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Abstract: Gelatin is a biopolymer with interesting properties that can be useful for
biomaterial design for different applications such as drug delivery systems, or 3D scaffolds
for tissue engineering. However, gelatin suffers from poor mechanical stability at
physiological temperature, hence methods for improving its properties are highly desirable.
In the present work, a new chemical cross-linking strategy based on triazolinedione
ene-type chemistry towards stable hydrogel is proposed. Two different homobifunctional
1,2,4-triazoline-3,5(4H)-diones, namely 4,4′-hexane-1,6-diylbis(3H-1,2,4-triazoline-3,5(4H)-dione)
1 and 4,4′-[methylenebis(4,1-phenylene)]bis(3H-1,2,4-triazoline-3,5(4H)-dione) 2 were used as
cross-linkers in different ratio to tyrosine residues in gelatin. The reaction was proved effective
in all experimented conditions and hydrogels featured with different thermal stability were
obtained. In general, the higher the cross-linker/tyrosine ratio, the more thermostable the hydrogel.
The swelling properties are strictly dependent upon the chemical nature of the cross-linker.

Keywords: gelatin; hydrogel; ene-type chemistry; tyrosine; triazolinediones; cyclic diazodicarboxamides;
chemical cross-linking; natural polymers

1. Introduction

Gelatin is a protein mixture obtained from collagen hydrolysis in acid or basic conditions,
with excellent properties in terms of biodegradability, biocompatibility, cell-adhesion features, and
ease of modification, and it is also non-immunogenic. Due to its properties together with its
inexpensiveness and readiness, chemically modified gelatin or gelatin blended with other natural
or unnatural (macro)molecules [1–3] have been extensively employed as biomaterials for tissue
engineering [4,5] and for drug delivery [6]. However, the main limitation in gelatin biomaterial
design concerns its native poor mechanical properties and short degradation times, especially
under physiological conditions [7–9], posing difficulties for shaping gelatin into hydrogels and
scaffolds with stable morphologies and the desired mechanical features. In order to overcome
this drawback, gelatin-based biomaterials are usually the result of physical, enzymatic, or chemical
cross-linking [10–13]. In the crosslinking process, the biopolymer functional groups react chemically,
enzymatically or physically interact with the cross-linker of choice, affording a 3D network. Chemical
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cross-linking is generally preferred, since it affords stable covalent cross-links and better tuning and
reproducibility of the process. Chemical cross-linking may exploit either the intrinsic reactivity of
functional groups present in the biopolymer (i.e., amino acids side chain) [14,15], or the extrinsic
reactivity of functional groups introduced ad hoc in the biopolymer, that can be lately reacted
bio-orthogonally [16]. The second approach often relies on the so-called click-reactions [17,18] based for
example on carbonyl/oxime-hydrazone chemistry [19,20], Staudinger reaction [21,22], Huisgen-type
cycloaddition [23–25], Diels-Alder [26–28], and thiol-ene addition [29,30]. Click-chemistry offers
several advantages such as high yield, mild reaction conditions and chemoselectivity. Despite the
very effective chemistry beyond extrinsic bioorthogonal reactions [31], and its broad applicability
to several fields [32], the main limitation is due to the need of a two step process, the first of which
is the introduction of extrinsic functionalities by chemical or enzymatic modification or by genetic
engineering approaches.

Gelatin has been cross-linked by taking advantage of extrinsic functional groups [33–38] or through
direct cross-linking based on intrinsic amino acid reactivity. The most common cross-linkers used for
gelatin [12] are glutaraldehyde [39,40], 1,4-butanediol diglycidyl ether (BDDGE) [10], genipin [41],
citric acid [42], and bisvinyl sulfonemethyl (BVSM) [43]. All of the above mentioned cross-linking
agents target amino, hydroxyl or carboxyl groups in the amino acid side chains. Less exploited
are protein cross-linking techniques targeting the aromatic ring of tyrosine residues. Among them,
oxidative cross-linking of tyrosine phenolic groups has been proposed, mimicking the well-known
natural oxidation process of phenolic moieties [44–46]. In addition to the oxidative coupling affording
zero-length dityrosine adducts, very recently triazolinedione chemistry [47] has been proposed.

Triazolinedione ene-type chemistry recently emerged as a click-reaction for the bioconjugation
to tyrosine residues, mediated by cyclic monofunctional diazodicarboxamides, such as
4-phenyl-1,2,4-triazoline-3,5-dione (PTAD) [48–51]. Hetherobifunctional triazolinediones (TADs),
have been used for the synthesis of DNA−protein conjugates [52], while homobifunctional TADs have
been applied to the cross-linking of synthetic polypetides [53].

In the present work, we propose for the first time the use of homobifunctional TADs for gelatin
cross-linking towards the production of hydrogels and scaffolds.

2. Results and Discussion

2.1. Cross-Linking of Gelatin

Two different homobifunctional reagents were chosen as protein
cross-linkers, both characterized by two terminals 1,2,4-triazoline-3,5(4H)-diones
groups, namely 4,4′-hexane-1,6-diylbis(3H-1,2,4-triazoline-3,5(4H)-dione) 1 and
4,4′-[methylenebis(4,1-phenylene)]bis(3H-1,2,4-triazoline-3,5(4H)-dione) 2 (Figure 1a). Reagents 1 and
2 were synthesized following literature methodologies (see Supplementary Material for details) [54,55].Molecules 2018, 23, x FOR PEER REVIEW  3 of 12 
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Figure 1. (a) The gelatin cross-linkers hetherobifunctional triazolinediones (TADs) 1 and 2 and the 
corresponding reduced forms 3 and 4, respectively; (b) TADs stability in different solvents (DMSO, 
1:1 DMSO/H2O, 1:1 TRIS Buffer solution-pH = 7.4/acetonitrile). The disappearance of the fuchsia color 
indicates the degradation of 1 and 2. 

Gelatin can be easily dissolved in aqueous solutions above 37 °C; however, TADs are reported 
to undergo degradation in water [50], despite a certain stability of some TADs in aqueous medium 
reported in bioconjugation reactions by PTAD [56] or in cross-linking reaction of a synthetic Lys-Tyr 
polypeptide in TRIS buffer solution by difunctional TAD 2 [53]. In our hands both 1 and 2 almost 
immediately decomposed in any type of aqueous environment, as clearly indicated by the 
disappearing of their characteristic fuchsia color in a few seconds (Figure 1b). Thus, suitable reaction 
conditions should be found for effective gelatin cross-linking by TADs, in order to allow the cross-
linking agents to react with tyrosine residues present in the protein, affording the desired chemical 
reaction towards network formation. Gelatin can be dissolved in DMSO, after vigorous stirring for 3 
h at 37 °C at a concentration of 12 mg/mL; in addition, DMSO has proven to be fully compatible with 
the use of TADs [50]: DMSO solutions of 1 and 2 are stable for several hours since the characteristic 
fuchsia color is maintained, confirming the stability of the two cross-linking agents in this medium 
(Figure 1b). Thus DMSO could be the solvent of choice for the gelatin cross-linking reaction. Given 
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Figure 1. (a) The gelatin cross-linkers hetherobifunctional triazolinediones (TADs) 1 and 2 and the
corresponding reduced forms 3 and 4, respectively; (b) TADs stability in different solvents (DMSO, 1:1
DMSO/H2O, 1:1 TRIS Buffer solution-pH = 7.4/acetonitrile). The disappearance of the fuchsia color
indicates the degradation of 1 and 2.

Gelatin can be easily dissolved in aqueous solutions above 37 ◦C; however, TADs are reported
to undergo degradation in water [50], despite a certain stability of some TADs in aqueous medium
reported in bioconjugation reactions by PTAD [56] or in cross-linking reaction of a synthetic Lys-Tyr
polypeptide in TRIS buffer solution by difunctional TAD 2 [53]. In our hands both 1 and 2 almost
immediately decomposed in any type of aqueous environment, as clearly indicated by the disappearing
of their characteristic fuchsia color in a few seconds (Figure 1b). Thus, suitable reaction conditions
should be found for effective gelatin cross-linking by TADs, in order to allow the cross-linking agents
to react with tyrosine residues present in the protein, affording the desired chemical reaction towards
network formation. Gelatin can be dissolved in DMSO, after vigorous stirring for 3 h at 37 ◦C at a
concentration of 12 mg/mL; in addition, DMSO has proven to be fully compatible with the use of
TADs [50]: DMSO solutions of 1 and 2 are stable for several hours since the characteristic fuchsia color
is maintained, confirming the stability of the two cross-linking agents in this medium (Figure 1b).
Thus DMSO could be the solvent of choice for the gelatin cross-linking reaction. Given the amino acid
composition of porcine gelatin, tyrosine is expected to be present from 3 to 4 mmol per 100 g of dry
gelatin [57]. In order to check the efficacy of the cross-linking, different TADs/tyrosine ratios were
used. In a typical experiment, 100 mg of gelatin are dissolved in DMSO (8 mL) at 37 ◦C; after complete
dissolution, the solution is cooled to r.t. and kept in the dark, due to the thermal and photochemical
instability of 1 and 2 [58], and 0.5:1, 1:1, 2:1, 5:1 TADs/tyrosine molar ratio was added. The reaction
mixtures slowly discolored over 30 min of stirring, indicating the progress of the reaction. Upon
completion of the reaction (indicated by the disappearance of the TAD color), cross-linked gelatin was
recovered by precipitation (adding methanol in the case of 1, and acetone in the case of 2).

Cross-linked gelatin hydrogels (Figure 2) were characterized by their thermal resistance at pH 7.4
and 37 ◦C, swelling properties, FT-IR spectroscopy, and SEM. All the collected data demonstrated the
effectiveness of the cross-linking methodology. Cross-linked gelatin shows improved thermal stability
as TADs/tyrosine ratio increases, as a consequence of increased reticulation.
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Figure 2. (a) cross-linking reaction between gelatin and 1 or 2; (b) recovered hydrogels; (c) dried
cross-linked gelatin hydrogels.

In order to demonstrate that cross-linking occurs through covalent bonds formation (chemical
cross-linking), instead of non-bonding interactions (i.e., hydrogen bonds, physical cross-linking),
gelatin was also treated with the reduced form (urazole) of the TADs (compounds 3 and 4, Figure 1a),
in a 5 fold excess in respect to tyrosine for 30 min (as for the treatment with 1 and 2), and identically
worked up. Given that effective cross-linking renders gelatin insoluble in water at 37 ◦C, water
solubility assay is an immediate and easy way to check the cross-linking. Thus gelatin treated with 3
and 4 was soaked in water at 37 ◦C; the specimen promptly dissolved in water at 37 ◦C, indicating that
physical cross-linking did not occur. This assay demonstrates that chemical covalent cross-linking is
actually occurring with TADs 1 and 2.

2.2. Characterization of Cross-Linked Gelatin

2.2.1. Thermal Stability

Freeze-dried cross-linked gelatin specimens were rehydrated with 1 mL of PBS buffer (pH = 7.4),
placed in a 37 ◦C chamber to test their thermal stability (Figure 3), and compared with pristine
gelatin samples. As expected, pristine gelatin dissolved almost immediately; cross-linked gelatin with
TADs/tyrosine 0.5:1 ratio displayed better resistance when compared to untreated gelatin, dissolving
in about 1 h when reacted with TAD 1 and 2 h with TAD 2, respectively. In general, it was observed that
the increase of TADs/tyrosine ratios affords better performing cross-linked gelatin. For TAD/tyrosine
ratio 5:1, cross-linked gelatin was stable over a month.
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2.2.2. Swelling Properties

Based on thermal stabilities, cross-linked gelatin with TADs/tyrosine 2:1 and 5:1, which resulted
the more stable, were tested for their swelling behavior in water by gravimetric analysis. Gel swelling
properties are usually dependent upon several factors, including pore size of the network, interactions
between the network (polymer chains and cross-linkers) and the solvent, and chain mobility during
the swelling process [59]. The dynamic swelling properties (swelling degree, SD) and the equilibrium
water content (EWC) for Gel_TAD1 and Gel_TAD2 are reported in Figure 4. All of the hydrogel
samples were prepared of same dimensions, approximately (10 mm diameter × 5 mm height), as
described in the Experimental Section.
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Figure 4. (a) Swelling degree for gelatin hydrogel cross-linked either with TAD 1 or 2 at TAD/tyrosine
molar ratio 2:1 and 5:1; (b) equilibrium water content; data are average of three independent
experiments, bars indicate standard deviation and statistical analysis was performed with t-student
with ** p < 0.01).

The SD plot (Figure 4a) shows a similar kinetic behavior for all of the considered specimen within
the first 5 h. However, Gel_TAD1 samples have better water retaining properties if compared to
Gel_TAD2, requiring higher times for reaching the equilibrium. This behavior might be ascribed to the
different hydrophilicity of the linkers and eventually to the different conformational freedom that may
have a role in the chain mobility of the network. The diphenyl moiety in TAD 2 is more hydrophobic
and confers higher conformational rigidity to the cross-linker if compared to the hexyl moiety in TAD
1. In addition, the chemical nature of TAD 2 has more relevance in influencing gel properties as a
function of TAD/Tyr ratio: the higher the TAD/Tyr ratio, the lower SD and EWC values.

2.2.3. FT-IR Characterization

Gelatin specimens were analyzed by FTIR measurements in attenuated total reflection (ATR).
The ATR-FTIR absorption spectra of the different gelatin samples display the typical spectral features
of polypeptides and are characterized by the Amide I and Amide II bands and several partially
overlapped components in the fingerprint region around 1500–800 cm−1 (Figure 5, insets a-1 and b-1).
Small spectral changes were observed after TAD 1 and TAD 2 treatments. The intensity variations were
evaluated by second derivative analysis that enable to discriminate among overlapped components of
the absorption spectra. In particular, a significant increase of the 1013 cm−1 and 952 cm−1 peaks was
observed in the 5:1 TAD 1/tyrosine ratio (Figure 5, insets a-2 and a-3). These components, which are
also present in the neat TAD 1 cross-linker (Figure 5, inset a-1), were tentatively assigned to the CN
vibrations [60,61]. In the case of TAD 2 cross-linker, a strong increase of the 1512 cm−1 component was
observed in the 5:1 TAD 2/tyrosine ratio (Figure 5, insets b-2 and b-3). This component is typically
assigned to the CC vibrations of the aromatic ring [61,62]. The FTIR data thus confirm the gelatin
cross-linking through TAD 1 and TAD 2.
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Low-vacuum scanning electron microscopy was used in order to investigate the surface 
morphological changes induced by the different TADs cross-linkers and ratio experimented. A 
porous structure along with the foam-like morphology was recognizable (Figure 6 and 
Supplementary Material, Figure S5). As a general trend, moving from 0.5:1 to 5:1 TAD/tyrosine ratio 
(Figure 6, and Supplementary Material, Figure S5) the increased cross-linkers amount results in an 
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Figure 5. Insets a-1 and b-1: ATR-FTIR absorption spectra of untreated gelatin, TADs and cross-linked
gelatin specimens reported in the 1725–800 cm−1 region.; the second derivatives of TAD 1 (inset a-2)
and TAD 2 (inset b-2) cross-linked samples are reported in the spectral regions where the contributions
of the TADs moieties can be detected. The intensities of the indicated components were evaluated from
the second derivative spectra (insets a-3 and b-3). Error bars refer to three independent measurements.
Spectra are shown after normalization at the Amide I band area.

2.2.4. Scanning Electron Microscopy Micrographs

Low-vacuum scanning electron microscopy was used in order to investigate the surface
morphological changes induced by the different TADs cross-linkers and ratio experimented. A
porous structure along with the foam-like morphology was recognizable (Figure 6 and Supplementary
Material, Figure S5). As a general trend, moving from 0.5:1 to 5:1 TAD/tyrosine ratio (Figure 6, and
Supplementary Material, Figure S5) the increased cross-linkers amount results in an increase in the
reticulation texture and a less heterogeneity in porosity and pore size due to increased cross-linking,
while pristine gelatin shows a heterogeneous texture with open pores ranging from 5 to 20 µm
(Figure 6a). The addition of the cross-linkers increases the interconnected porosity and the pore size
shrinks down, ranging from 5 to 2 µm.Molecules 2018, 23, x FOR PEER REVIEW  8 of 12 
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Gelatin from porcine skin-Type A was used for hydrogel preparation (Sigma-Aldrich, catalog no. 
G2500). Tyrosine content in gelatin is reported as 3.4 µmol every 100 mg of gelatin [57]. 1H NMR 
spectra were recorded with a Bruker Avance 500 (Bruker corp., Billerica, MA, USA). ATR-FTIR 
spectra of TAD 1 and 2 and related synthetic intermediates were recorded with a Perkin-Elmer 
Spectrum 100 (Perkin-Elmer Waltham, MA, USA); ATR-FTIR spectra of gelatin specimens were 
collected with a Varian 670-IR (Varian Australia Pty Ltd., Mulgrave VIC, Australia) spectrometer 
equipped with the Quest (Specac) ATR device [63]; Scanning electron microscopy (SEM) analysis 
were performed with a Philips XL30 ESEM (FEI, Hillsboro, OR, USA). 

Cross-linked gelatin was freeze-dried by a Christ alpha 1–2 freeze dryer (Christ, Osterode am 
Harz, Germany). Melting points were measured with a Stanford Research Systems Optimelt 
apparatus. 

3.2 Synthesis of Cross-Linking Agents 

Cross-linkers 1 and 2 were synthesized adapting literature procedures reported by Culbertson 
and McGrath [54]. The procedure by Mallakpour and co-worker was used for the oxidation of 
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To 100 mg of gelatin, 8 mL of DMSO were added and the suspension heated to 37 °C until 
complete dissolution. Given tyrosine content, for the 0.5:1 and 1:1 TAD/Tyr hydrogel, 95 µL and 191 
µL of a freshly prepared 5 mg/mL TAD 1 solution in DMSO were added respectively (corresponding 
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15 mg/mL TAD 1 solution in DMSO were added respectively (corresponding to 6.8 and 17.0 µmol of 
TAD 1). The solutions were reacted at r.t. in the darkness under stirring until the purple solution 
turned colorless (30 min). Cross-linked gelatin was recovered by precipitation by the addition of 8 
mL of methanol. The suspension was centrifuged (6500 rpm, 45 min) and washed first with methanol 
(5 mL) then with deionized water (2 mL × 2). The hydrogels formed on the bottom of the centrifuge 
tubes were freeze-dried and used for further characterization. 
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3. Materials and Methods

3.1. General

All reagents and solvents were purchased from commercial sources (Sigma-Aldrich S.r.l., Milan,
Italy and Fluorochem Ltd., Hadfield, United Kingdom) and used without further purification. Gelatin
from porcine skin-Type A was used for hydrogel preparation (Sigma-Aldrich, catalog no. G2500).
Tyrosine content in gelatin is reported as 3.4 µmol every 100 mg of gelatin [57]. 1H NMR spectra were
recorded with a Bruker Avance 500 (Bruker corp., Billerica, MA, USA). ATR-FTIR spectra of TAD 1 and
2 and related synthetic intermediates were recorded with a Perkin-Elmer Spectrum 100 (Perkin-Elmer
Waltham, MA, USA); ATR-FTIR spectra of gelatin specimens were collected with a Varian 670-IR
(Varian Australia Pty Ltd., Mulgrave VIC, Australia) spectrometer equipped with the Quest (Specac)
ATR device [63]; Scanning electron microscopy (SEM) analysis were performed with a Philips XL30
ESEM (FEI, Hillsboro, OR, USA).

Cross-linked gelatin was freeze-dried by a Christ alpha 1–2 freeze dryer (Christ, Osterode am
Harz, Germany). Melting points were measured with a Stanford Research Systems Optimelt apparatus.

3.2. Synthesis of Cross-Linking Agents

Cross-linkers 1 and 2 were synthesized adapting literature procedures reported by Culbertson and
McGrath [54]. The procedure by Mallakpour and co-worker was used for the oxidation of urazoles 3
and 4 [55]. For sake of completeness synthetic procedures are reported in the Supplementary Material.

3.3. Gelatin Cross-Linking

3.3.1. Preparation of TAD 1 Cross-Linked Hydrogel Gel_TAD1

To 100 mg of gelatin, 8 mL of DMSO were added and the suspension heated to 37 ◦C until complete
dissolution. Given tyrosine content, for the 0.5:1 and 1:1 TAD/Tyr hydrogel, 95 µL and 191 µL of
a freshly prepared 5 mg/mL TAD 1 solution in DMSO were added respectively (corresponding to
1.7 and 3.4 µmol of TAD 1); for the 2:1 and 5:1 molar ratio, 127 µL and 318 µL of a freshly prepared
15 mg/mL TAD 1 solution in DMSO were added respectively (corresponding to 6.8 and 17.0 µmol
of TAD 1). The solutions were reacted at r.t. in the darkness under stirring until the purple solution
turned colorless (30 min). Cross-linked gelatin was recovered by precipitation by the addition of 8 mL
of methanol. The suspension was centrifuged (6500 rpm, 45 min) and washed first with methanol
(5 mL) then with deionized water (2 mL × 2). The hydrogels formed on the bottom of the centrifuge
tubes were freeze-dried and used for further characterization.

3.3.2. Preparation of TAD 2 Cross-Linked Hydrogel Gel_TAD2

As described for Gel_TAD1, for the 0.5:1 and 1:1 TAD/Tyr hydrogel, 63 µL and 126 µL of a freshly
prepared 10 mg/mL TAD 2 solution in DMSO were added respectively (corresponding to 1.7 and
3.4 µmol of TAD 2) to the gelatin solution; for the 2:1 and 5:1 molar ratio, 126 µL and 315 µL of a freshly
prepared 20 mg/mL TAD 2 solution in DMSO were added respectively (corresponding to 6.8 and
17.0 µmol of TAD 2). The solutions were reacted at r.t. in the darkness under stirring until the purple
solution turned colorless (30 min). Cross-linked gelatin was recovered by precipitation by the addition
of 8 mL of acetone. The suspension was centrifuged (6500 rpm, 45 min) and washed first with acetone
(5 mL) then with deionized water (2 mL × 2). The hydrogels formed on the bottom of the centrifuge
tubes were freeze-dried and used for further characterization.

3.4. Thermal Stability Studies

Three replicas of dried Gel_TAD specimens (ca 90 mg, 10 mm diameter × 5 mm height) from
each tested condition (TAD and Tyr/TAD ratio) were placed in tagged wells of 12 multiwell plates,
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hydrated with PBS (4 mL, pH = 7.4, physiological conditions), and kept sealed at 37 ◦C. The specimens
were periodically visually inspected.

3.5. Swelling Studies

Dynamic swelling measurements were made by gravimetric measurements. Three replicas of
dried 2:1 and 5:1 Gel_TAD specimens (ca 90 mg, 10 mm diameter × 5 mm height) were soaked in
distilled water at 25 ◦C. The swollen gel discs were periodically removed from water, blotted with
filter paper, and weighed on an analytical balance (Analytical Balance 220 g × 0.1 mg, Radwag AS
220/C/2) and returned to the swelling medium till the equilibrium is reached.

Swelling degree (SD) was calculated from the following equation and reported as a function
of time:

Swelling degree (SD, g·g−1) = (Wt −W0) ×W0
−1. (1)

where Wt is the weight of swelling hydrogel at different time and W0 is the dry weight of the gel.
The equilibrium water content (EWC), was calculated from the following equation:

EWC (%) = (We −W0) ×We
−1 × 100. (2)

where We is the swelling weight of the sample at equilibrium and W0 is the dry weight of the gel.

3.6. SEM Analysis

Scanning electron microscopy (SEM) analysis were performed working at 8 kV accelerating
voltage and in low vacuum mode (1 Torr). Sample were dried, cut, fixed with conductive carbon
tape to standard SEM stubs and directly analyzed. Working at low vacuum condition, no conductive
coatings were applied in order to preserve the original structure. Samples showed good stability under
electron beam illumination at the operating conditions.

4. Conclusions

A new cross-linking methodology for proteins such as gelatin useful for the preparation of
hydrogels has been proposed through the use of homobifunctional triazolinediones. The reaction
is effective, as demonstrated by several characterization techniques and hydrogel thermostability if
compared to untreated gelatin.

Supplementary Materials: The following are available online, Scheme S1: Synthesis of the cross-linking agents
and experimental procedures, Figure S1: 1H NMR of urazole 3, Figure S2: 1H NMR of urazole 4, Figure S3:
ATR-FTIR of urazole 3, Figure S4: ATR-FTIR of urazole 4, Figure S5: SEM images of hydrogels.
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