt, J = 8.5,
1.0 Hz, 1H), 7.72 (ddd, J = 8.2, 7.0, 1.2 Hz, 1H), 7.69 (d, J = 8.6 Hz, 1H), 7.53 (m, 2H),
7.15 (d, J = 16.0 Hz, 1H), 6.70 (d, J = 2.4 Hz, 1H), 6.65 (dd, J = 8.5, 2.4 Hz, 1H), 3.99 (s,
3H), 3.86 (s, 3H), 2.42 (s, 3H); 13C NMR (126 MHz, DMSO) δ 162.57, 161.29, 160.38,
159.53, 153.25, 146.74, 136.14, 134.75, 133.52, 130.55, 129.80, 129.23, 128.63, 127.95,
124.48, 123.52, 117.06, 114.32, 106.69, 98.96, 56.33, 55.96, 21.71; HRMS (ESI) calcd for
C25H23N2O5S [M + H]− 463.1322; found 463.1325; m.p. 178–180 ◦C.

3.2. Cell Culture

The human colon carcinoma cell line HCT 116 wild type (p53+/+), the human breast
carcinoma cell line MCF-7 and the human alveolar basal epithelial cell line A549 were ob-
tained from ATCC. The human colon cancer cell line HCT 116 with a p53 deletion (p53−/−)
was kindly supplied by prof. M. Rusin from the Maria Sklodowska-Curie Memorial Cancer
Centre and Institute of Oncology in Gliwice, Poland. The glioblastoma cell line U-251
was kindly provided by prof. G. Kramer-Marek from the Institute of Cancer Research in
London, United Kingdom. The human suspension chronic myelogenous leukemia cell
line K562 and pancreas ductal adenocarcinoma cell line PANC-1 were purchased from
Sigma-Aldrich (St. Louis, MO, USA), while the normal human dermal fibroblasts cell line
NHDF were purchased from PromoCell. All of the adherent cancer cell lines were cultured
in Dulbecco’s modified Eagle’s medium (DMEM) that had been supplemented with 12%
heat-inactivated fetal bovine serum–FBS (all from Sigma-Aldrich) in 75 cm2 flasks (Nunc).
The suspension cell line K562 was cultured in an RPMI-1640 medium (Sigma-Aldrich),
which contained 10% heat-inactivated FBS. The DMEM for the NHDF was supplemented
with 15% non-inactivated FBS. Each medium contained a combination of two antibiotics:
penicillin and streptomycin (1% v/v; Gibco). All of these cell lines were grown under
standard conditions at 37 ◦C with a 5% CO2 humidified atmosphere. Moreover, all of the
cell lines were routinely tested for mycoplasma using the PCR technique with specific
Mycoplasma primers to confirm that there was no contamination.

3.3. Cytotoxicity Studies

The cells were seeded in 96-well plates (Nunc) at a density of 5000 cells per well (K562,
HCT 116, MCF-7, U-251, A549, PANC-1) or 4000 cell per well (NHDF) and incubated
under standard conditions at 37 ◦C for 24 h. The assay was performed following a 72 h
incubation with the various concentrations of the tested compounds. Then, 100 µL DMEM
without phenol red with 20 µL of the CellTiter 96®AQueous One Solution-MTS (Promega,
Promega, WI, USA) was added to each well and incubated for 1 h or 3 h (PANC-1) at 37 ◦C.
The optical densities of the samples were measured at 490 nm using a multi-plate reader
(Synergy 4, BioTek, Winooski, VT, USA). The obtained results were compared to the control
and were estimated as the inhibitory concentration (IC50) values (using GraphPad Prism
8). Each individual compound was tested in triplicate in a single experiment with each
experiment being performed three or four times.
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3.4. Tyrosine Kinase Assay

Assays using the Kinase Selectivity TK-2 profiling systems and ADP-Glo Kinase Assay
(both from Promega) were performed to determine the inhibition of the non-receptor
tyrosine kinases. The protocol was previously designed and described by our group
in reports [15,80]. The experiments were performed at least four times. The data are
expressed as the percentage of the inhibition activity of tyrosine kinase after treatment with
the tested derivatives.

3.5. Cell Cycle Assay

The K562, U-251 and NHDF cells were seeded in 3 cm Petri dishes (Nunc) at a density
of 250,000 cells per well and incubated under standard conditions at 37 ◦C for 24 h. Then,
the medium was removed, and freshly prepared solutions of the tested compounds, BS1,
BS4 (two to three times the IC50 value) and paclitaxel (0.13 µM; 0.26 µM; 0.5 µM, 1 µM
and 2 µM) were added. After a 24 h treatment, the assays were performed using a Muse
Cell-Cycle Kit (Millipore, Burlington, MA, USA) according to the supplier’s instructions.
Briefly, the cells were collected, washed with cold PBS and centrifuged at 300 g for 5 min.
Afterwards, the cells were fixed in ice cold 70% ethanol and stored at −20 ◦C overnight.
The next day, the cells were washed with cold PBS, centrifuged and resuspended in
200 µL of the Muse™ Cell Cycle Reagent. The samples were incubated for 30 min at room
temperature in the dark. After staining, the cellular subpopulation values in the individual
cell cycle phases were estimated using a cell cycle analysis using a Muse Cell Analyzer
(Millipore). The experiments were performed at least four times.

3.6. Tubulin Polymerization Assay

The effect of small-molecule compounds on tubulin polymerization was monitored
using an In Vitro Tubulin Polymerization Kit (≥99% Pure Bovine Tubulin) (Millipore)
following the manufacturer’s protocol. Briefly, the tested compounds, BS1 and BS4, as well
as reference drugs, paclitaxel (enhancer of polymerization) and nocodazole (inhibitor of
polymerization) at a concentration of 10 µM were mixed with purified bovine tubulin
(60 µM) and polymerization buffer with GTP (1 mM) on 96-well plate on ice. Then,
the plate was transferred into the multi-plate reader (Synergy 4) chamber (heated to 37 ◦C)
and measured the turbidity variation every 30 s at 350 nm during 90 min. The experiments
were performed three times.

3.7. Annexin V Binding Assay

The K562, U-251 and NHDF cells were seeded in 3 cm Petri dishes (Nunc) at a density
of 250,000 cells per well and incubated at 37 ◦C for 24 h. Then, the medium was removed,
and freshly prepared solutions of the tested compounds, BS1 and BS4 (two to three times
the IC50 value), were added. After a 48 h incubation, the assays were performed using
a FITC Annexin V Apoptosis Detection KIT with 7-AAD (Bio-Legend) according to the
manufacturer’s instructions. Briefly, the cells were collected, washed twice with cold PBS
and centrifuged at 300 g for 5 min. Next, the cells were resuspended in a 100 µL Annexin
V Binding Buffer and incubated for 15 min at room temperature in the dark with 5 µL
of FITC Annexin V and 5 µL 7-AAD Viability Staining Solution. After immunostaining,
the number of events for live, early and late apoptotic cells were determined using a Muse
Cell Analyzer. The experiments were performed at least four times.

3.8. Autophagy Assay

The K562 and U-251 cells were seeded in 96-well plates (Nunc) and incubated at 37 ◦C
for 24 h. The density of the cells was 20,000 cells per well (for the 24 h assay) and 10,000 per
well (for the 48 h assay). Next, the medium was changed for freshly prepared solutions of
the tested compounds (BS1, BS4) at 0.5 µM (for K562) and 4 µM (for U-251) concentrations,
and the cells were incubated for 24 h or 48 h, respectively. Additionally, the cells were
treated with imatinib (0.4 µM for K562 and 25 µM for U-251) as the positive control.
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After treatment, the assays were performed using a Muse™ Autophagy LC3-antibody
based kit (Millipore) according to the manufacturer’s instructions. Briefly, the cells were
collected, washed with cold HPBS and centrifuged at 300 g for 5 min. Then, the cells
were resuspended in a mixture of 95 µL 1X Autophagy Reagent B and 5 µL Anti-LC3
Alexa Fluor® 555 antibody. The samples were incubated on ice for 30 min in the dark.
After incubation, the cells were centrifuged and resuspended in 200 µL of a 1X Assay Buffer.
Then, the samples were directly processed to analyze the autophagy induction using a
Muse Cell Analyzer. The autophagy induction ratio was calculated on the basis of the ratio
between the target sample fluorescence versus the control sample. The experiments were
performed at least three times.

3.9. Analysis of the mRNA Expression

The K562 and U-251 cells were seeded in 3 cm Petri dishes (Nunc) at a density of
500,000 cells per well and incubated overnight, after which the cells were incubated with
freshly prepared solutions of the tested compounds (BS1, BS4, two to three times the IC50
value) for 24 h. The total RNA was isolated from the K562 and U-251 cells using the TRIzol
Reagent procedure (Ambion, Austin, TX, USA). Reverse transcription was performed with
5 µg of total RNA using a GoScript™ Reverse Transcriptase kit (Promega) and Oligo(dT)23
Primers (Sigma). Real-time PCR was performed using a CTX96 Touch™ Real-Time PCR
Detection System (Biorad, Hercules, CA, USA) in a 20 µL reaction volume. The reaction
consisted of SsoAdvanced™ Universal SYBR® Green Supermix (Biorad), a specific primer
pair mix (0.5 µM each) and 1 µL of cDNA. The reaction was performed under the following
conditions: initial denaturation at 95 ◦C for 30 s; followed by 40 denaturation cycles at
95 ◦C, 15 s; annealing (primer-specific temperature for 30 s) and extension at 72 ◦C for
60 s. The obtained results were analyzed based on a comparison of the expression of the
target genes to the reference gene, GAPDH, using the 2−∆∆CT method. The experiments
were performed at least four times. All of the primer pair sequences were purchased from
Sigma-Aldrich and are listed in Table S2.

3.10. Immunoblotting

The K562 and U-251 cells were seeded in 3 cm Petri dishes (Nunc) at a density of
500,000 cells per well and incubated overnight. Then, the cells were incubated with freshly
prepared solutions of tested the compounds (BS1, BS4, two to three times the IC50 value)
for 24 h, after which the cells were detached by trypsinization and centrifuged at 2000 rpm.
Next, the cell pellets were resuspended in an RIPA buffer containing a Halt Protease In-
hibitor Cocktail and a Halt Phosphatase Inhibitor Cocktail along with 0.5 M EDTA (all from
Thermo Scientific, Waltham, MA, USA) and lysed on ice for 20 min. Then, the obtained
lysates were sonicated and centrifuged at 10,000 rpm for 10 min at 4 ◦C. The supernatants
were collected for further analysis. The protein concentration was measured using a Micro
BCA™ Protein Assay Kit (Thermo Scientific) according to the manufacturer’s instruc-
tions. Equal amounts of the proteins (16 µg) were electrophoresed on SDS-Page gels and
transferred onto nitrocellulose membranes. The membranes were blocked in 5% non-fat
milk prepared in TPBS (PBS containing 0.1% Tween-20) for 1 h. After blocking, the mem-
branes were incubated with the specific primary antibodies (all from Cell Signaling) at
a 1:1000 dilution—cyclin E, cdc2, PARP, AIF, BID, p53, p21Waf1/Cip1, HIF-1α, cathepsin B
and caspase-9—and at a 1:2000 dilution for the reference proteins—vinculin, β-actin and
GAPDH—overnight at 4 ◦C. The next day, the membranes were washed in TPBS and incu-
bated with horseradish peroxidase (HRP)-conjugated secondary antibodies for 1 h at room
temperature. Lastly, the membranes were washed in TPBS and incubated with a SuperSig-
nal™ West Pico Chemiluminescent Substrate (Thermo Scientific). The chemiluminescence
signals were captured using a ChemiDoc™ XRS + System (Biorad). The experiments were
performed at least four to five times. The densitometric analysis was conducted using
ImageJ software (Wayne Rasband, National Institutes of Health, Bethesda, MD, USA).
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3.11. Statistical Analysis

The results are presented as the mean ± standard deviation (SD) from all of the inde-
pendent experiments that were conducted. The statistical analysis was performed using a
one- or two-way ANOVA with a Bonferroni post-hoc test. A p-value of 0.05 or less was
considered to be statistically significant. GraphPad Prism 8.0 software (GraphPad Software,
San Diego, CA, USA) was used for analysis.

4. Conclusions

The sulfonate derivatives of styrylquinazolines are interesting potential scaffolds for
anticancer drug design. We performed an in-depth investigation of their potential mecha-
nism of action for a library of six different structures. The compounds had a good level of
antiproliferative activity and selectivity in a panel of cancer cell lines. Among them, the to-
sylate of 7-chloro-2-styrylquinazoline appeared to be the most active at a sub-micromolar
level and was considerably higher than both of the positive control drugs. Regardless of
their structural similarity to the p53 reactivator and kinase inhibitors, the activity of the
tested sulfonates seems to be unrelated to these targets. However, some of the dependence
on the p53 status that was observed can be explained as a signal of a multitargeted action.
There was a strong arrest in the G2/M cell cycle followed by apoptosis as the model of cell
death. In glioblastoma, however, where the TP53 mutation leads to gaining of abnormal
functionality, the tested compounds led to autophagy to a greater extent. These pathways
were confirmed by analyzing the resulting proteins such as GADD or the cyclin-dependent
kinases. In the leukemia cell line in which the functionality of the p53 protein was lost,
the sulfonates expressed a higher antiproliferative potency and a more complex multi-
targeted mechanism as was evidenced by the different responses to the low and high
concentrations. Therefore, further research is needed to reveal the factors that are respon-
sible for distinguishing between each of the pathways of activity. Another potentially
valuable direction that deserves further investigation is combinatorial therapy of these
sulfonates with other anticancer agents such as doxorubicine. This can be hypothesized
that strong G2/M inhibitors may be effectively used for overcoming drug resistance or
adverse effects as is known for paclitaxel.
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