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A B S T R A C T

A simple multifunctional sensor, X, was designed and synthesized based on 8-hydroxy-2,3,6,7-tetrahydro-
1H,5H-pyrido[3,2,1-ij]quinoline-9-carbaldehyde and imidazo[2,1-b]thiazole, which could sequentially identify
Zn2+ and PPi in acetonitrile buffer solution through the presence or absence of fluorescent signals and could
detect In3+ in DMF buffer solution with obvious fluorescence enhancement. The detection limit for Zn2+, PPi
and In3+ were calculated to be 4.58 × 10−8 M, 1.07 × 10−8 M and 2.9 × 10−8 M, respectively. Moreover, X
could quantitatively detect Zn2+, PPi and In3+ in real water samples with the satisfactory recovery rate (90.1
%–97.6 %) and RSD (0.86 %–3.09 %). In addition, the complexation ratio between X and metal ions (Zn2+ and
In3+) was 1:1, which was proved by mass spectrometry titration. The binding mode and sensing mechanism of X
to metal ions (Zn2+ and In3+) were verified by Gaussian calculation based on B3LYP/6-31 G(d) and B3LYP/
LanL2DZ basis set.

1. Introduction

As we all known, metal ions and anions play a vital role in many
fields of medicine, industry, chemistry and biology [1–4]. Among the
various metal ions, Zinc is the second most abundant transition metal
ions in the human body about 2 g which are found in bones, muscles
and blood [5,6]. As an essential metal element to various functions of
the human body it plays an important role in many physiological pro-
cesses, including gene transfection, immunologic function cellular me-
tabolism and so on [7,8]. Also, as a vital metal element for the human
health its imbalance will cause a variety of diseases such as Parkinson’s
disease, anorexia, nanism etc. [9,10]. indium, one of the elements of
ⅢA, is a shiny and soft metal and widely used in industry fields like
semiconductor devices, electrode material and gas sensors [11].
Moreover, further research on indium has revealed that it is extremely
toxic to lung and interfere with the metabolism of irons in the cells
[12–14]. Otherwise, among the various anions, pyrophosphate (PPi,
P2O7

4−), is of particular concern, because it plays an important role in a
number of biological processes such as DNA and RNA polymerizations,
cellular ATP hydrolysis and so on [15–19]. Therefore, it is particularly
meaningful for the detection of Zn2+, In3+ and PPi in ecosystems and
biological systems.

In recent years, fluorescent sensor with low cost, simple operation
and short response time have gradually replaced the traditional de-
tection method and is becoming a new commonly used technology to
detect target metal ions [20–22]. However, there are still many chal-
lenges in the research of fluorescent sensor [23]. For example, it is still
a huge challenge for detection of metal ions selectively without inter-
ference of other transition metal ions with similar chemical properties,
such as Zn2+ and Cd2+ or In3+ and Al3+/Ga3+ [11,24–26]. Moreover,
high sensitivity is another important indicator of sensors [27,28]. The
detection limit of most sensors for target ions has been reported to be
about 10−7 M, which still need to be improved to meet the practical
application requirements. [12,29–31]. In addition, good solubility and
adaptability, high quantum yield and wide wavelength are also the
characteristics of a sensor with excellent performance [13,32–34]. So,
the design and synthesis of fluorescent sensor with high sensitivity and
selectivity for target ions still remains great challenging.

In a general way, compare with other types of sensors, schiff base
formed from the condensation of amines and aldehydes are often de-
signed and synthesized for detection of metal ions due to their simple
structure, good solubility and high recognition of metal ions
[14,35–40]. Among various aldehydes, 8-hydroxy-2,3,6,7-tetrahydro-
1H,5H-pyrido[3,2,1-ij]quinoline-9-carbaldehyde contains julolidine
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moiety, which is often used to synthesize schiff base because of their
water solubility, good planarity and structural rigidity [41,42]. Mean-
while, heterocyclic azoles, containing imidazole and thiazole ring, are
important active molecules that can provide N or S as donor atoms to
bind metal ions [43,44]. The study of schiff base with heterocyclic and
julolidine structures is of great value and should be paid more attention.
Obviously, most of the sensors that have been reported are single-ion
responsive, and a few are capable of detecting multiple targets in re-
spective systems [45–48]. Multi-objective detection of metal ions can
better reflect the diversity of the properties of a sensor, which should be
valued and favored.

In this work, a new schiff base, X, was designed and synthesized by
a simple condensation of 8-hydroxy-2,3,6,7-tetrahydro-1H,5H-pyrido
[3,2,1-ij]quinoline-9-carbaldehyde and imidazo[2,1-b]thiazole-6-car-
bohydrazide. As expected, X could be used as a multifunctional sensor
with high sensitivity and selectivity for sequential detection of Zn2+

and PPi in acetonitrile buffer solution and for cyclic detection of In3+ in
DMF buffer solution.

2. Experimental section

2.1. General methods

All reagents and solvents in this project were of analytical grade and
were used without any treatment. The counter anions of all metal ions
are chloride, sulfate or nitrate ions. All anionic solutions are corre-
sponding sodium or potassium solutions. The Stock solutions of the ions
(0.03 M) were prepared by distilled water and tap water. The stock
solution of X (1 × 10−5 M) was prepared in acetonitrile/H2O and
DMF/H2O at 25 ℃. The fluorescence spectral and UV–vis spectra were
obtained by Edinburgh Instruments Ltd-FLS920 Fluorescence
Spectrophotometer and Shimadzu 3100 spectrometer. 1H NMR and 13C
NMR measurement was performed on a Bruker AV III NMR spectro-
meter with tatramethysilane (TMS) as internal standard and DMSO as
solvent at 400 and 100 MHz, respectively. Infrared spectral data was
obtained on a Bruker Vertex 70 FT-IR spectrometer using samples as
KBr pellets. The sensing mechanism of X to metal ions (Zn2+ and In3+)
were examined by Density functional theory (DFT) calculation which
carried out by Gaussian 09 program based on B3LYP/6-31 G(d) and
B3LYP/LanL2DZ basis set [48].

2.2. Synthesis of X

Compound 1 and 2 were synthesized according to the previous re-
ported reference [49]. Synthesis of (E)-N'-((8-hydroxy-2,3,6,7-tetra-
hydro-1H,5H-pyrido[3,2,1-ij]quinolin-9-yl)methylene)imidazo
[2,1-b]thiazole-6-carbohydrazide (X). imidazo[2,1-b]thiazole-6-car-
bohydrazide (compound 2, 161 mg, 0.884 mmol) and 8-hydroxy-
2,3,6,7-tetrahydro-1H,5H-pyrido[3,2,1-ij]quinoline-9-carbaldehyde
(210 mg, 0.967 mmol) were mixed in 10 ml of ethanol. Then, 2 mg of
TsOH (4-methylbenzenesulfonic acid) as a catalyst were added to the
above reaction mixture. After that, the mixture was stirred for 48 h at

room temperature until the orange precipitate appeared. After the re-
action, the orange precipitate was collected by filtration and washed
with cold ethanol to obtain the pure orange solid X. Yield: 141 mg, 41.9
%. Ms (ESI): m/z = 382.14 [M+H]+, 404.12 [M + Na]+. FTIR (KBr,
cm−1): 3312 (N-H), 1673 (C = O), 1673 (C = N). 1H NMR (400 MHz,
DMSO) δ 12.03 (s, 1 H), 8.63 (s, 1 H), 8.55 (s, 1 H), 8.20 (d, J =4.5 Hz,
1 H), 7.64 (d, J=4.5 Hz, 1 H), 6.86 (s, 1 H), 3.38 (dd, J= 10.7, 5.1 Hz,
4 H), 2.85 – 2.77 (m, 4 H), 2.07 (dt, J = 11.2, 5.6 Hz, 4 H). 13C NMR
(101 MHz, DMSO) δ 157.73, 155.08, 151.27, 145.60, 140.81, 128.57,
125.97, 120.72, 116.72, 115.89, 112.88, 106.81, 106.43, 49.80, 49.34,
26.95, 22.00, 21.18, 20.69.

3. Results and discussion

As shown in scheme 1 , X was designed and synthesized in medium
yield according to the synthetic route. Compound 1 (ethyl imidazo[2,1-
b]thiazole-6-carboxylate) and compound 2 (imidazo[2,1-b]thiazole-6-
carbohydrazide) were synthesized according to a previous report. Then,
X was synthesized by the reaction of Compound 1 and 2 with 41.9 %
yield in ethanol and characterized by 1H NMR (Fig. S1), 13C NMR (Fig.
S2), FTIR (Fig. S3), ESI-MS (Fig. S4). All of the data in the spectra were
in whole accordance with the structure.

3.1. The spectroscopic studies of X toward Zn2+ and P2O7
4− in acetonitrile

buffer solution

The fluorescence sensing properties of X toward various metal ions
(Zn2+, Ag+, Cr3+, Mg2+, In3+, Al3+, Co2+, Cu2+, Ga3+, K+, Li2+,
Cd2+, Mn2+, Hg2+, Ni2+ and Fe3+) were explored in acetonitrile/
buffer solution (v/v = 9/1, tris =10 mM, pH = 7.4). As shown in
Fig. 1(a) and (b), the fluorescence intensity of X was weak under ex-
citation wavelength of 365 nm, which was significantly enhanced
(about 12 times) at 491 nm when Zn2+ was added, while the fluores-
cence intensity did not change in the presence of other metal ions [50].
Furthermore, fluorescence pictures of a solution of X in the absence and
presence of various metal ions under UV light were shown in Fig. 1(c).
Consistent with the fluorescence spectrum change, the color of the so-
lution was weak when no metal ions were present, had significant
change from colorless (Ф = 0.02) to bright yellow-green (Ф = 0.26)
when Zn2+ were added, demonstrating that X could be used as a sensor
for Zn2+. The UV–vis spectral studies of X toward various metal ions
were also shown in Fig. S5. Zn2+, Co2+, Cu2+, Mn2+ and Ni2+ could
cause significant changed in the UV spectrum, which mean that they
could form complexes with X. However, after complexing with X, their
optical phenomena under ultraviolet lamp were different. Furthermore,
competition experiments were also shown in Fig. S6. The presence of
Co2+ and Cu2+ could interfere with the specific recognition of Zn2+ by
X [51,52]. These results indicated that X could be used as a sensor for
Zn2+ even in the presence of most metal ions.

To further explore the sensing properties of X toward Zn2+, the
fluorescence and absorption titration spectral were carried out in
acetonitrile/buffer solution (v/v = 9/1, tris =10 mM, pH = 7.4). As

Scheme 1. Synthesis routes of X. Conditions: (a) THF/ethanol, r.t./refluxed, 20 h/4 h; (b) ethanol, r.t., overnight; (c) ethanol, r.t., TsOH, 48 h.
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shown in Fig. 2(a), the X displayed a weak fluorescence intensity under
excitation wavelength of 365 nm. The fluorescence intensity of X in-
creased gradually with the increased of Zn2+ concentration from 0 to
15 equiv. and reached a plateau at 491 nm (Fig. 2(a) inset). As shown in
Fig. 2(b), the absorption band of free X centered at 383 nm. Upon
gradually addition of Zn2+ to X from 0 to 10 equiv., the absorption
band at 383 nm decreased gradually, while the absorption band near
414 nm and 300 nm increased gradually with two clear isosbestic
points at 332 nm and 398 nm, suggesting that the X could form stable
complexes (X[Zn2+]) with Zn2+. In addition, on the basis of titration
experimental data, the detection limit and the association constant of X
for Zn2+ were calculated to be 4.58 × 10−8 M and 1.02 × 104 M−1,
respectively, according to the formula LOD = 3σ/s (Fig. S7) and the
Benesi-Hildebrand eqn (2) (Fig. S8).

The effect of pH on X performance was measured in the pH range
2–12. As shown in Fig. S9, the X had no fluorescence in the pH range of
2–12. However, in the presence of Zn2+ (10 equiv.), the fluorescence
intensity of X was weak and stable in the pH range of 2–6, gradually
increased in the pH range of 6–8 and remained basically unchanged in
the pH range of 8–12, indicating that X could be used as a sensor to
detect Zn2+ at pH range of 7.4–10.

Moreover, the fluorescence sensing properties of X[Zn2+] toward
various anions (Na4P2O7, NaNO3, NaS2O3, NaHSO3, NaBr, NaCl,
NaNO2, Na2CrO4, NaF, NaBF4, Na2S, Na2SO4, NaHCO3 and KI) were
also explored in acetonitrile/buffer solution (v/v = 9/1, tris =10 mM,

pH = 7.4). As mentioned above, the fluorescence intensity of X was
significantly enhanced when Zn2+ were added. So that, as shown in
Fig. 3(a), the X[Zn2+] had a moderate fluorescence under excitation
wavelength of 365 nm. When various anions were added to the solution
of X[Zn2+], only PPi could cause significant changed (Fig. S10) in
fluorescence intensity due to its ability to extract Zn2+ from the X
[Zn2+] and cause the X to be dissociated, while other anions did not.
Moreover, as shown in Fig. 3(b), the X[Zn2+] could still detect PPi in
the presence of other anions. In addition, it could be clearly seen from
Fig. 3(c) that the fluorescence intensity of X[Zn2+] at 491 nm gradually
decreased with the cumulative addition of PPi from 0 to 10 equiv.
(Fig. 3(c) inset). On the basis of titration experimental data, the re-
levant parameters were also calculated, including the detection limit of
X[Zn2+] on PPi and the association constant of X[Zn2+] with PPi,
which were 1.07 × 10−8 M and 5.7 × 104 M-1, respectively, based on
the above methods (Fig. S11 and Fig. S12). Finally, as shown in
Fig. 3(d), the fluorescence intensity of X was also recyclable when Zn2+

(10 equiv.) and PPi (10 equiv.) were added in sequence. After two
cycles, X still showed an ideal response toward the target ions.

In a short, the free X showed a weak fluorescence intensity in the
ethanol solution. The fluorescence signal was significantly enhanced in
the presence of Zn2+ and then disappeared when PPi was added to the
system, displaying an efficient “on-off-on” fluorescence behavior. These
results indicated that X could be used as sensor for sequential detection
of Zn2+ and PPi in acetonitrile buffer solution.

Fig. 1. (a) and (b) Fluorescence spec-
tral changes of X (1 × 10−5 M) upon
the addition of various metal ions
(Zn2+, Ag+, Cr3+, Mg2+, In3+, Al3+,
Co2+, Cu2+, Ga3+, K+, Li2+, Cd2+,
Mn2+, Hg2+, Ni2+ and Fe3+) in acet-
onitrile/buffer solution (v/v = 9/1, tris
=10 mM, pH = 7.4). (c) Fluorescence
pictures of a solution of X in the pre-
sence of various metal ions under UV
light.

Fig. 2. (a) and (b) Fluorescence and absorption titration spectral of X (1 × 10−5 M) upon the addition of different concentrations of Zn2+ in acetonitrile/buffer
solution (v/v = 9/1, tris =10 mM, pH = 7.4). Fig. 2(a) inset: the change of fluorescence intensity of X with the addition of Zn2+.
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3.2. The spectroscopic studies of X toward In3+ in DMF buffer solution

The fluorescence sensing properties of X toward various metal ions
(In3+, Cr3+, Ni2+, Ag+, Mg2+, Hg2+, Al3+, Fe3+, Cu2+, Ga3+, Co2+,
Cd2+, Mn2+, Li2+, K+ and Zn2+) were also investigated in DMF/buffer
solution (v/v = 9/1, tris =10 mM, pH = 7.4). As shown in Fig. 4(a)
and (b), X also showed weak fluorescence in DMF buffer solution at the

excitation wavelength of 365 nm. When various of metal ions were
added to the X solution, only In3+ could cause a significant change
(about 9 times) in fluorescence intensity at 491 nm, corresponding with
the fluorescence color change from colorless (Ф = 0.014) to yellow-
green (Ф = 0.2), while other metal ions had no effect on fluorescence
intensity (Fig. 4(c)). The results indicated that X could be used as a
sensor for In3+ by fluorescent color changed. Under the same condition,

Fig. 3. (a) Fluorescence spectral changes of X[Zn2+] upon the addition of various anions (Na4P2O7, NaNO3, NaS2O3, NaHSO3, NaBr, NaCl, NaNO2, Na2CrO4, NaF,
NaBF4, Na2S, Na2SO4, NaHCO3 and KI) in acetonitrile/buffer solution (v/v = 9/1, tris =10 mM, pH = 7.4). inset: the color of X and X[Zn2+] system under a UV
lamp. (b) The influence of single anions to the interaction between X[Zn2+] and PPi. (c) Fluorescence titration spectral of X[Zn2+] upon the addition of different
concentrations of PPi. Inset: the change of fluorescence intensity of X with the addition of PPi. (d) Reversible switching of the fluorescence intensity of X by repeated
addition of Zn2+ and PPi.

Fig. 4. (a) and (b) Fluorescence spec-
tral changes of X (1 × 10−5 M) upon
the addition of various metal ions
(In3+, Cr3+, Ni2+, Ag+, Mg2+, Hg2+,
Al3+, Fe3+, Cu2+, Ga3+, Co2+, Cd2+,
Mn2+, Li2+, K+, and Zn2+) in DMF/
buffer solution (v/v = 9/1, tris =10
mM, pH = 7.4). (c) Fluorescence pic-
tures of a solution of X in the presence
of various metal ions under UV light.
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the UV–vis spectral studies of X toward various metal ions were also
shown in Fig. S13, proving X exhibited no or tiny spectral change with
addition of most metal ions. However, upon addition of Fe3+ Cr3+ and
Mn2+, the main peak at 384 nm was enhanced. Moreover, upon mixing
with In3+, Co2+, Cu2+ and Ni2+ the original main peak at 384 nm was
substituted by the new peak around 430 nm, indicating that they could
form complex with X. Furthermore, competition experiments were also
studied in Fig. S14. In the presence of most metal ions, X could still be
used as a sensor to detect In3+. These results indicated that X had great
selectivity for In3+ over other metal ions in DMF buffer solution.

Subsequently, to further explore the sensing properties of X toward
In3+, the fluorescence and absorption titration spectral were explored
respectively in DMF/buffer solution (v/v = 9/1, tris =10 mM, pH =
7.4). As shown in Fig. 5(a), with gradual addition of In3+ from 0 to 18
equiv. to the solution of X, the original weak fluorescence intensity was
increased at 491 nm and reached a platform (Fig. 5(a) inset). And as
shown in Fig. 5(b), upon with increasing concentration of In3+ from 0
to 15 equiv., the original absorption peak decreased gradually at 384
nm along with two new peaks at 416 nm and 430 nm increased steadily.
There were two clear isosbestic points at 348 nm and 396 nm, in-
dicating that the X form stable complexes (X[In3+]) with In3+. In ad-
dition, a good linear relationship (R2 = 0.9877) between the fluores-
cence intensity of X and the concentration of In3+ in the range from 0
to 1 × 10−6 M (Fig. S15). The ratio of 1 / (I - I0) also displayed a good
linear relationship (R2 = 0.9870) versus 1 / In3+ (Fig. S16). On the
basis of experimental data, the detection limit of X for In3+ and the
association constant between X and In3+ were calculated to be 2.9 ×
10−8 M and 2.4 × 104 M−1, respectively, based on the formula LOD =
3σ/s and the Benesi-Hildebrand eqn (2).

The effect of pH on X performance was treated in the pH range

2–11. As shown in Fig. S17, the fluorescence intensity of X was stable in
the pH range of 2–11. Furthermore, in the presence of In3+ (15 equiv.),
the fluorescence intensity of X was enhanced in the pH range of 6–8.
Too much acidity (pH＜5) or alkalinity (pH＞10) will affect the re-
cognition of In3+ by X. Obviously, X showed an excellent ability to
detection of In3+ at pH = 7.4, indicating that X had potential for
biological testing.

The reversibility test was also carried out in Fig. S18 by adding In3+

(15 equiv.) and EDTA (15 equiv.) to the solution of X in sequence. The
solution of X was treated with In3+, leading to a noticeable fluores-
cence increased. And then, the fluorescence intensity was recovered
when EDTA was added into the above solution. In3+ and EDTA were
sequentially added to the solution of X for 4 times with a negligible loss
of fluorescence intensity. After 4 cycles, the fluorescence intensity of X
was still obviously enhanced when upon the addition of In3+.

These results indicated that X could also be used as a reversible
sensor with high sensitivity and selectivity for detection of Zn2+ in DMF
buffer solution.

3.3. The binding mechanisms and theoretical calculations

In order to further explore the sensing mechanism between X and
metal ions (Zn2+ and In3+), the binding model between X and metal
ions (Zn2+ and In3+) was proposed based on mass spectrometry titra-
tion experiment, which was verified and discussed by Gaussian calcu-
lation.

As shown in Fig. S19 and Fig. S20, the peak at m/z = 444.06 cor-
responded to [X + Zn2+ - H+]+ and the peak at m/z = 495.015
corresponded to [X + In3+ - H+]2+, respectively. ESI-mass spectro-
metry analysis proved the complexation ratio between X and metal ions

Fig. 5. (a) and (b) Fluorescence and absorption titration spectral of X (1 × 10−5 M) upon the addition of different concentrations of In3+ in DMF/buffer solution (v/
v = 9/1, tris =10 mM, pH = 7.4). Fig. 5(a) inset: the change of fluorescence intensity of X with the addition of In3+.

Scheme 2. The proposed binding mode of X, X[Zn2+] and X[In3+].
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(Zn2+ and In3+) was 1:1. Therefore, based on the results of ESI-mass
and relevant literature [53], the possible binding model of X and metal
ions was proposed in scheme 2 . Obviously, the oxygen atom on the
hydroxyl group and the nitrogen atoms on the imidazole ring and the
C]N bond were involved in the complexation. After binding with
metal ions, the whole molecule (X[Zn2+] and X[In3+]) may became
more stable because it forms two new ring structures.

Subsequently, in order to prove that the binding mechanism be-
tween X and metal ions was feasible, the molecular structures of X, X
[Zn2+] and X[In3+] were calculated and analyzed using the Gaussian
09 program with the B3LYP/6-31 G(d) and B3LYP/LanL2DZ basis set,
including structural optimization and energy calculation [53]. The
optimized geometry of X X[Zn2+]and X[In3+] were shown in Fig. 6.
From the vertical view, it is clear that all three molecules have strong
planarity regardless of the presence or absence of metal ions. After
binding to metal ions, several key bond angles and bond lengths barely
changed, suggesting that X could be perfectly bound to metal ions
without too much structural modification. As shown in Fig. 7, to further
understand the electronic transitions of X X[Zn2+] and X[In3+], the
energy calculations of orbital were executed at the optimized molecular
structure, including the highest occupied molecular orbital (HOMO)
and the lowest unoccupied molecular orbital (LUMO). For free X, the
HOMO and LUMO were respectively distributed on the julolidine
moiety and imidazo[2,1-b]thiazole, indicating that electrons will
transfer when excited. So, the weak fluorescence intensity of X is due to
the photoinduced electron transfer (PET) mechanism. After binding

with Zn2+ (X[Zn2+]), the degree of intramolecular charge was in-
creased, indicating that the corresponding mechanism of X on Zn2+

was the chelation enhanced fluorescence (CHEF) mechanism. For X
[In3+], it is clearly observed that both the nitrogen on the imidazole
ring and the oxygen on the hydroxyl group had a significant amount of
LUMO coefficient with maximum coefficient remaining with In3+. After
binding with In3+, the optical transfer of lone pair electrons inside the
molecule was prevented, which is the reason for enhanced fluorescence
[54]. Moreover, the energy gap of X X[Zn2+] and X[In3+] were also
calculated to be 3.63 eV, 2.91 eV and 1.97 eV, respectively. Thus, these
results indicated that X could from stable complex with Zn2+ and In3+

ions. The calculated results and experimental phenomena were highly
consistent with the theoretical calculation.

3.4. Application of X in real water sample

The X was applied to recognition of Zn2+, PPi and In3+ in tap water
samples. Various concentrations of Zn2+, PPi and In3+ were prepared
in tap water and were measured by the fluorescence assay method. As
shown in Table 1, the satisfactory recovery rate (90.1 %–97.6 %) and
RSD (0.86–3.09) were obtained from these samples. Thus, these data
indicated that X could be used as a sensor for the quantitative detection
of Zn3+, PPi and In3+ in real water samples.

Fig. 6. The optimized geometry of X X[Zn2+]and X[In3+] at the B3LYP level of theory, where the light-gray, red, blue, white, dark-gray, brown and cyan spheres
denote C, O, N, H, Zn, In and Cl atoms, respectively.

Fig. 7. The energy diagram of HOMO and LUMO orbital of X X[Zn2+]and X[In3+].
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4. Conclusions

In summary, A simple multifunctional sensor, X, was designed and
synthesized based on 8-hydroxy-2,3,6,7-tetrahydro-1H,5H-pyrido
[3,2,1-ij]quinoline-9-carbaldehyde and imidazo[2,1-b]thiazole. The
structure of X was characterized by NMR, FTIR and ESI-MS spectro-
scopy. X could sequentially identify Zn2+ and PPi in acetonitrile buffer
solution through the presence or absence of fluorescent signals and
could detect In3+ in DMF buffer solution with obvious fluorescence
enhancement, displaying an efficient “off-on-off” fluorescence beha-
vior. The detection limit for Zn2+, PPi and In3+ were calculated to be
4.58 × 10−8 M, 1.07 × 10−8 M and 2.9 × 10−8 M, respectively.
Moreover, X could quantitatively detect Zn2+, PPi and In3+ in real
water samples with the satisfactory recovery rate and RSD. In addition,
the complexation ratio between X and metal ions (Zn2+ and In3+) was
1:1. The binding mode and sensing mechanism of X to metal ions (Zn2+

and In3+) were verified by Gaussian calculation based on B3LYP/6-31
G(d) and B3LYP/LanL2DZ basis set.
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