

Chemical Science

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: Q. Elliott, G. dos Passos Gomes, C. Evoniuk and I. Alabugin, *Chem. Sci.*, 2020, DOI: 10.1039/C9SC06511C.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

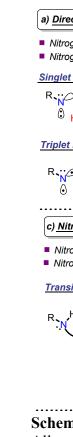
You can find more information about Accepted Manuscripts in the <u>Information for Authors</u>.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

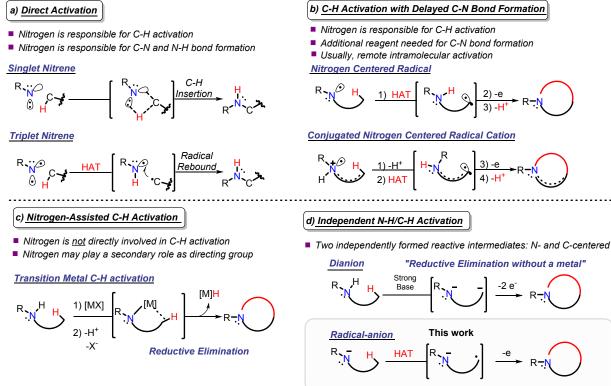
Testing the Limits of Radical-Anionic CH-Amination: a 10-Million-Fold Decrease in Basicity Opens a New Path to Hydroxyisoindolines via a Mixed C-N/C-O-Forming Cascade

Quintin Elliott, † Gabriel dos Passos Gomes, † Christopher J. Evoniuk, † and Igor V. Alabugin*†

- [†] Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
- ‡ current address: Department of Chemistry and Department of Computer Science, University of Toronto, Toronto, Ontario, Canada


Abstract:

An intramolecular $C(sp^3)$ -H amidation proceeds in the presence of t-BuOK, molecular oxygen, and DMF. This transformation is initiated by the deprotonation of an acidic N-H bond and selective radical activation of a benzylic C-H bond towards hydrogen atom transfer (HAT). Cyclization of this radical-anion intermediate en route to a two-centered/three-electron (2c,3e) C-N bond removes electron density from nitrogen. As this electronegative element resists such an "oxidation", making nitrogen more electron rich is key to overcoming this problem. This work dramatically expands the range of N-anions that can participate in this process by using amides instead of anilines. The resulting 10⁷-fold decrease in the N-component basicity (and nucleophilicity) doubles the activation barrier for C-N bond formation and makes this process nearly thermoneutral. Remarkably, this reaction also converts a weak reductant into much a stronger reductant. Such "reductant upconversion" allows mild oxidants like molecular oxygen to complete the first part of the cascade. In contrast, the second stage of NH/CH activation forms a highly stabilized radicalanion intermediate incapable of undergoing electron transfer to oxygen. Because the oxidation is unfavored, an alternative reaction path opens via coupling between the radical anion intermediate and either superoxide or hydroperoxide radical. The hydroperoxide intermediate transforms into the final hydroxyisoindoline products under basic conditions. The use of TEMPO as an additive was found to activate less reactive amides. The combination of experimental and computational data outlines a conceptually new mechanism for conversion of unprotected amides into hydroxyisoindolines proceeding as a sequence of C-H amidation and C-H oxidation.


Introduction

Due to their abundance, C(sp³)-H bonds offer an excellent starting point for the functionalization of organic compounds.¹ However, the productive use of C-H bonds is complicated due to the difficulties associated with their selective activation.² These challenges prompt chemists to search for new approaches for utilizing C-H bonds as a reactive organic functionality.³

C-H amination couples C-H activation with the concomitant formation of a C-N bond and opens new avenues for the synthesis of nitrogen-containing organic compounds.⁴ This approach has evolved into a versatile group of reactions that overcome the challenges with C-H activation and C-N bond formation. Depending upon nitrogen's participation in C-H activation and C-N bond formation, one can broadly classify C-H amination reactions within the following four approaches: a) C-H activation directly coupled with C-N bond formation (direct activation), b) C-H activation with delayed C-N bond formation, c) N-assisted C-H activation, and d) independent C-H/N-H activation (Scheme 1).

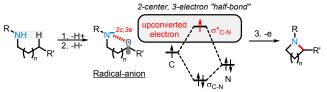
Open Access Article. Published on 21 February 2020. Downloaded on 2/22/2020 9:51:06 AM

Scheme 1. Selected examples of the four approaches to C-N bond formation via C-H activation. All carbons are tetravalent, the non-participating C-H bonds are omitted for clarity.

In direct activation (Scheme 1a), nitrogen is responsible for the activation of C-H bonds and the formation of both the C-N and the N-H bonds. This mode of activation works with highly coordinatively unsaturated species, e.g., nitrenes and nitrenium ions, where nitrogen can insert into a C-H bond in either a stepwise or concerted manner.⁵

In C-H activation with delayed C-N bond formation (Scheme 1b), nitrogen assists in C-H activation by breaking the C-H bond, but the C-N bond forming step needs an additional participant (e.g., an external oxidant). This process also requires an electron-deficient nitrogencentered intermediate, i.e., a radical⁶ or a radical-cation.⁷ If placed in proximity to a C-H bond, a nitrogen-centered radical can abstract a hydrogen atom, forming a carbon centered radical. A C-N bond is formed by trapping this radical. Alternatively, activation of a C-H bond can be achieved by deprotonation of a nitrogen radical-cation, prepared by oxidation of an amine. Although such deprotonation usually proceeds at the α -position where it can provide a stabilized C-centered α radical.⁸ Activation of a remote C-H bond becomes possible in conjugated radical-cations, even when the activating NH₂ moiety and the activated CH₂ group are five bonds away.^{9,10}

In N-assisted C-H activation reactions (Scheme 1c), nitrogen does not directly participate in the C-H activation step but can trap the C-centered reactive species once they are formed. An external reagent, such as an appropriately chosen transition metal, is used for C-H activation. An appealing strategy is to use nitrogen as a directing group, guiding the transition metal to the targeted C-H bond and facilitating C-N bond formation afterwards.^{11,12} A new C-N bond can be formed via reductive elimination at the transition metal.¹³


The fourth, conceptually different approach is to activate both the N-H and the C-H bonds by independently converting them into reactive intermediates (Scheme 1d). By decoupling the two steps, this approach potentially becomes the most flexible, but the conditions for selective and independent N-H/C-H activation are not always easy to achieve. The possible situations here involve: i) formation of N- and C- centered radicals, ii) formation of a radical and an anion (usually, C-radical and N-anion), and iii) formation of an N-anion and a C-anion. The latter two paths must be terminated by 1e and 2e oxidations, respectively, to yield the "normal" two-centered/two-electron (2c, 2e) C-N bond.

Productive combination of two reactive intermediates is efficient only when one of these intermediates is relatively persistent.¹⁴ From this perspective, formation of stable N-anions (approaches ii and iii) is attractive (Scheme 1d).

Sarpong and coworkers illustrated that a C, N dianion, formed in the presence of strong base can form a C-N bond upon two-electron oxidation with I₂ (iii).¹⁵ This approach, which can be conceptually considered "reductive elimination without a metal", allows C-N bond formation without the need for preoxidized coupling partners via the formal loss of H₂. Formation of five-, six-, and seven-membered rings was found to proceed even in conformationally unbiased substrates.

In our work, we explore the advantage of a three-electron approach (ii). ¹⁰ Because the three electron radical/anion interactions are potentially stabilizing, they can lead to favorable C/N precoordination which leads to instantaneous C-N bond formation upon oxidation. In contrast, the 4e anion/anion interactions are repulsive, and hence, the C,N-dianion may adopt a conformation that is not conducive to bond formation.

We have recently illustrated the value of the radical-anionic approach in an intramolecular C(sp³)-H amination.¹¹¹ This method relies on a sequence of N-H deprotonations and selective H-atom transfers (HAT) from C-H bonds to generate a radical-anion intermediate (Scheme 3a). This intermediate forms a thermodynamically favored two-center/three-electron (2c, 3e) "half bond", where one of the electrons is forced to occupy a high energy antibonding orbital ("electron upconversion", Scheme 2).¹¹¹ The newly formed radical-anion can then be readily oxidized into a "normal" 2c,2e bond by a mild oxidant, such as molecular oxygen. By generating a radical anion in situ, we effectively take a weak reductant and evolve it into a more potent reductant. Such "electron upconversion"¹¹¹² allows for the effective use of a mild oxidant such as molecular oxygen. By avoiding stronger oxidants, we prevented undesired product oxidation in our cascade reactions that yield expanded N-doped polyaromatic systems.

Scheme 2. Steps in the proposed C-H/N-H activation and the mechanism of electron upconversion.

In this manuscript, we push the limits of this approach by using amides, a drastically less nucleophilic nitrogen source (Scheme 3b). We will show how this structural modification diverts the cascade towards incorporation of a late C-O bond forming step¹⁷ and opens a synthetic route to 3-hydroxyisoindolinones. Recently, Xiao et al.¹⁸ independently developed a mechanistically different version of 3-hydroxyisoindolinone synthesis from secondary amides (Scheme 3c). An interesting feature of Xiao's work is that the same catalyst is used in two different ways to promote

Open Access Article. Published on 21 February 2020. Downloaded on 2/22/2020 9:51:06 AM

the two cascade stages. In the first ground state stage, eosin Y acts as a radical redox catalyst which is oxidized to a radical-cation by reaction with a stoichiometric amount of an external oxidant (SelectFluor). Without light, the reaction stops at the first step (C-N bond formation). The second step (the formation of the C-O bond) is achieved by using eosin Y as a photocatalyst in the presence of oxygen. The overall transformation had a good scope for the aromatic substituents but was only reported for N-monosubstituted amides (N-methoxy, N-aryl, N-alkyl).

Scheme 3. Expanding previous work to utilize less nucleophilic amides, as well as the formation of non-aromatic five membered heterocycles, and C-N/C-O bond formation. All energies are in kcal/mol.

It is clear that our approach and the approach of Xiao are very different mechanistically (anionic vs. cationic) and, hence, should provide complementary reactivity patterns for future synthetic designs. Our work presents an alternative route that proceeds in the ground state and does not require additional oxidants besides molecular oxygen. In addition, it avoids formation of a cationic species, a feature which can be beneficial to substrates that are sensitive to oxidative conditions. Furthermore, as we will show below, our conditions are applicable for primary amides.

The successful use of amides as nucleophilic partners in a base-promoted oxidative $C(sp^3)$ -H amidation yields isoindolinones under transition-metal free conditions. Because the presence of metal impurities should be minimized in pharmaceutics, ¹⁹ a transition-metal free alternative is an attractive choice for the synthesis of isoindolinones related to the antihypertensive agent Chlortalidone,²⁰ inhibitors of MDM2-p53 interactions,²¹ and selected natural products.²² Furthermore, a variety of post-synthetic modifications of the core hydroxyisoindoline structure are possible (Scheme S5 in Supporting Information) including transformations mediated by chiral phosphoric acids²³⁻²⁴ and by transition metal catalysts.²⁵

Results and discussion

We began by subjecting amide **1a** (0.01 mmol) to the previously optimized conditions, (i.e., DMF, 4 Å-molecular sieves (MS), O₂ atmosphere, and 3 equivalents of t-BuOK at room temperature) for 4 hours. To our delight, **2a** was formed in an excellent yield, 87% (Table 1, entry 1). When DMSO and THF were used in place of DMF, the yields of **2a** were lower (36% and 47%, entries 2 and 5) along with the formation of undesired side products. Furthermore, when DMF was replaced with acetonitrile, toluene, or DCM, **2a** was not observed (entry 3-4, 6). These results prompted us to perform the rest of our studies in DMF.

We then tested five additional bases (entry 7-11). The *tert*-butoxide salts produced **2a** in the highest yields. Interestingly, the size of the counterion impacts the conversion of **1a** into **2a**. While the difference was small for the sodium and potassium *tert*-butoxide salts (87% vs 79% respectively), a noticeable difference in yield was observed between the K, Na, and Li hydroxides (55%, 31%, <1% respectively). Fewer than 3 equivalents of base (entry 12-13) were insufficient for the full consumption of the starting material. More than 3 equivalents of base (entry 14-15) were found to be unnecessary as there was no improvement in yield.

We then varied the reaction time (entry 16-18) and observed full consumption of starting material within one hour. Finally, when the reaction vial was charged with air instead of oxygen, 2a was produced in 75% yield (entry 19). However, the rate of the reaction was slower and not all of 1a was consumed.

Table 1. Optimization Table

	ıa					
Entry	Solvent	Base	Eq	Atm	Time	Yield %
1	DMF	t-BuOK	3	O_2	4 h	87 %
2	DMSO	t-BuOK	3	O_2	4 h	36 %
3	MeCN	t-BuOK	3	O_2	4 h	< 1%
4	Toluene	t-BuOK	3	O_2	4 h	< 1%
5	THF	t-BuOK	3	O_2	4 h	47 %
6	DCM	t-BuOK	3	O_2	4 h	< 1%
7	DMF	t-BuONa	3	O_2	4 h	79 %
8	DMF	KOH	3	O_2	4 h	55 %
9	DMF	NaOH	3	O_2	4 h	31 %
10	DMF	LiOH	3	O_2	4 h	< 1%
11	DMF	K_2CO_3	3	O_2	4 h	< 1%
12	DMF	t-BuOK	1	O_2	4 h	55 %
13	DMF	t-BuOK	2	O_2	4 h	68 %
14	DMF	t-BuOK	4	O_2	4 h	85 %
15	DMF	t-BuOK	5	O_2	4 h	88 %
16	DMF	t-BuOK	3	O_2	3 h	85 %
17	DMF	t-BuOK	3	O_2	2 h	82 %
18	DMF	t-BuOK	3	O_2	1 h	84 %
19	DMF	t-BuOK	3	Air	1 h	75 %

Reaction conditions: All reactions performed in a 20 mL scintillation via, **1a** (0.025M), 2.5 mL of solvent, 4 Å-molecular sieves (MS), and room temperature (22 °C). All yields determined by ¹H NMR using internal standard.

Open Access Article. Published on 21 February 2020. Downloaded on 2/22/2020 9:51:06 AM.

We then explored the scope of substituents that are compatible with the reaction conditions. Variation in the pendant aryl ring revealed that heterocyclic substrates, as well as the substrates with ortho, meta, and para electron withdrawing groups produced the target products in good to excellent yields. On the other hand, electron donating groups were only tolerated in the meta position. Lower conversions to the corresponding isoindolinone were observed (39% and 48%) respectively) for the reactions of 4-methoxy and 4-methyl substrates. However, substrate 2c with a para *tert*-butyl group underwent the desired transformation in high yield (84%).

Table 2. Amide scope for $C(sp^3)$ -H amidation and hydroxylation.

Reaction conditions: benzamide (0.025M), t-BuOK (3 eq.), 4Å MS, DMF, O₂ balloon and the reactions were allowed to stir for 4 hours at rt. Unless stated otherwise, the yield is of the isolated product.

Substitution in the amide ring had a smaller effect – the reaction tolerated both electron donating and withdrawing groups, ortho, meta, and para to the amide. The overall transformation remained unaffected with halogens (i.e., Br, Cl, and F) on either the amide ring or pendant aryl ring, allowing for the introduction of a useful synthetic handle for future modifications.

We also investigated the possibility of introducing additional substituents at the amide nitrogen. The N-methyl amide 2r underwent the desired transformation sluggishly (30% yield, 74% based on reclaimed starting material) under the standard conditions. On the other hand, a Nmethoxy amide remained unreactive under our standard conditions (vide infra).

Open Access Article. Published on 21 February 2020. Downloaded on 2/22/2020 9:51:06 AM

Mechanistic studies

A series of studies designed to gain insight into the reaction mechanisms were performed and are listed below (Scheme 4). First, the C-H bond strength is critical for the reaction success. A BDE \leq 85 kcal/mol was needed and simple benzylic or alkylbenzylic C-H bonds remained unreactive under our conditions (eq. 1).

Scheme 4: Mechanistic tests for the C-H bond strength and for the participation of oxygen. All energies are reported in kcal/mol.

When the reaction is performed under an inert atmosphere (Ar), the consumption of $\mathbf{1a}$ is greatly diminished (eq. 2), confirming the importance of O_2 as the oxidant.

We have also considered the possible involvement of singlet oxygen. Singlet oxygen has been shown to be synthetically useful in the oxidation of heteroatoms, cyclization reactions, and the synthesis of hydroperoxides. However, 1i was fully consumed even in the absence of light, producing 2i in 79% yield (eq. 3). Reactivity in the dark indicates that singlet oxygen is not involved in the main path of this reaction.

Under these oxidative conditions, one could suggest that the reaction occurs via an oxidation of the CH₂ moiety to a carbonyl intermediate.²⁷ This intermediate could then close the cycle via nucleophilic attack of the amide onto the carbonyl under basic conditions. We have

eliminated benzylic C-H oxidation in our early work by using N-Me substituted anilines, which yield products that clearly could not originate from the ketone. 10 Obtaining such direct evidence in the present case is problematic because, unlike the aniline cascade, the present amide cascade is terminated by C-O bond formation that renders the C/N radical-anion coupling and the carbonyl pathway products identical.

Scheme 5. Interruption of the amide and aniline cascades

To test for the possible formation of a carbonyl intermediate, we wanted to use an unreactive amide in order to avoid the cyclization, while still allowing for the benzylic carbon to remain reactive enough to be oxidized into a ketone. However, no reaction was observed when amide 1s was exposed to the standard conditions. Calculations show that if a ketone intermediate were formed, its cyclization would be thermodynamically favorable ($\Delta G = -5.1 \text{ kcal/mol}$). Assuming that this substitution at nitrogen does not directly change reactivity at the remote benzylic position, the lack of benzylic oxidation suggests that the carbonyl intermediate is not formed under our conditions¹⁰ (Scheme 5). We have also found that an isoindolinone is readily converted into the respective 3-hydroxyisolindolinone under these conditions, a process that is unlikely to proceed through a carbonyl intermediate.

Computational Data

Calculations were carried using the meta-hybrid (U)M06-2X functional²⁸ and the 6-31+G(d,p) basis set for all atoms, with an ultrafine integration grid (99,590 points). A broken-spin approach was applied when necessary. The implicit SMD²⁹ solvation model was used to simulate the effects of N,N-dimethyl-formamide (DMF) throughout the calculated structures. Grimme's D3 version (zero damping) for empirical dispersion³⁰ was also included. Unless otherwise noted, all results presented are at the (SMD=DMF)/(U)M06-2X(D3)/6-31+G(d,p)/int=ufine level of theory. Frequency calculations were carried out for all structures to confirm them as either a minimum or a TS. All calculations were performed with the *Gaussian 09* software package.³¹ Structural drawings and orbital plots were produced with CYLView 1.0.1³² and Chemcraft 1.8.³³

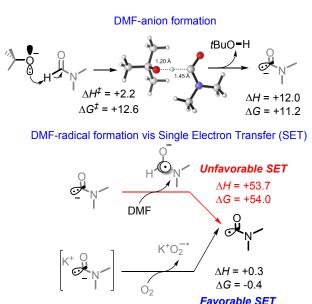
Radical Cascade Mechanism

Guided by these experimental results, we turned to computations for identifying the key intermediates of this transformation. A full thermodynamic landscape for the proposed reaction cascade is shown in Scheme 6. Each step in this cascade is thermodynamically favorable. In subsequent individual sections, we will discuss the individual steps along with their activation barriers and the respective experimental evidence.

O NH₂

$$AH = -16.1$$
 $AH = -10.7$
 $AG = -17.2$
 $AH = -37.6$
 $AH = -37.6$
 $AG = -29.4$
 $AG = -30.4$
 $AG = -30.4$

Scheme 6. Proposed mechanism and calculated reaction thermodynamics for the individual steps in the N-H/C-H amidation. All energies are in kcal/mol.


Generation of DMF radical

We suggest that the chemical species responsible for the formation of the bis-benzylic C-centered radical is DMF radical ($C(O)N(CH_3)_2$). The formation of this radical under these conditions is well-documented. Yan et al. used them in a variety of interesting transformations that combined C-H activation and C-C bond formation.³⁴ However, the mechanism by which the DMF radical is generated is not fully established. A commonly suggested path that involves oxidation of DMF anion by DMF is highly thermodynamically unfavorable ($\Delta G = +54.0 \text{ kcal/mol}$, Scheme 7).¹⁰

While we were unable to find the pKa of t-BuOH in DMF, literature reports³⁵ the pKa of 1-butanol in DMF to be 33.3. It is reasonable to estimate the pKa of t-BuOH in DMF to be ca. 34-35. The pKa of DMF in DMF (38),³⁵ makes it approximately 3-4 pKa units less acidic than t-BuOH. Although it makes the initial deprotonation of H-C(O)NMe₂ uphill, a small amount of DMF anion is still formed at equilibrium. Calculations show that although this deprotonation is endergonic by 11.2 kcal/mol, the activation barrier for the deprotonation of DMF is relatively low (12.6 kcal/mol, Scheme 7), and equilibrium should be reached quickly.

Indeed, Drapeau and co-workers noted a formamide proton shift, via 1 H and 13 C NMR, when t-BuOK was added to wet DMF- d_7 . 36 Their computational work additionally highlighted two interesting points regarding the impact of counter ions. First, the cation stabilizes the DMF anion,

Our calculations show that the oxidation of DMF anion by oxygen is slightly exergonic (with the inclusion of K⁺, Scheme 7). This makes the combined deprotonation and oxidation of DMF endergonic by ~10 kcal/mol, which would allow only small quantities of DMF radical to be present at a given time. If the propagation step of the cascade is fast, then the initial penalty of forming the DMF radical is a small price to pay when all sequential steps in the cascade reactions are favorable and efficient. Overall, the generation of DMF radical imposes a ~10 kcal/mol penalty needed to initiate an otherwise exergonic sequence. Interestingly, calculations suggest that the activation barrier for proton abstraction from DMF is almost entirely entropic (enthalpy of activation is only 2.2 kcal/mol). The TS Gibbs energy (12.6 kcal/mol) is only 1.4 kcal/mol higher than the Gibbs energy of the product, suggesting that the deprotonation should be rapidly reversible.

Scheme 7. Formation of DMF radical. All energies reported in kcal/mol.

Deprotonation/ H-Atom Transfer

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence

Open Access Article. Published on 21 February 2020. Downloaded on 2/22/2020 9:51:06 AM

The unusual nature of our intramolecular C-H amination stems from the generation of a radical and an anion in situ. To achieve this, two criteria must be met. First, an acidic proton is needed for a deprotonation that produces a persistent N-anion. Second, the substrates should have a sufficiently weak C-H bond that undergoes HAT with the formation of a C-radical.

The cascade mechanism begins with the exergonic deprotonation of the mildly acidic benzamide by tert-butoxide ($\Delta G = -17.2 \text{ kcal/mol}$, Scheme 6, A1). Once a persistent nitrogen anion is quickly generated, the slowly produced DMF radical (see the SI for discussion of DMF radical formation) can engage the sufficiently weak bis-benzylic C-H bond (BDE = 85 kcal/mol) in a HAT step ($\Delta G = -10.0$ kcal/mol, Scheme 6, A2). This step yields the initial acyclic radical-anion intermediate. While the HAT ΔG^{\ddagger} and ΔG are slightly lower for the neutral amide than the deprotonated amide ($\Delta G^{\ddagger} = 17.6 \text{ vs } 19.1$, $\Delta G = -10.9 \text{ vs } -10.0 \text{ kcal/mol}$), the high concentration of

Open Access Article. Published on 21 February 2020. Downloaded on 2/22/2020 9:51:06 AM

While tert-butoxide can deprotonate the benzylic C-H bond of diphenylmethane³⁷ (pKa = 32.2 in DMSO), the benzamide's N-H bond is far more acidic (pKa = 23.3 in DMSO). The nine orders of magnitude difference in acidity leaves no doubt that the N-H bond should be deprotonated preferentially. In our previous work, we explored the possibility of t-BuOK deprotonating the benzylic C-H bond and found that ΔG for this process is also favorable (-3 kcal/mol) suggesting that C-H deprotonation is feasible as well. However, once the initial nitrogen anion is formed, the second deprotonation would form a dianion. Although the possibility of a dianionic process cannot be completely eliminated at the present stage, we favor the radical HAT path for the C-H activation because of the coulombic penalty associated with the formation of multiply charged species.

The transition state for the initial HAT is interesting. At the stage where the benzylic C-H bond begins to break to form the C-centered radical, the benzylic C-H is *misaligned* with the aromatic π -system. Hence, the forming radical finds itself in alignment only with the pendant aromatic ring. One might expect that as this radical would prefer to be in a close alignment with both aromatic rings to take advantage of stereoelectronic stabilization. This finding explains why the pendant aryl group is necessary – although the CH₂ groups in substrates $\mathbf{1w}$ and $\mathbf{1x}$ are formally "benzylic" (Scheme 4), the core aryl group does not directly contribute to their C-H activation. Under these intramolecular stereoelectronic constraints, their relatively low BDE values are somewhat misleading.

Furthermore, the amide is rotated out of conjugation the aromatic π -system in a nearly orthogonal geometry.³⁸ The twisted geometry may provide an explanation to why amide deprotonation does not activate the ortho-benzylic C-H bond towards H-abstraction. Steric hindrance between the two relatively large ortho-substituents contributes to this geometric preference. On the other hand, the amide π -system may engage in through-space interactions with the back lobe of the anti-bonding orbital of the breaking C-H bond. In this scenario, the amide may be assisting in the C-H activation process by helping to stabilize the newly forming radical via a through-space interaction.

Scheme 8. Reaction energy profiles and twisted transition states for C-H activation in neutral and deprotonated substrates. All energies are in kcal/mol.

Open Access Article. Published on 21 February 2020. Downloaded on 2/22/2020 9:51:06 AM

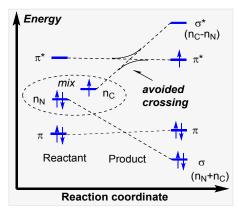
In the key step of the overall cascade, the N-anion and the C-centered radical in **A2** react to form a 2c,3e "half" bond, also making a cyclic radical-anion in the process. Interestingly, this process occurs without the apparent loss of amide resonance since it is the 2nd "in-plane" lone pair of nitrogen that is involved in the N-C coupling. On the other hand, the radical center rotates out of conjugation with the central aryl ring as well. The latter stereolectronic penalty is likely to contribute to a relatively high, 17.2 kcal/mol, Gibbs barrier and the low thermodynamic driving force, $\Delta G = -3.6$ kcal/mol, for this seemingly trivial step (Scheme 9). These values are significantly less favorable than the analogous values for the C-N bond formation from deprotonated anilines (8.5 and -27.8 kcal/mol, respectively) reported in our earlier work. This dramatic difference highlights the importance of N-partner basicity/donor ability for this process. We will discuss this factor further in the conclusions section of this manuscript.

O NH

$$\Delta H^{\ddagger} = 16.2$$
 $\Delta G^{\ddagger} = 17.2$
 $\Delta H = -5.0$
 $\Delta G = -3.6$

N:

 $\Delta H = -31.1$
 $\Delta G = -30.4$

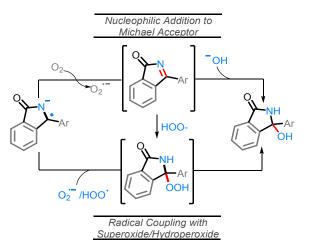

Ph

 $\Delta H = -31.1$
 $\Delta G = -30.4$

Ph

Scheme 9. Transition states for the C-N bond formation and second HAT.

Additionally, the three non-bonding electrons of the radical and anion reacting partners have to find "a new home" in this step. Two of these electrons are accommodated in the newly formed σ orbital of the C-N bond. The third electron avoids its apparent destiny of ending up at the high energy $\sigma^*_{\text{C-N}}$ orbital by "hopping" to a lower energy π^* orbital of the aromatic ring (Scheme 10). This state crossing, not unusual for radical-anionic reactions,³⁹ stabilizes the product by creating a delocalized π -type radical-anion.


Scheme 10. State crossing avoids populating the high energy σ^*_{C-N} orbital.

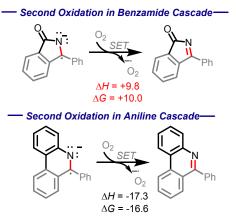
Nevertheless, the reacting system evolved from a mild reductant (electron in a non-bonding orbital) into a more potent reductant (electron is an antibonding orbital). The high reducing power of the cyclic product allows its reaction with a mild oxidant, such as molecular oxygen. This reaction (i.e., single electron transfer) removes the antibonding electron, converting a 2c, 3e-bond into a normal 2c, 2e C-N bond. This step simultaneously forms superoxide in a thermodynamically favorable way with $\Delta G = -29.1$ kcal/mol (Scheme 6, A3).

After the benzamide is cyclized into an isoindolinone, the cyclic intermediate is deprotonated to give anion **A4** (Scheme 6, $\Delta G = -17.7$ kcal/mol). The α -C-H bond in this anion is sufficiently weakened to form a stabilized radical-anion **A5** ($\Delta G = -30.4$ kcal/mol after a HAT to DMF radical).

Diverting from C=N to C-O bond formation

From the stabilized radical intermediate **A5**, one can envision two possible mechanisms for the formation of the C-O bond (Scheme 11). The first is similar to what we reported in our previous work¹⁰, in which the intermediate is oxidized a second time by molecular oxygen to form the C=N moiety of an imine intermediate. This intermediate may then be intercepted by a suitable nucleophile generated *in situ*, such as superoxide or hydroxide. In particular, superoxide is known to undergo disproportionation to give O₂ and hydroxide under aqueous conditions.⁴⁰ It is possible that a similar process to generate hydroxide could occur under the conditions of our C-H amination reaction, whereas *t*-BuOH would serve as the proton source instead of H₂O. The second possibility, is that a radical coupling partner such as superoxide or hydroperoxyl radical couples to the C-centered radical making a hydroperoxide intermediate.

Scheme 11. Possible routes to product from stabilized radical-anion intermediate.


We initially tested to see if the addition of an external nucleophile could be used to trap the plausible imine intermediate. The addition of either sodium or potassium methoxide hinders the reaction, with no methoxy product observed in these experiments (Scheme 12).

Scheme 12. Attempting to trap the hypothetical imine intermediate.

Open Access Article. Published on 21 February 2020. Downloaded on 2/22/2020 9:51:06 AM.

Our calculations show the oxidation of radical-anion A5 by O_2 is thermodynamically uphill ($\Delta G = +10.0$ kcal/mol, Scheme 13). While this is not a prohibitive price to pay, it is worth noting that this oxidation step is 39.1 kcal/mol more endergonic than the initial oxidation step. This substantial increase stems from several factors, including lack of aromatic stabilization in the N-heterocyclic part of the product as well as the additional radical and charge stabilization in the reactant, not only through the bis-phenyl groups, but additionally through the nitrogen and carbonyl.

This finding contrasts our previous work with anilines where the second oxidation step was favorable ($\Delta G = -16.6 \text{ kcal/mol}$) due to the formation of an aromatic system. ¹⁰ In the present case, the situation is different, and this differences manifests itself in a divergent reaction pathway (formation of a C-O bond instead of C=N moiety). To understand this step better, we explored the possibility of radical coupling being responsible for the final C-O formation.

Scheme 13. Contrasting thermodynamics (kcal/mol) for the C=N forming oxidations in the amide and aniline cascades.

A series of studies designed to gain insight into the possible radical coupling of **A5** were performed and are listed below (Scheme 14).

We then employed two common radical trapping agents, attempting to either trap a radical intermediate or to inhibit the reaction. TEMPO, caused a slight decrease in isolated yield (87% vs 76%) but no TEMPO trapped product or recovered starting material was observed (eq. 1). This finding is consistent with the radical mechanism if intramolecular radical trapping (i.e., the cyclization) is faster than the intermolecular trapping, or if TEMPO can play an alternative role by promoting the C-H activation step. More detailed discussion on the possible role of TEMPO will be given in a subsequent section.

We also tested the effect of a common radical and peroxide trapping agent, 3,5-di-tert-4-butylhydroxytoluene (BHT), at the standard reaction conditions (eq. 2). The phenol moiety of BHT is often used to halt the autoxidation of organic molecules with oxygen, analogous to that of vitamin E. BHT can deactivate two (usually peroxy) radicals – the first one by a hydrogen atom transfer and the second one by reaction at the cycle.⁴¹

We found that the reaction is partially inhibited (2i was isolated in a 47% yield, starting material recovered in 27% isolated yield. Furthermore, BHT-OH was additionally isolated in 25% yield. Low yields are a result of isolation difficulties. Formation of this product further suggests that a radical pathway is involved.

Scheme 14. Radical coupling mechanistic studies.

Addition of Superoxide/Hydroperoxyl Radical to the Radical-Anion A5

It is unlikely that the OH group in the final product is a result of radical coupling with hydroxide radical, as it is highly reactive and will likely abstract a hydrogen atom from the solvent or *t*-BuOH before reaching the reactant.⁴² This consideration led us to explore the possibility of radical coupling with superoxide or with its conjugate acid, the hydroperoxyl radical (HOO•).⁴³

Our calculations show this to be a favorable path for forming the C-O bond (Scheme 15). In particular, radical addition to intermediate **A5** via HOO• was found to be highly exergonic, $\Delta G = -23.6 \text{ kcal/mol}$. Addition of superoxide (the precursor of HOO•) to **A5** was favorable, $\Delta G = -11.0 \text{ kcal/mol}$. On the other hand, the addition of molecular oxygen was found to be endergonic, $\Delta G = +7.5 \text{ kcal/mol}$. It is worth noting that all three of these proposed pathways are thermodynamically more favorable than an oxidation of **A5** by O_2 ($\Delta G = +10.0 \text{ kcal/mol}$).

Chemical Science Accepted Manuscrip

$$\begin{array}{c} AH = -45.5 \\ \Delta G = -32.5 \end{array} \begin{array}{c} OOH \\ OOH \\ \hline \\ AH = -37.2 \\ \Delta G = -23.6 \\ \hline \\ OOH \\ \hline \\$$

Scheme 15. Computational thermodynamic data for the addition of molecular oxygen, superoxide, and hydroperoxyl radical to the stabilized radical intermediate. Energies in kcal/mol.

Superoxide has been shown to act as a Brønsted base in aprotic media and deprotonate weak acids such as 1-butanol in DMF (pKa = 33.3 in DMF)⁴⁴. It is therefore possible, that superoxide may deprotonate t-BuOH (estimated pKa \approx 34-35 in DMF) generated in situ, forming HOO•. Hence, both HOO• and superoxide may couple with A5.

The evidence that we have presented up to this point suggests that formation of a hydroperoxide intermediate⁴⁵ should be considered (Scheme 6, **A6**). To explore this possibility, we prepared this intermediate and tested its properties as described in the following section.

Hydroperoxide Intermediate

The hydroxy group of **2p** was converted into hydroperoxy group of **3p** (Scheme 16, Eq 1) by acid-catalyzed reaction with H₂O₂. The reference spectra contained the characteristic broad downshifted peak of a hydroperoxide that readily underwent deuterium exchange.⁴⁶ After subjecting 3p to our standard conditions, the formation of 2p was observed by TLC within five minutes. In half an hour, 2p was formed in 88% yield (Scheme 16, Eq 2). The lack of 3p reactivity in the absence of t-BuOK (Scheme 16, Eq 2) indicates the important role of t-BuOK in the reduction of the hydroperoxide intermediate into the final product.

Because of the rapid consumption of hydroperoxide in the presence of base, we anticipate its existence in situ to be fleeting. The existence of transient hydroperoxide intermediates, that convert to OH-bearing final products, has previously been reported in O₂-mediated oxidations of C(sp³)-H bonds.⁴⁷ Indeed, in several experiments, ¹H NMR of the reaction mixtures showed a broad downshifted singlet, potentially indicative of the hydroperoxide, (See Supporting Information for additional details). Although this intermediate was too unstable to persist and to be reliably detected under the reaction conditions, these findings suggest that a hydroperoxide intermediate (Scheme 6, A6) is formed transiently and reduced by t-BuOK/t-BuOH into the final isoindolinone product. The hydroperoxide may also be involved in the radical chain propagation by serving as a possible source of O-centered radicals that can assist in the C-H activation step.

Open Access Article. Published on 21 February 2020. Downloaded on 2/22/2020 9:51:06 AM

Scheme 16. Preparation and instability of the suggested hydroperoxide intermediate.

Secondary Amides

We were intrigued by the sluggish reactivity of the secondary amides. Since we isolate unreacted starting material, the reaction is interrupted in the initial stages. Yet our calculations find that each of the three initiation steps, i.e., the deprotonation ($\Delta G = -16.0$), HAT ($\Delta G = -9.3$), and the radical-anion cyclization ($\Delta G = -5.9$), for **1r** are thermodynamically favorable (Scheme 17).

secondary amides

$$CH_3$$
 CH_3
 CH

Scheme 17. Calculations for the deprotonation, HAT, and radical-anion cyclization of **1r**. All energies are reported in kcal/mol.

We used computed activation barriers to understand why the secondary amides are unreactive (See Supporting Information). Our analysis suggests that the barrier for the H-abstraction is about 1.2 kcal/mol higher for the secondary amides than it is for the primary amides. This difference should lead to a ca. 10-fold rate decrease for this step, providing a possible explanation for the low reactivity of the secondary amide substrates under the reaction conditions.

Conversely, the calculated barrier for the C-N bond formation is *lower* for the secondary amides, indicating that this step is unlikely to be the cascade bottleneck (Scheme 18). Aimed by these observation, we have concentrated our attention on the H-transfer step.

Secondary amides

$$\Delta H^{\pm} = 12.5 (16.2)$$
 $\Delta G^{\pm} = 13.4 (17.2)$
 $\Delta G = -5.9 (-3.6)$

Scheme 18. Computed activation and reaction enthalpies and Gibbs energies for the cyclization of secondary amide **1r**. Numbers in parentheses are for primary amide **1a**. All numbers reported in kcal/mol.

Indeed, focus on C-H activation allowed us to solve the problem of secondary amides as described below. Recalling that TEMPO had no detrimental effect on our radical reaction, we considered the possibility of TEMPO assisting in C-H activation.

Indeed, literature suggests that TEMPO can be a useful additive to the oxidation of benzylic C(sp³)-H bonds. For example, TEMPO can be oxidized into an oxoammonium salt (TEMPO+) in the presence of hydroperoxyl radical, peroxyl radicals, or a secondary oxidant (e.g. NaOCl) as shown in Scheme 19a.⁴⁸ The latter has been shown to act as an oxidant that may facilitate the forward progression of redox reactions.⁴⁹ In particular, TEMPO+, generated *in situ*, from TEMPO was used as a cocatalyst in the aerobic oxidation of benzylic C(sp³)-H into carbonyls.⁵⁰ Even if the carbonyl intermediate is formed in this case, it would, as we previously discussed in Scheme 5, readily cyclize under basic conditions into our isoindolinone product.

Additionally, TEMPO+ has been suggested to facilitate benzylic hydride transfers.⁵¹ It is plausible that in our case, a concerted C-N bond formation and benzylic hydride transfer to TEMPO+ occurs generating TEMPOH and our cyclized product (Scheme 19b). Alternatively, one can consider a hydride transfer to TEMPO+ forming a benzylic carbocation that is immediately trapped intramolecularly via cyclization (Scheme 19c).

Scheme 19. Potential pathways for TEMPO assistance in C-H activation.

Although the exact mechanistic path for C-H activation in our system is so far unknown, the combination of possible attractive scenarios motivated us to test the effect of TEMPO on the reaction. To our delight, we observed the nearly full consumption when secondary amide 1r was subjected to the optimized conditions along with TEMPO. Interestingly, no TEMPO-trapping product was present in the reaction mixture. Instead, 2r was obtained in 74% isolated yield a dramatic improvement over the standard conditions (30% without TEMPO vs. 74% with TEMPO,

Scheme 20). Motivated by this finding, we tested reactivity of **1s** in the presence of TEMPO. Gratifyingly, the reaction affords **2s**, albeit in a moderate yield of 31% (the majority of reaction mixture is unreacted **1s**). Furthermore, substrates **1t**, **1u**, and **1v** also showed a substantial increase in reactivity with the addition of TEMPO and the products **2t**, **2u**, and **2v** were isolated in 87%, 54%, and 55% respectively.

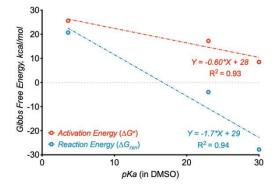
Substrate		Product	Yield, %
1r	∀ Me	2r	30 ^a , 74 ^b , 86 ^c
1s	OMe	2s	0 ^a , 31 ^b , 94 ^c
1t	√ <i>n</i> -Bu	2t	49 ^a , 87 ^b , 87
1u	V t-Bu	2u	33 ^a , 54 ^b , 71 ^c
1v	t-Bu	2v	25 ^a , 55 ^b , 87 ^c

Scheme 20. Improved C-H activation with TEMPO as an additive. Reaction conditions: Secondary benzamide (0.025 M), *t*-BuOK (3 eq), DMF (2 mL), 4Å MS, O₂ balloon, reactions stirred at r.t. overnight. (a) Isolated yields for reaction performed under standard conditions. (b) Isolated yields for reactions with the addition of TEMPO. (c) Yields based of reclaimed starting materials with the addition TEMPO.

Nitriles

As we explored the reactivity of amides under our oxidative C-H amination conditions, we decided to take advantage of the electrophilic nature of benzonitriles, a common precursor in our amide synthesis. In the presence of a suitable nucleophile, anionic addition to the electrophilic carbon on nitriles will result in formation of a nitrogen anion. This anion may then trap a carbon radical, forming a C-N bond upon oxidation.

Indeed, nitrile $\mathbf{4a}$ was found to transform into $\mathbf{2a}$ in good yield (72%) in the presence of t-BuOK and O_2 in DMF (Scheme 21). Two interesting side products were isolated as well. The rearranged product $\mathbf{5a}$ is a result of C-H and C-C activation. Because product $\mathbf{6a}$ was not reported previously, we have confirmed its structure by single crystal X-ray crystallography (see Supporting Information). Although the mechanism and scope of these transformations will have to be explored further in the future work, this finding does illustrate that the scope of the present approach to C-H activation extends beyond amide and aniline couplings.


Scheme 21. C-H activation and cyclization of a nitrile substrate.

Conclusion

We have developed a direct non-photochemical method for converting C(sp³)-H bonds into C-N and C-O bonds under mild conditions with the aid of base, molecular oxygen, and DMF. Each component of the overall reaction plays a pivotal role in a coordinated sequence of deprotonation, H-atom transfer, and electron transfer that forges the C-N bond. The base has three main functions: 1) to deprotonate the N-H bond, 2) to provide an adequate concentration of DMF carbamoyl anion to be converted to DMF radical, and 3) to convert the hydroperoxide intermediate into the final hydroxyl product. The DMF radical performs selective HAT at the di-benzylic C(sp³)-H to form a C-centered radical. The C-N bond is formed initially through a 2c,3e interaction between the Nanion and C-radical. Oxidation of the radical-anion intermediate by oxygen completes the C-N bond forming sequence. Computational data suggest that the stabilized radical anion formed after the second HAT could not be oxidized by molecular oxygen. Instead, the radical couples with either superoxide or hydroperoxide species to generate a hydroperoxide intermediate that ultimately decomposes to form the hydroxide product. Addition of TEMPO opens the door for the use of secondary amides and improves the performance of some insufficiently reactive primary amides. This process allows for the formation of functionalized N-heterocycles in an operationally simple and robust fashion.

Importantly, this work dramatically expands the range of N-anions that can participate in the three-electron approach to C-N bond formation. In general, 2c,3e-bonds are weaker than their classic 2c,2e-counterparts. Hence, limitations for their formation are much more severe. For example, the C-N bond formation in the radical cyclization with anilines is uphill by >20 kcal/mol. One of the reasons why this deceivingly simple transformation is unfavorable is that it leads to the development of cationic character at nitrogen. Trading the lone pair of nitrogen for a 2c,3e-bond removes electron density from the N atom – an "oxidation" process that this electronegative element generally resists. Making nitrogen more electron rich, preferably anionic, is key to overcoming this problem.¹⁰

In the present work, we have increased N-H bond acidity by seven orders of magnitude from our earlier studies by switching from anilines¹⁰ (p $Ka\sim30$ in DMSO) to amides (p $Ka\sim23$ in DMSO). Such deactivation of the conjugated nitrogen base increases the activation barrier for C-N bond formation from 8.5¹⁰ to 17.2 kcal/mol and decreased reaction exergonicity from 28¹⁰ to 4 kcal/mol. Thus, the present use of a stabilized N-anion provided important "bracketing" information on the thermodynamic limits of three-electron C-N bond formation. Although the initial correlations presented in Scheme 22 are crude, considering the small number of points and differences in the formed ring size, they should provide the first approximate guidelines for the design of such reactions.

Scheme 22. Testing for the effect of N-H component acidity on the kinetics and thermodynamics of three-electron C-N bond formation

Furthermore, even though the C-N bond formation from deprotonated benzamides is still efficient despite the additional kinetic and thermodynamic penalties, the next step, i.e., the C=N moiety formation, is not favorable anymore! Here, the cyclized radical-anion is so stable that it does not undergo one-electron oxidation under the reaction conditions. Instead, a new reactivity pattern becomes available and the reaction sequence culminates in the formation of a C-O bond instead of a C=N moiety.

These observations can guide the choice of N-H components in future reactions that form 2c,3e bonds. There is a broad range (p $Ka\sim20$ -32 in DMSO) of N-H bonds that can be deprotonated by potassium *tert*-butoxide but do not form an overstabilized and unreactive conjugate base. For such N-H partners, a variety of possible C-H bonds may be used for generating a suitable C-radical for the three-electron C-H aminations. One can sufficiently weaken the C-H bond (BDEs in the range of 80-90 kcal/mol) by placing heteroatoms or non-aromatic π -systems next to the methylene carbon.

The N-deprotonated benzamides presented in this work are close to the "pKa limit" for three-electron bond formation from benzylic radicals. In order to expand this limit to less reactive, more stabilized nitrogen bases, one has to use more reactive, less stabilized radical partners. We hope that our report will encourage broad investigation of new strategies for unconventional C-N bond formation.

Conflicts of Interest

The authors declare no conflicts of interest.

Acknowledgments:

The fundamental and synthetic aspects of this study were supported by donors of the ACS Petroleum Research Fund (PRF#57377-ND4) and by the National Science Foundation (CHE-1465142). We appreciate the allocation of computational resources from FSU RCC and the NSF XSEDE (TG-CHE160006) and assistance in acquiring ¹H and ¹³C NMR spectra from the NMR Facility of FSU Department of Chemistry and Biochemistry.

Footnote

Electronic supplementary information (ESI) available: Experimental details, compound characterization, and computational details for all calculated structures. See DOI: 10.1039/x0xx00000x

AUTHOR INFORMATION

Corresponding Author

*alabugin@chem.fsu.edu

TOC Graphic:

DOI: 10.1039/C9SC06511C

Radical-Anionic C(sp³)-H Amidation: C-N/C-O Bond Formation

References

¹ (a) Wencel-Delord, J.; Glorius, F. *Nat. Chem.*, **2013**, *5*, 389-375. (b) Lu, Q.; Glorius, F. *Angew. Chem. Int. Ed.*, **2017**, *56*, 49-51. (c) Choi, G.; Zhu, Q.; Miller. D.C.; Gu, C.; Knowles, R. R. *Nature*, **2016**, *539*, 268–271. (d) Chu, J.C.K.; Rovis, T. *Nature*, **2016**, *539*, 272–275. (e) Burg, M. Sc.; Gicquel, M.; Breitenlechner, S.; Pöthig, A. *Angew. Chem. Int. Ed.*, **2018**, *57*, 2953-2957. (f) Chu, J.K.; Rovis, T. *Angew. Chem. Int. Ed.*, **2018**, *57*, *62-101*. ² (a) Peng, B.; Maulide, N. *Chem. Eur. J.*, **2013**, *19*, 13274-13287. (b) Xie, J.; Pan, C.; Abdukader, A.; Zhu, C. *Chem. Soc. Rev.*, **2014**, *43*, 5245-5256. (c) Park, Y.; Kim, Y.; Chang, S. *Chem. Rev.*, **2017**, *117*, 9247-9301. (d) Thansandote, P.; Lautens, M. *Chem. Eur. J.*, **2009**, *15*, 5874-5883.

- ³ (a) Chen, M.S.; White, C. Science, **2010**, 327, 566-571. (b) Murahuashi, S.; Komiya, N.; Nake, T. J. Am. Chem. Soc., **2003**, 125, 15312-15313. (b) Dangel, B.; Godula, K.; Won Youn, S.; Sezen, B.; Sames, D. J. Am. Chem. Soc., **2002**, 124, 11856-11857. (c) Shabashov, D.; Daugulis, O. J. Am. Chem. Soc., **2010**, 132, 3965-3972. (d) Zatolochnaya, O.V.; Gevorgyan, V. Nat. Chem., **2014**, 6, 661-663. (e) Timsina, Y.N.; Gupton, B.F.; Ellis, K.C. ACS Catal., **2018**, 8, 5732-5776. (f) Dhakshinamoorthy, A.; Asiri, A.; Garcia, H. ACS Catal., **2019**, 9, 1081-1102. (g) Zhou, Z.; Kürti, L. Synlett., **2019**, 30, 1525-1535.
- ⁴ (a) Hazelard, D.; Nocquet, P.; Compain, P. *Org. Chem. Front.*, **2017**, *4*, 2500-2521. (b) Collet, F.; Dodd, R.H.; Dauban, P. *Chem. Commun.*, **2009**, *34*, *5061-5074*. (c) Ramirez, T.A.; Zhao, B.; Shi, Y. *Chem. Soc. Rev.*, **2012**, *41*, 921-942. (d) Gutekunst, W.R.; Baran, P.S. *Chem. Soc. Rev.*, **2011**, *40*, 1976-1991. (e) Jeffrey, J. L.; Sarpong, R. *Chem. Sci.*, **2013**, *4*, 4092-4106.
- ⁵ (a) Arai, A.; Ueda, Y.; Morisaki, K.; Furuta, T.; Sasamori, T.; Tokitoh, N.; Kawabata T. *Chem. Commun.*, **2018**, *54*, 2264-2267. (b) Kono, M.; Harada, S.; Nemoto, T. *Chem. Eur. J.*, **2017**, *23*, 7428-7432. (c) Rauser, M.; Ascheberg, C.; Niggemann, M. *Angew. Chem. Int. Ed.*, **2017**, *56*, 11570-11574. (d) Starkov, P.; Jamison, T.F.; Marek, I. *Chem. Eur. J.*, **2015**, *21*, 5278 5300. (e) Ramierez, T.A.; Zhao, B.; Shi, Y. *Chem. Soc. Rev.*, **2012**, *41*, 931–942. (f) Collet, F.; Lescot, C.; Dauban, P. *Chem. Soc. Rev.*, **2011**, *40*, 1926–1936. (g) Bois, J.D. *Org. Process Res. Dev.*, **2011**, *15*, 758–762. (h) Aguila, J. B.; Badiei, Y. M.; Warren, T. H. *J. Am. Chem. Soc.*, **2013**, *135*, 9399- 9406. (i) Zhang, X.; Xu, H.; Liu, X.; Phillips, D.L.; Zhao, C. *Chem. Eur. J.*, **2016**, *22*, 7288 7297.
- ⁶ (a) Hu, X.; Qi, X.; Chen, J.; Zhao, Q.; Wei, Q.; Lan, Y.; Xia, W. Nat. Commun., 2016, 7, 11188-11200. (b)
 Nicolaou, K.C.; Baran, P.S.; Zhong, Y.-L.; Barluenga, S.; Hunt, K.W.; Kranich, R.; Vega, J.A. Iodine. J. Am. Chem. Soc., 2002, 124, 2233-2244. (c) Wang, Y.; Chen, H.; Zhu, X.; Chiba, S. J. Am. Chem. Soc., 2012, 134, 11980-11983. (d) Cecere, G.; König, C.M.; Alleva, J.L.; MacMillan, D.W.C. J. Am. Chem. Soc., 2013, 135, 11521-11524.
 (e) Allen, L. J.; Cabrera, P. J.; Lee, M.; Sanford, M. S. J. Am. Chem. Soc., 2014, 136, 5607-5610. (f) Tranatino, K.T.; Miller, D.C.; Callon, T.A.; Knowles, R.R. J. Am. Chem. Soc., 2015, 137, 6440-6443.
- ⁷ (a) Hofmann, A. W. Ber. Dtsch. Chem. Ges., 1879, 12, 984-990. (b) Wolff, M. Chem. Rev., 1963, 63, 55-64.
 ⁸ (a) McManus, J.B.; Onuska, N.P.R.; Nicewicz, D.A. J. Am. Chem. Soc., 2018, 140, 9056-9060. (b) Margrey, K. A.; Leven, A.; Nicewicz, D.A. Angew. Chem. Int. Ed., 2017, 56, 15644-15648. (c) Shaw, M.H.; Shurtleff, V. W.; Terrett, J. A.; Cuthbertson, J.D.; MacMillan, D.W.C. Science, 2016, 352, 1304-1308. (d) Jeffrey, J.L.; Petronijević, F.R.; MacMillan, D.W.C. J. Am. Chem. Soc., 2015, 137, 8404-8407. (e) Prier, C.K.; MacMillan, D.W.C. Chem. Sci., 2014, 5, 4173-4178. (f) Bartling, H.; Eisenhofer, A.; König, B.; Gschwind, R.M. J. Am. Chem. Soc., 2016, 138, 11860-11871.
- Evoniuk, C. J.; Hill, S. P.; Hanson, K.; Alabugin, I. V. *Chem. Commun.*, **2016**, *52*,7138-7141.
 Evoniuk, C. J.; Gomes, G. P.; Hill, S.; Satoshi, F.; Hanson, K.; Alabugin, I. V. *J. Am. Chem. Soc.*, **2017**, *139*, 16210-16221.

(a) Yang, M.; Su, B.; Wang, Y.; Chen, K.; Jiang, X.; Zhang, Y.; Zhang, X.; Chen, G.; Cheng, Y.; Cao, Z.; Guo, Q.; Wang, L.; Shi, Z. Nat. Comm., 2014, 5, 4707-4713.
(b) Timsina, Y.; Gupton, F.; Ellis, K. ACS Catal., 2018, 8, 5732-5776.
(c) Wang, Z.; Ni, J.; Kuninobu, Y.; Kanai, M. Angew. Chem. Int. Ed., 2014, 53, 3496 –3499.
(d) He, G.; Zhang, S.; Nack, W.; Li, Q.; Chen, G. Angew. Chem. Int. Ed., 2013, 52, 11124 –11128.
(e) Wu, X.; Zhao, Y.; Ge, H. Chem. Eur. J., 2014, 20, 9530 – 9533.
(f) Neumann, J. J.; Rakshi, S.; Dröge, T.; Glorius, F. Angew. Chem. Int. Ed., 2009, 48, 6892 –6895.

- ¹² Labinger, J. A.; Bercaw, J. E. *Nature*, **2002**, *417*, 507–514.
- ¹³ (a) Tan, Y.; Hartwig, J. F. *J. Am. Chem. Soc.*, **2010**, *132*, 3676–3677. (b) Youn, S. W.; Bihn, J. H.; Kim, B. S. *Org. Lett.*, **2011**, 13, 3738–3741. (c) Hartwig, J. F. *Inorg. Chem.*, **2007**, *46*, 1936–1947. (d) Jordan-Hore, J. A.; Johansson, C. C. C.; Gulias, M.; Beck, E. M.; Gaunt, M. J. *J. Am. Chem. Soc.*, **2008**, *130*, 16184–16186.
 ¹⁴ Studer, A. *Chem. Eur. J.*, **2001**, *7*, 1159-1164.
- 15 (a) West, S.P.; Bisai, A.; Lim, A.D.; Narayan, R.R.; Sarpong, R. J. Am. Chem. Soc., 2009, 131, 11187-11194 (b)
 Gruver, J.M.; West, S.P.; Collum, D.B.; Sarpong, R. J. Am. Chem. Soc., 2010, 132, 13212-13213. (c) Jeffrey, J.L.;
 Bartlett, E.B.; Sarpong, R. Angew. Chem. Int. Ed., 2013, 52, 2194-2197.
- ¹⁶ (a) Syroeshkin, M. A.; Kuriakose, F.; Saverina, E. A.; Timofeeva, V. A.; Egorov, M. P.; Alabugin, I. V. *Angew. Chem. Int. Ed.*, **2019**, *58*, 5532-5550. (b) Studer, A.; Curran, D. P. *Nat. Chem.*, **2014**, *6*, 765-773.
- ¹⁷ For the general review of dehydrogenative C–O bond formation, see: Krylov, I. B.; Vil', V A. Terent'ev, A. O. Cross-dehydrogenative Coupling for the Intermolecular C-O Bond Formation. *Beilstein J. Org. Chem.*, **2015**, *11*, 92–146.
- ¹⁸ Yan, D.-M; Zhao, Q.-Q.; Rao, L.; Chen, J.-R.; Xiao, W.-J. Chem. Eur. J., **2018**, 24, 16895-16901.
- ¹⁹ U. S. Department of Health and Human Services Food and Drug Administration (2015). *Q3D Elemental Impurities Guidance for Industry*.
- ²⁰ Topliss, J.G.; Konzelman, L.M.; Sperber, N.; Franklin, E.R. J. Med. Chem., **1964**, 7, 453–456.
- ²¹ (a) Hardcastle, I. R.; Ahmed, S. U.; Atkins, H.; Farnie, G.; Golding, B. T.; Griffin, R. J.; Guyenne, S.; Hutton, C.; Källblad, P.; Kemp, S. J.; Kitching, M. S.; Newell, D. R.; Norbedo, S.; Northen, J.; Reid, R. J.; Saravanan, K.; Willems, H. M.; Lunec, J. J. Med. Chem., 2006, 49, 6209-6221. (b) Riedinger, C.; Endicott, J.A.; Kemp, S.J.; Smyth, L.A.; Watson, A.; Valeur, E.; Golding, B.T.; Griffin, R.J.; Hardcastle, I.R.; Noble, M.E.; McDonnell J.M. J. Am. Chem. Soc., 2008, 130, 16038-16044. (c) Hardcastle, I. R.; Liu, J.; Valeur, E.; Watson, A.; Ahmed, S. U.; Blackburn, T. J.; Bennaceur, K.; Clegg, W.; Drummond, C.; Endicott, J. A.; Golding, B. T.; Griffin, R. J.; Gruber, J.; Haggerty, K.; Harrington, R. W.; Hutton, C.; Kemp, S.; Lu, X.; McDonnell, J. M.; Newell, D. R.; Noble, M. E.; Payne, S. L.; Revill, C. H.; Riedinger, C.; Xu, Q.; Lunec, J. J. Med. Chem., 2011, 54, 1233-1243. (d) Watson, A.F.; Liu, J.; Bennaceur, K.; Drummond, C.J.; Endicott, J.A.; Golding, B.T.; Griffin, R.J.; Haggerty, K.; Lu, X.; McDonnell, J.M.; Newell, D.R.; Noble, M.E.M.; Revill, C.H.; Riedinger, C.; Xu, Q.; Zhao, Y.; Lunec, J.; Hardcastle, I.R. Bioorg. Med. Chem. Lett., 2011, 21, 5916-5919. (e) Grigoreva, T.A.; Novikova, D.S.; Petukhov, A.V.; Gureev, M.A.; Garabadzhiu, A.V.; Melino, G.; Barlevv, N.A.; Tribulovich, V.G. Bioorg. Med. Chem. Lett., 2017, 27, 5197-5202.
- ²² (a) Fajardo, V.; Elango, V.; Cassels, B. K.; Shamma, M. *Tetrahedron Lett.*, **1982**, *23*, 39–42. (b) Kamauchi, H.; Shiraishi, Y.; Kojima, A.; Kawazoe, N.; Kinoshita, L.; Koyama, K. *J. Nat. Prod.*, **2018**, *81*, 1290–1294.
- ²³ Chen, M.-W.; Chen, Q.-A.; Duan, Y.; Ye, Z.-S.; Zhou, Y.-G. Chem. Comm., **2012**, 48, 1698-1700.
- ²⁴ Kang, Z.; Zhang, D.; Shou, J.; Hu, W. Org. Lett., 2018, 20, 983-986.
- ²⁵ (a) Nishimura, T.; Nagamoto, M.; Ebe, Y.; Hayashi, T. *Chem. Sci.*, **2013**, *4*, 4499-4504, (b) Sharma, S.; Oh, Y.; Mishra, N.K.; De, U.; Jo, H.; Sachan, R.; Kim, H.S.; Jung, Y.H.; Kim, I.S. *J. Org. Chem.*, **2017**, *82*, 3359–3367. (c) Nagamoto, M.; Nishimura, T. *Chem. Comm.*, **2014**, *50*, 6274 6277. (d) Nishimura, T.; Noishiki, A.; Ebe, Y.; Hayashi, T. *Angew. Chem. Int. Ed.*, **2013**, *52*, 1777-1780.
- ²⁶ (a) Wasserman, H. H.; Ives, J. l. *Tetrahedron*, **1981**, *37*, 1825-1852. (b) Ogilby, P. R. *Chem. Soc. Rev.*, **2010**, *39*, 3181-3209. (c) Ghogare, A. A.; Greer, A. *Chem. Rev.*, **2016**, *116*, 9994-10034.
- ²⁷ (a) Gao , Y.; Hu, G.; Zhong, J.; Shi, Z.; Zhu, Y.; Su, D.; Wang, J. Angew. Chem. Int. Ed., 2013, 52, 2109-2113.
 (b) Urgoita, G.; SanMartin, R.; Herrero, M.T.; Domínguez, E. Chem. Commun., 2015, 51, 4799-4802. (c) Ma, J.; Hu, Z.; Li, M.; Zhao, W.; Hu, X.; Mo, W.; Hu, B.; Sun, N.; Shen, Z. Tetrahedron, 2015, 71, 6733-6739. (d) Wang, H.; Wang, Z.; Huang, H.; Tan, J.; Xu, K. Org. Lett., 2016, 18, 5680-5683. (e) Guo, C.; Zhang, Y.; Zhang, Y.; Wang, J. Chem. Commun., 2018, 54, 3701-3704. (f) Sterckx, H.; Morel, B.; Maes, B.U.W. Angew. Chem. Int. Ed., 2019, 58, 7946-7970.
- ²⁸ The M06-2X functional has demonstrated to provide good thermodynamic data for organic reactions. For more details, see: (a) Zhao, Y.; Truhlar, D. G. *Theor. Chem. Acc.*, 2008, **120**, 215-241. (b) Zhao, Y.; Truhlar, D. G. *Acc. Chem. Res.*, **2008**, *41*, 157-167.

- ³¹ Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, M. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.
- ³² CYLview, 1.0b; Legault, C. Y., Université de Sherbrooke, 2009 (http://www.cylview.org)
- ³³ ChemCraft 1.8 http://www.chemcraftprog.com, accessed in February 2016.

Open Access Article. Published on 21 February 2020. Downloaded on 2/22/2020 9:51:06 AM

- ³⁴ (a) Chen, Y.-Y.; Zhang, X.-J.; Yuan, H.-M.; Wei, W.-T.; Yan, M. Chem. Commun., **2013**, 49, 10974-10976. (b) Wang, W.-J.; Zhao, X.; Tong, L.; Chen, J.-H.; Zhang, X.-J.; Yan, M. J. Org. Chem., 2014, 79, 8557-8565. (c) Chen, Y.-Y.; Zhang, N.-N.; Ye, L.-M.; Chen, J.-H.; Sun, X.; Zhang, X.-J.; Yan, M. Rsc. Adv., 2015, 5, 48046-48049. (d) Wei, W.-T.; Cheng, Y.-J.; Hu, Y.; Chen, Y.-Y.; Zhang, X.-J.; Zou, Y.; Yan, M. Adv. Synth. Catal., 2015, 357, 3474-3478. (e) Chen, Y.-Y.; Chen, Z.-Y.; Zhang, N.-N.; Chen, J.-H.; Zhang, X.-J.; Yan, M. Eur. J. Org. Chem., 2016, 3, 599-606.
- ³⁵ Nanni Jr., E. J.; Stallings, M. D.; Sawyer, D. T. J. Am. Chem. Soc., **1980**, 102, 4481-4485.
- ³⁶ Pichette Drapeau, M.; Fabre, I.; Grimaud, L.; Ciofini, I.; Ollevier, T.; Taillefer, M. Angew. Chem., Int. Ed., 2015, 54, 10587-10591.
- ³⁷ Li, J.-S.; Yang, F.; Yang, Q.; Li, Z.-L.; Chen, G.-Q.; Da, Y.-D.; Huang, P.-M.; Chen, C.; Zhang, Y.; Huang, L.-Z. Synlett, 2017, 28, 994-998.
- ³⁸ For the effect of such geometric changes on stability and reactivity, see: Komarov, I. V.; Yanik, S.; Ishchenko, A. Y.; Davies, J. E.; Goodman, J. M.; Kirby, A. J. J. Am. Chem. Soc., 2015, 137, 926–930. Hutchby, M.; Houlden, C. E.; Haddow, M. F.; Tyler, S. N. G.; Lloyd-Jones, G. C.; Booker-Milburn, K. I. Angew. Chem., 2012, 124, 563-566. Szostak, M.; Aube, J. Chem. Rev., 2013, 113, 5701–5765. Vatsadze, S. Z.; Loginova, Y. D.; Gomes, G.; Alabugin, I. V. Chem. Eur. J., 2017, 23, 3225-3245.
- ³⁹ Peterson, P.; Shevchenko, N.; Breiner, B.; Manoharan, M.; Lufti, F.; Delaune, J.; Kingsley, M.; Kovnir, K.; Alabugin, I. V. J. Am. Chem. Soc., 2016, 138, 15617–15628.
- ⁴⁰ Cotton, F.A.; Wilkinson, G.; Murillo, C.A.; Bochmann, M. Advanced Inorganic Chemistry (6th ed.).; Wiley: New York, 1999, p. 461.
- ⁴¹ Burton, G.W.; Ingold, K.U. J. Am. Chem. Soc., **1981**, 103, 6472-6477.
- ⁴² (a) Bothe, E.; Schuchmann, M. N.; Schulte-Frohlinde, D.; Sonntag, C. Z. Naturforsch. B: J. Chem. Sci., 1983, 38, 212-219. (b) Song, W.; Xu, T.; Cooper, W. J.; Dionysiou, D. D.; Cruz, A. A. de la; O'Shea, K. E. Environ. Sci. Technol., 2009, 43, 1487–1492. (c) Dorfman, L. M.; Adams, G. E. Reactivity of the Hydroxyl Radical in Aqueous Solutions; U.S. National Bureau of Standards: Washington, DC, 1973.(d) Chen, H.; Lin, L.; Lin, Z.; Guo, G.; Lin, J. M. J. Phys. Chem. A, 2010, 114, 10049-10058.
- ⁴³ (a) Nanni, E. J.; Sawyer, D. T.; Ball, S. S.; Bruice, T. C J. Am. Chem. Soc., **1981**, 103, 2797–2802. (b) Sawyer, D. T.; Nanni, E.J.; Roberts, Jr., J. L. Electrochemical and Spectrochemical Studies of Biological Redox Components, 1982, 585-600. (c) Hayyan, M.; Hasim, M. A.; AlNashef, I. M. Chem. Rev., 2016, 116, 3029-3085.
- ⁴⁴ (a) Nanni Jr., E. J.; Stallings, M. D.; Sawyer, D. T. J. Am. Chem. Soc., **1980**, 102, 4481-4485. (b) Chin, D-H.; Chiericato Jr., G.; Nanni Jr, E. J.; Sawyer, D. T. J. Am. Chem. Soc., 1982, 104, 1296-1299.
- ⁴⁵ Note that the peroxide moiety in this molecule would engage in the anomeric $nO \rightarrow \sigma^*C$ -N interaction. Such interactions were shown to significantly stabilize peroxides with geminal acceptor groups: (a) Gomes, G. P.; Vil', V.; Terent'ev, A.; Alabugin, I. V. Chem. Sci., 2015, 6, 6783 – 6791. (b) Vil', V. A.; Gomes, G. P.; Ekimova, M. V.; Lyssenko, K. A.; Syroeshkin, M. A.; Nikishin, G. I.; Alabugin, I. V.; Terent'ev, A. O. J. Org. Chem., 2018, 83, 13427-13445. c) Juaristi, E.; Gomes, G. P.; Terent'ev, A. O.; Notario, R.; Alabugin, I. V. J. Am. Chem. Soc., 2017, 139, 10799–10813. (d) Gomes, G. P.; Yaremenko, I. A.; Radulov, P. S.; Novikov, R. A.; Chernyshev, V. V.; Korlyukov, A. A.; Nikishin, G. I.; Alabugin, I. V.; Terent'ev, A. O. Angew. Chem. Int. Ed., 2017, 56, 4955-4959. ⁴⁶ Swern, D.; Clements, A. H.; Lung, T. M. Anal. Chem., **1969**, 41, 412-416.

³⁰ Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys., **2010**, 132, 154104.

⁴⁷ (a) Schultz, D.M.; Levesque, F.; DiRocco, D.A.; Reibarkh, M.; Ji, Y.; Joyce, L.A.; Dropinski, J.F.; Sheng, H.; Sherry, B.D.; Davies, I.W. *Angew. Chem. Int. Ed.*, **2017**, *56*, 15274-15278. (b) Tsang, A.S.-K.; Kapat, A.; Schoenebeck, F. *J. Am. Chem. Soc.*, **2016**, *138*, 518-526. (c) Liu, K.-J.; Duan, Z.-H.; Zeng, X.-L.; Sun, M.; Tang, Z.; Jiang, S.; Cao, Z.; He, W.-M. Fast, *ACS Sustainable Chem. Eng.*, **2019**, *7*, 10293-10298. (d) Lesieur, M.; Genicot, C.; Pasau, P. *Org. Lett.*, **2018**, *20*, 1987-1990.

- 48 (a) Griesser, M.; Shah, R.; Van Kessel, A. T.; Zilka, O.; Haidasz, E. A.; Pratt, D. A. J. Am. Chem. Soc., 2018, 140, 3798-3808. (b) Samuni, A.; Krishna, C. M.; Riesz, P.; Finkelstein, E.; Russo, A. J. Biol. Chem., 1988, 263, 17921-17924. (c) Mitchell, J. B.; Samuni, A.; Krishna, M. C.; DeGraff, W. G.; Ahn, M. S.; Samuni, U.; Russo, Biochemistry, 1990, 29, 2802-2807. (d) Krishna, M. C.; Grahame, D. A.; Samuni, A.; Mitchell, J. B.; Russo, A. Proc. Natl. Acad. Sci. U. S. A., 1992, 89, 5537-5541.(e) Krishna, M. C.; Russo, A.; Mitchell, J. B.; Goldstein, S.; Dafni, H.; Samuni, A. J. Biol. Chem., 1996, 271, 26026-26031.
- ⁴⁹ (a) Bobbit, J. M.; Brückner, C.; Merbouh, N. *Org. React.*, **2009**, *74*, 103. (b) Richter, H.; Mancheño, O. G., *Eur. J. Org. Chem.*, **2010**, *2010*, 4460-4467. (c) Neel, A. J.; Hehn, J. P.; Tripet, P. F.; Toste, F. D. *J. Am. Chem. Soc.*, **2013**, *135*, 14044-14047. (d) Tarantino, K. T.; Miller, D.C.; Callon, T. A.; Knowles, R. R. *J. Am. Chem. Soc.*, **2015**, *137*, 6440- 6443.
- ⁵⁰ Zhang, Z.; Gao, Y.; Liu, Y.; Li, J.; Xie, H.; Li, H.; Wang, W. Org. Lett., **2015**, 17, 5492-5495.
- ⁵¹ (a) Semmelhack, M. F.; Schmid, C. R.; Cortes, D. A. *Tetrahedron Lett.*, **1986**, 27, 1119–1122. (b) Hamlin, T.A.; Kelly, C.B.; Ovian, J.M.; Wiles, R.J.; Tilley, L.J.; Leadbeater, N.E. *J. Org. Chem.*, **2015**, *80*, 8150-8167. (c) Richter, H.; Mancheño, O.G. *Eur. J.Org. Chem.*, **2010**, 4460-4467. (d) Dong, J.; Xia, Q.; Yan, C.; Song, H.; Liu, Y.; Wang, Q. *J. Org. Chem.*, **2018**, *83*, 4516-4524.