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Introduction

    Imidazo[1,2-a]pyridine and its derivatives have attracted 
considerable attention due to their wide applications in medicinal 
chemistry and material sciences. For examples, numerous 
functionalized imidazo[1,2-a]pyridines, especially the C−3 
substituted ones, are found to possess pharmaceutical and 
biological activities such as antitumor, antiviral, antiprotozoal, 
antiapoptotic, antipyretic, analgesic as well as antitubercular.[1,2] 
This could be well exemplified by a number of imidazo[1,2-
a]pyridine-containing commercial drugs such as zolpidem, 
alpidem, saripidem, and necopidem, etc. (Figure 1). In addition, 
many imidazo[1,2-a]pyridine derivatives have demonstrated 
unique photo-physical properties, and have thus been developed 
as a new class of fluorescent probes and luminophores.[3] On the 
other hand, (hetero)arylacetonitrile is a privileged scaffold widely 
found in clinical drugs or drug candidates.[4] More attractively, 
the derivatives of (hetero)arylacetonitrile are versatile synthetic 
intermediates owing to their distinctive structural characteristics: 
1) the acidic methylene unit makes them good nucleophiles;[5] 2)
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Figure 1. Selected pharmaceuticals containing an imidazo[1,2-
a]pyridine scaffold.

the cyano group enables them to be ready candidates for amides, 
amines, ketones, acids, esters, etc.;[6] 3) the acetonitrile moiety as 
a whole could be used as a building block for the construction of 
various N-heterocycles.[7] Given the importance of both C−3 
functionalized imidazo[1,2-a]pyridines and (hetero)arylaceto- 
nitriles, the development of efficient and practical methods for 
the preparation of 2-(imidazo[1,2-a]pyridin-3-yl)acetonitriles 
constitutes an important topic for the synthetic community.

In recent years, direct functionalization of inert C(sp2)−H 
bonds is emerging as a highly valuable tool for organic 
synthesis due to its excellent step-economy and atom-efficiency. 
In this regard, extensive studies have been made on the efficient 
introduction of diverse functional groups onto the C−3 site of the 
imidazo[1,2-a]pyridine scaffold through regioselective C(sp2)−H 
bond functionalization reactions.[8] Inspired by those elegant 
pioneering studies and as a continuation of our own interests in 
transition metal-catalyzed C(sp2)−H functionalization of 2-
arylimidazo[1,2-a]pyridines[9] and in diazo compounds as a class 
of efficient coupling partners for Rh(III)-catalyzed C–H bond 
derivations,[10] we have explored the reaction of imidazo[1,2-
a]pyridines with diazoacetonitrile.[11] From this study, a facile 
and convenient synthesis of 2-(imidazo[1,2-a]pyridin-3-yl) 
acetonitriles was successfully established (Scheme 1 (3)). It is 
worthwhile to note herein that although some excellent synthetic 
protocols toward 2-(imidazo[1,2-a]pyridine-3-yl)acetonitriles via 
C(sp2)−H functionalization have already been developed[12] 
(Scheme 1 (1) and (2)), an alternative method to fulfill  this task 
by using the cheap and sustainable FeCl3 as a catalyst under 
oxidant- and ligand-free conditions has not been reported 
previously. Herein, we wish to present our detailed results in this 
regard.
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Scheme 1. Different approaches toward 2-(imidazo[1,2-a]pyridine-
3-yl)acetonitriles.

Results and discussion

Our study was initiated by treating a mixture of 2-phenyl- 
imidazo[1,2-a]pyridine (1a) and diazoacetonitrile (2) in CH3CN 
with [RhCp*Cl2]2 and AgSbF6 at 40 °C under air for 6 h. From 
this reaction, the desired 2-(2-phenylimidazo[1,2-a]pyridin-3-
yl)acetonitrile (3a) was obtained in 21% yield (Table 1, entry 1). 
In the absence of AgSbF6, 3a was formed in a similar yield of 
22% (entry 2), indicating that the presence of an additive is not 
necessary. Next, PdCl2, Fe(ClO4)2, Fe(acac)3, FeCl3, CuCl2·2H2O 
or Cu(OAc)2 was tried as catalyst for this reaction (entries 3-8). 
Among them, the economically and environmentally sustainable 
FeCl3 was found to be the most effective to afford 3a in 47% 
yield (entry 6). Further study on the effect of different 
temperatures showed that the yield of 3a could be improved to 
57%, 66% or 58% when this transformation was carried out at 50 
°C, 60 °C or 70 °C, respectively (entries 9-11). Next, THF, 
DCM, DMF and toluene were tried as the reaction media. Among 
them, DCM gave similar result as that with CH3CN while others 
were much less effective (entries 12-15). As another aspect, 
varying the molar ratio of 1a to 2a from 1:3 to 1:2 or 1:4 gave 3a 
in yields of 46% and 67%, respectively (entries 16 and 17). It 
was also found that prolonging the reaction period from 6 h to 8 
h did not improve the yield of 3a obviously (entry 18) while a 
shortened reaction period resulted in decreased efficiency (entry 
19). When the reaction was carried out under nitrogen instead of 
air, the yield of 3a decreased to 53% (entry 20). Finally, a control 
experiment showed that 3a could not be formed in the absence of 
the iron catalyst (entry 21).

After having established the optimal reaction conditions, the 
scope of substrates for this reaction was then explored. First, a 
series of 2-phenylimidazo[1,2-a]pyridines (1) bearing various 
substituents on different sites of the imidazo[1,2-a]pyridine 
scaffold were tested. The results listed in Table 2 showed that 1 
with a methyl, methoxy, chloro or trifluoromethyl group attached 
on the 6-position were well suitable for this reaction to give 
products 3b-3e. Meanwhile, the electronic nature of the 
imidazo[1,2-a]pyridine unit rendered some effect on this reaction 
as those bearing electron-donating groups (EDGs) generally 
resulted in higher yields than those bearing electron-withdrawing 
groups (EWGs) (3b, 3c vs 3d, 3e). Next, imidazo[1,2-a]pyridine 
with a methyl, methoxy or bromo unit attached on the 7-position 
or a methyl or fluoro group attached on the 8-position were let to 
react with diazoacetonitrile under standard conditions. It turned 
out that the corresponding reactions proceeded smoothly to give 
products 3f-3j in yields ranging from 45% to 62%. In comparison, 
5-methyl-2-phenylimidazo[1,2-a]pyridine (1k) exhibited lower 
reactivity toward 2, most likely due to higher steric hindrance. 

Next, a number of 2-phenylimidazo[1,2-a]pyridines (1) 
bearing various substituents on different positions of the 2-phenyl 
unit were tried. It turned out that 1 with either EDGs such as 
methyl and methoxy or EWGs such as halides and trifluoro- 
methyl on the ortho-, meta- or para-position of the 2-phenyl

Table 1
Optimization studies for the formation of 3aa

N

N

CN

N

N
+ N2 CN

1a 2 3a

conditions

Entry Catalyst Solvent T (oC) Yield (%)b

1c [RhCp*Cl2]2 CH3CN 40 21

2 [RhCp*Cl2]2 CH3CN 40 22

3 PdCl2 CH3CN 40 20

4 Fe(ClO4)2 CH3CN 40 25

5 Fe(acac)3 CH3CN 40 26

6 FeCl3 CH3CN 40 47

7 CuCl2·2H2O CH3CN 40 17

8 Cu(OAc)2 CH3CN 40 18

9 FeCl3 CH3CN 50 57

10 FeCl3 CH3CN 60 66

11 FeCl3 CH3CN 70 58

12 FeCl3 THF 60 53

13 FeCl3 DCM 60 61

14 FeCl3 DMF 60 39

15 FeCl3 toluene 60 26

16d FeCl3 CH3CN 60 46

17e FeCl3 CH3CN 60 67

18f FeCl3 CH3CN 60 68

19g FeCl3 CH3CN 60 61

20h FeCl3 CH3CN 60 53

21 CH3CN 60 ND
aReaction conditions: 1a (0.5 mmol), 2 (1.5 mmol), catalyst (0.05 
mmol), solvent (2 mL), air, 6 h. 
bIsolated yield. 
cAgSbF6 (0.5 mmol). 
d2 (1.0 mmol). 
e2 (2.0 mmol). 
f8 h.
g4 h. 
hUnder N2.

moiety were compatible with the reaction conditions to give 3l-
3w in moderate to good yields. In comparison, para-substituted 
substrates were more efficient than their ortho-substituted 
counterparts. Besides 2-phenylimidazo[1,2-a]pyridines, reactions 
of 2-([1,1'-biphenyl]-4-yl)imidazo[1,2-a]pyridine, 2-(naphthalen-
2-yl)imidazo[1,2-a]pyridine and 2-(thiophen-2-yl)imidazo[1,2-
a]pyridine proceeded equally well to give 3x, 3y and 3z. 
Furthermore, substrates 1 with substituent attached on both the 
imidazo[1,2-a]pyridine scaffold and the 2-phenyl unit took part 
in this reaction smoothly to afford 3aa-3dd in moderate yields. 
When 2-methylimidazo[1,2-a]pyridine was subjected to the 
standard conditions for 6 h, it remained almost intact and the 
desired product 3ee was not obtained. 

As for possible mechanism accounting for the formation of 3a, 
we noticed that Koenigs et al. have proposed that FeTPPCl-
catalyzed alkylation of indoles with diazoacetonitrile should 
proceed via a radical pathway since the alkylation was 
completely inhibited by 2,2,6,6-tetramethyl-1-piperidinyloxyl 
(TEMPO) as a radical scavenger.[11i] To explore if this FeCl3-
catalyzed alkylation of imidazo[1,2-a]pyridines with diazoaceto- 
nitrile is also a radical process, the reaction of 1a with 2 was 
conducted in the presence of 1 equiv., 2 equiv., or 3 equiv. of 
TEMPO. Under these circumstances, 3a was obtained in 42%, 
18% or 16% yield, respectively. The fact that the alkylation of



Table 2
Substrate scope for the synthesis of 3 (I) a,b
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aReaction conditions: 1 (0.5 mmol), 2 (1.5 mmol), FeCl3 (0.05 mmol), 
CH3CN (2 mL), 60 °C, 6 h. 
bIsolated yield.

Table 3
Substrate scope for the synthesis of 3 (II) a,b
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aReaction conditions: 1 (0.5 mmol), 2 (1.5 mmol), FeCl3 (0.05 mmol), 
CH3CN (2 mL), 60 °C, 6 h. 
bIsolated yield.

1a with 2 in the presence of TEMPO is much less efficient than 
that carried out in the absence of TEMPO suggests that it might 
also involve the formation of radical intermediate(s) somewhere 
in the cascade process. Meanwhile, the fact that 3a could still be 
obtained in 16% yield even in the presence of 3 equiv. of 
TEMPO indicates that another pathway involving the formation 
of a carbene intermediate might also exist as proposed by 
Zhou[13a] and Moody[13b] in their studies on the reactions of -
diazophenylacetates or 4-diazo-4H-imidazoles with various 
substrates. To be specific, 2 firstly reacts with FeCl3 to form an 
iron carbene species I. Reaction of I with 1a generates a 
zwitterionic intermediate II. Next, a -elimination occurs with 
II to give intermediate III. Finally, protonation of III affords 
product 3a and releases the catalyst for the next catalytic cycle 
(Scheme 3). Admittedly, more efforts are still needed to clarify 
the exact reaction pathway for the formation of 3a.
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Scheme 2. Control experiments in the presence of TEMPO.
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Scheme 3. Plausible mechanism accounting for the formation of 3a 

To illustrate the usefulness of the products thus obtained, the 
following transformations were conducted. First, 3a was treated 
with H2SO4 in ethanol to afford ethyl 2-(2-phenylimidazo[1,2-a] 
pyridin-3-yl)acetate (4) in high efficiency (Scheme 4 (1)).[12a] 
Second, 3a was treated with H2O2 and K2CO3 in DMSO to afford 
2-(2-phenylimidazo[1,2-a]pyridin-3-yl)acetamide (5) in 72% 
yield (Scheme 4 (2)).[14] Third, a tetrazole derivative (6) was 
obtained through the reaction of 3a with NaN3 under the 
promotion of ZnCl2 (Scheme 4 (3)).[15]

Given the importance of naphtho[1',2':4,5]imidazo[1,2-a] 
pyridine derivatives,[9] 4 was then treated with polyphosphoric 
acid (PPA) with the aim to get naphtho[1',2':4,5]imidazo[1,2-a] 
pyridin-5-ol (7) via an envisioned intramolecular Friedel-Crafts 
acylation (IFCA) followed by a ketone-enol tautomerization. To 
our surprise, 7 was not isolated from the resulting mixture. 
Instead, naphtho[1',2':4,5]imidazo[1,2-a]pyridine-5,6-dione 
(NPDO, 8) was obtained in moderate yield (Scheme 5). It was 
soon realized that the formation of 8 is both synthetically and 
mechanistically attractive since it not only reveals an interesting 
cascade reaction combining an IFCA and an in situ oxidation of 
the methylene unit, but also provides a simple and direct 
alternative synthetic method toward NPDOs, which have been 
identified as highly reactive substrates of NADPH-dependent 
single- and two-electron transferring flavoenzymes.[16]

Finally, to see whether this method is suitable for enlarged 
synthetic missions, the synthesis of 3a was carried out on 5 mmol 
scale. It turned out that the corresponding reaction proceeded 
smoothly to afford 3a in 52% yield (Scheme 6).
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Conclusion

In summary, we have developed a novel C−3 alkylation of 
imidazo[1,2-a]pyridines with diazoacetonitrile, from which an 
efficient and convenient method for the synthesis of the 
synthetically and pharmaceutically valuable 2-(imidazo[1,2-a]- 
pyridine-3-yl)acetonitriles was established. Compared with 
literature methods, the protocol developed herein has advantages 
such as simple substrates, sustainable catalyst, oxidant- and 
ligand-free reaction conditions. Further studies to clarify the 
reaction mechanism and find more applications of diazoaceto- 
nitrile in C−H bond functionalization are currently underway in 
our laboratory.
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