

**ORIENTAL JOURNAL OF CHEMISTRY** 

An International Open Free Access, Peer Reviewed Research Journal

ISSN: 0970-020 X CODEN: OJCHEG 2018, Vol. 34, No.(1): Pg. 286-294

www.orientjchem.org

# Synthesis and Study of Modified Polyvinyl Alcohol Containing Amino Acid Moieties as Anticancer Agent

# ALI H. SAMIR, RUWAIDAH S. SAEED\* and FADHEL S. MATTY

Department of Chemistry, College of Education for Pure Science (Ibn Al-Haitham) / University of Baghdad, Iraq.

\*Corresponding author E-mail: dr.mohammd08@gmail.com

http://dx.doi.org/10.13005/ojc/340131

(Received: July 23, 2017; Accepted: November 03, 2017)

# ABSTRACT

A series of new phthalimides compounds  $[3-7]_{a,i}$  were synthesized from reaction of Malic anhydride, phthalic anhydride, nitro phthalic anhydride, 2-phenyl-4H-benzo[d][1,3]oxazin-4-one, 2-(4-nitrophenyl)-4H-benzo[d][1,3]oxazin-4-one with different amino acids as glycine, alanine, valine, leucine, isoleucine, serine, threonine, tyrosine and Phenyl alanine  $[1]_{a,i}$  under fusion conditions. Compounds  $[3-7]_{a,i}$  react with SOCl<sub>2</sub> in the presence of benzene to produce compounds  $[8-12]_{a,i}$ . Chemical modification of Poly(vinyl alcohol)were obtained by reaction of PVA with compounds  $[8-12]_{a,i}$  using the dimethyl formamide to give compounds  $[13-17]_{a,i}$ . The structure of the synthesized compounds was characterized by their analytical and spectral data as, IR spectra, <sup>1</sup>H, <sup>13</sup>C-NMR, Elemental analysis (CHN), UV-Vis Spectroscopy, Scanning electron microscopy (SEM), Antibacterial activity were screened via two kinds of bacteria. Also, anticancer activity were examined for most of the modified polyvinyl alcohol.

Keywords: Phthalimide, Polyvinyl alcohol, antibacterial and anticancer activities.

# INTRODUCTION

Cyclic imides and their derivatives brought much attention to chemist and pharmacist in the field of research and development<sup>1</sup>, These compounds play an important role in medicinal chemistry in drug development and drug discovery<sup>2</sup>. They Researches used these compounds as antibacterial<sup>3</sup>, analgesic<sup>4</sup>, nerve conduction blocking<sup>5</sup>, hypotensive<sup>6</sup>, muscle relaxant<sup>7</sup>, antitumor<sup>8</sup> antitubercular agents<sup>9</sup> and antinociceptive agents, Also, these compounds interest as reactants for polymer synthesis<sup>10</sup>.

In addition compounds containing phthalimide moiety are distinguished with antimicrobial<sup>11-13</sup>, anti-inflammatory, anxiolytic, antiviral, antibacterial and antitumor properties<sup>14,15</sup>



This is an **3** Open Access article licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (https://creativecommons.org/licenses/by-nc-sa/4.0/ ), which permits unrestricted NonCommercial use, distribution and reproduction in any medium, provided the original work is properly cited. Polyvinyl alcohol (PVA)is a water-soluble polyhydroxy polymer, non-halogenated aliphatic polymers, that has a two dimensional hydrogen-bonded network sheet structure<sup>16</sup>.

PVA is a semi-crystalline polymer containing crystalline and amorphous phase<sup>17</sup> which is used in biomedical and pharmaceutical applications<sup>18</sup> and in industries due to the excellent chemical and physical properties, non-toxicity, good chemical resistance, good film formation capacity.<sup>19</sup>

It has been applied in production of many end products, as lacquers, resins, surgical threads, and food packaging materials<sup>20</sup>.

Encouraged by these observation, the present study to synthesize new series of imide compounds containing amino acids with different heterocycles they may be have more activity and less toxicity as anticancer agents.

Aim of the present work is directed toward modification of polyvinyl alcohol containing active moiety with screened of antibacterial and anticancer activities.

#### **EXPERIMENTAL**

#### **A-Materials**

All the chemical used in the synthesis were supplied from BDH and Sigma-Aldrich.

#### **B** – Instrumentation

Melting points were recorded using electro thermal melting point apparatus and are uncorrected.

Infrared spectra were recorded as KBr disc on SHIMADZU-FT-IR-8400 spectrometer.<sup>1</sup>H, <sup>13</sup>C-NMR spectra was recorded on Bruker 500 MHz instrument using DMSO-d<sub>6</sub> as a solvent and TMS as internal reference, measurement were made at Central lab, Tahran University (Iran). the progress of the reaction was monitored by TLC using aluminum silica gel plates .

# Synthesis of compounds $[2]_{a,b}^{21}$ .

Benzoyl chloride or 4-nitrobenzoyl chloride (0.02 mole) was added to a solution of

2-aminobenzoic acid (0.01 mole) in (30 ml.) pyridine. The mixture was shaken for 5 min. and then kept in room temperature with shaking for 25 min. Mixture was reacted with 15 ml. 10% NaHCO<sub>3</sub>, filtered, washed with water, dried and the crude product was recrystalized from absolute ethanol. The yield of compound[2]<sub>a</sub> was 81% , m.p. (126) and [2]<sub>b</sub> was 77% , m.p (144).

# General procedure for Preparation of compounds $[3-7]_{ai}^{22}$ .

A mixture of equimolar amounts (0.001 mole) of commercially available malic anhydride, phthalic anhydride, nitro phthalic anhydride, 2-phenyl-4H-benzo[d][1,3]oxazin-4-one, 2-(4-nitrophenyl)-4H-benzo[d][1,3] oxazin-4-one were treated with corresponding amino acids[1]<sub>a</sub>. in glacial acetic acid (15 ml.).

Mixture was refluxed for (5 h). A liquot of 25 ml. of ice distilled water was added to the reaction. The compounds was filtered, dried and recrystallized from ethanol. The nomenclature and physical properties for prepared compounds

#### [3-7] , were shown in Table. (1)

| Elemental analysis of compound[3] <sub>c</sub> |              |                         |           |  |
|------------------------------------------------|--------------|-------------------------|-----------|--|
| Calcd: C%=                                     | 54.82        | H%= 5.58                | N% =7.10  |  |
| Found: C%=                                     | 54.69        | H%= 5.42                | N% = 6.21 |  |
| Elemental ar                                   | nalysis of c | ompound[5] <sub>i</sub> |           |  |
| Calcd: C%=                                     | =60 H        | ⊣%= 3.52                | N% =8.23  |  |
| Found: C%=                                     | 58.7 I       | H%= 4.62                | N% = 7.71 |  |
|                                                |              |                         |           |  |

#### Synthesis of compounds [8-12] ail.23

A mixture of compound  $[3-7]_{a-i}$  (0.01mole) and thionyl chloride (0.01mole) placed in dry benzene (10 ml.) and refluxed for 7 hours. The excess of thionyl chloride and benzene were removed under vacuum after cooling.

#### Synthesis of polymers [13-17] 24

(1mole) of PVA and (1mole) of compounds [8-12]<sub>a-i</sub> were placed in 20 ml DMF. The mixture was frequent shaking for 3hr. then refluxed for 2 h product was poured into the water , washed with a little sodium bicarbonate, washed with water , then with ethanol. The product purified by DMSO and reprecipitating from ethanol.

# Biological Activity Antibacterial activity

Some of synthesized compounds have been screend for antibacterial activities against (*Bacillus cereus* and *Esherichia coli*) using cup-plate agar diffusion method<sup>25</sup>. The zone of inhibition measured in mm. Pencilin was (50  $\mu$ g /ml) were used as a standard drug for antibacterial activity to compare with the activity of the synthesized compounds.

# Cytotoxicity Assay

#### Preparation of Cell Lines for Cytotoxicity Assay<sup>26</sup>

Fifteen modified PVA compound with different sizes and concentrations were screened for their anticancer activity and cytotoxicity by using cultured cells in microtiter plate (96 wells). The assay was applied by the following steps:

A-Seeding: When cells in the incubated falcon became monolayer, the confluent monolayer was trypsinzed to get single cell suspension. A liquot 200  $\mu$ l/10<sup>4</sup>-10<sup>5</sup> cells/well from single cell suspension then were added to all the 96 wells of the microtiter plates, which covered by plate lids and sealed with adhesive parafilm. The plate was shaked gently and returned to the incubator.

B-Incubation: Microtiter Plates were then incubated in humidified chamber at 37 °C, 5%  $CO_2$  until the cells reached confluence (i.e., vary according to the type of cell line). The plate was checked out for contamination , after cells attachment

C- Exposure: When the cells are in full of its activity, they were exposed to three concentrations of the fifteen modified of PVA  $\mu$ g/ml for cell line. Aliquot of 200  $\mu$ l of each concentration were pipette into each well, while 200  $\mu$ l of maintenance medium were added to each well of control group, then plates were sealed with adhesive parrafilm and returned to the incubator. Evaluation of cytotoxicity was carried out after 48hours. The photo picture were taken after 24 hours.

D- Staining: Cell viability was measured after 48 h of exposure by removing the medium, adding 20  $\mu$ l/well solution of MTT and incubating for 4 h at 37 °C. The crystals remaining in the wells were solubilized by the addition of 200  $\mu$ l/well of (DMSO) followed by incubation in 37 °C for 15 min. with shaking. The absorbance was measured on a microplate reader at 620 nm . The rate of inhibition of cell growth was calculated according to<sup>27</sup> follow equation.

Inhibition rate =  $\underline{\text{mean of control-mean of treatment x 100 (1.1)}}_{\text{mean of control}}$ 

#### **RESULTS AND DISCUSSION**

Scheme (1) summarized the performed reactions in this work. The structure of compounds  $[2]_{a,b}$  were confirmed from its correct analytical and spectral data . FT-IR spectrum of compound  $[2]_{b}$ , Fig. (3.1), showed<sup>21</sup> appearance band at (1766) cm<sup>-1</sup> due to the carbonyl group of cyclic ester, (1666, 1614) cm<sup>-1</sup> due to the C=N group and (1585) cm<sup>-1</sup> due to the C=C group. The <sup>1</sup>H-NMR spectrum of compound [2]<sub>b</sub>, Fig. (3.2) display the following characteristic chemical shifts , (DMSO) ppm : the aromatic ring protons of compound [2]<sub>b</sub> appeared as multiple at  $\delta$  (6.41-8.64) ppm .

*N*-phthaloyl amino acid derivative  $[3-7]_{a-i}$  using economical experimental conditions via reaction Malic anhydride , phthalic anhydride , nitro phthalic anhydride, 2-phenyl-4H-benzo[d] [1,3] oxazin-4-one, 2-(4-nitrophenyl)-4H-benzo[d] [1,3] oxazin-4-one and different amino acids namely[1]<sub>a-i</sub>, glycine, alanine, valine , leucine , isoleucine, serine, threonine, tyrosine and Phenyl alanine in (15 ml.) of glacial acetic acid , then mixture was refluxed for (5 h) . The mechanism<sup>28</sup>. involves nucleophilic addition reaction, as follows scheme (3.1).



Fig. 1. The mechanism of preparing compound (3-7)

The structure of compounds  $[3-7]_{a-i}$  was confirmed from its correct analytical and spectral data, FT-IR spectra of compounds  $[5]_{a,i}$ , Fig. [(3.3),(3.4)], showed<sup>22</sup> bands at (3300-2400) cm<sup>-1</sup> for (OH) of carboxylic acids, (1780,1735) cm<sup>-1</sup> due to two (N-C=O), (1699) cm<sup>-1</sup> for (C=O) of carboxylic acid .While<sup>1</sup>H-NMR spectrum of compound [5]<sub>a</sub>, Fig. (3.5), showed characteristic chemical shifts (DMSO-d<sub>6</sub>) ppm as follow: the aromatic ring protons appeared as multiple at  $\delta$  (7.69-8.32) ppm and appearance singlet at  $\delta$  (4.31) ppm due to CH<sub>2</sub> proton and singlet in the region of  $\delta$  10.50 due to COOH proton.

The <sup>1</sup>H-NMR spectrum of compound [5]<sub>i</sub>, Fig. (3.6), display characteristic chemical shifts (DMSO-d<sub>6</sub>) ppm as follow: the aromatic ring protons appeared as multiple at  $\delta$  (7.14-7.97) ppm and appearance doublet signal at  $\delta$  (3.14) ppm related to CH<sub>2</sub> proton and triplate signal at  $\delta$  (3.99) due to CH proton.

The FT-IR spectrum of compounds[7], Fig. (3.7) showed disappearance of due to the carbonyl group of cyclic ester at (1766) cm<sup>-1</sup> and appearance band at (1685) cm<sup>-1</sup> due to carbonyl group of carboxylic acid. Also, absorption bands at (1643) cm<sup>-1</sup>, (1608) cm<sup>-1</sup> and (1587) cm<sup>-1</sup> due to (C=O) of amide, (C=N) and (C=C) respectively . The <sup>1</sup>H-NMR spectrum of compound [7]<sub>c</sub>, Fig. (3.8), showed characteristic chemical shifts (DMSO-d<sub>c</sub>) ppm as follow: a singlet signal at  $\delta$  (12.36) ppm for proton COOH group, Many signals in the region  $\delta$  (7.19-8.73) ppm that could be attributed to aromatic protons. Also appearance doublet signal at  $\delta$  (4.13) ppm for proton CH-N group and many signals in the region  $\delta$  (1.88) ppm that could be attributed to proton of CH in CH(CH<sub>3</sub>)<sub>2</sub> and doublet signal at  $\delta$  (0.96) ppm is due to (CH<sub>3</sub>)<sub>2</sub> group. Where as <sup>13</sup>C-NMR spectrum of compound [7], Fig. (3.9), showed: a signal at  $\delta$  (172.91) ppm could be attributed to COOH group, while signal at  $\delta$  (171.72) ppm is due to carbon of C=O amide group. Signal at  $\delta$  (164.45) due to carbon of ph-C=N group. Many signal a  $\delta$  (120-140) ppm could be attributed to carbon of benzene ring. Also signal at  $\delta$  (59.1) ppm related to N-CH group. Signal appeared at  $\delta$  (58.2) ppm is related to carbon of CH in CH(CH<sub>2</sub>)<sub>2</sub>. Two signal at  $\delta$  (19.05-29.55)ppm could be attributed to(CH<sub>a</sub>)<sub>a</sub>

*N*-phthaloyl amino acid chloride derivatives  $[8-12]_{a-i}$  through h the reaction of *N*- phthaloyl amino acids  $[3-7]_{a-i}$  with thionyl chloride in dry benzene was refluxed for (7 h). A mechanism<sup>29</sup> for this reaction may be outlined as followed in scheme (3.2).



Fig. 2. The mechanism of preparing compound (8-12) and

Compound  $[10]_{b}$  was characterized by melting point and FT-IR spectrum . FT-IR spectrum of compound  $[10]_{b}$ , Fig. (3.10), showed<sup>23</sup> the absence of absorption band at (1695) cm<sup>-1</sup> and (3392) cm<sup>-1</sup>due to (carbonyl, hydroxyl) group of carboxylic acid and presence of band at (1761) cm<sup>-1</sup> related to acyl chloride.

Chemical modification of Poly(vinyl alcohol)[13-17]<sub>a-i</sub> was obtained by reaction of PVA with compounds  $[8-12]_{a-i}$  using the dimethyl formamide.

The compounds [13-17 ]<sub>a-i</sub> were identified by FT-IR spectrum . FT-IR spectrum of compound [15]<sub>a</sub>, Fig. (3.11) illustrated the presence of a large peak at 3390 cm<sup>-1</sup> this peak is related to the stretching of O–H from the intramolecular and intermolecular hydrogen bonds, which seen at 2908 cm<sup>-1</sup> and 2943 cm<sup>-1</sup> respectively due to the symmetric and asymmetric stretching vibrational of C–H from alkyl groups <sup>30</sup>, showed the disappearance of absorption band at (1761) cm<sup>-1</sup> due to acyl chloride and appearance of absorption band at (1724) cm<sup>-1</sup> due to carbonyl group of ester<sup>31</sup> and appearance of absorption bands at (C=O) of cyclic imide at (1710-1778) cm<sup>-1</sup>. The <sup>1</sup>H-NMR spectrum of compound [13]<sub>a</sub>, Fig. (3.12), showed<sup>32,33</sup> the following characteristic chemical shifts (DMSO-d<sub>6</sub>) ppm showed the following signals: signal at  $\delta$  (6.63) ppm for proton (CH=CH) group, singlet peak at  $\delta$  (4.48) ppm for proton of (N-CH<sub>2</sub>)group, triplet peak at  $\delta$  (4.24) ppm for (CH)group and doublet peak at  $\delta$  (1.37) ppm for proton (CH<sub>2</sub>) group.

The <sup>1</sup>H-NMR spectrum of compound [15], Fig. (3.13), showed<sup>32,33</sup> the following characteristic chemical shifts (DMSO-d<sub>6</sub>) ppm showed the following signals: many signals at  $\delta$  (8.30-8.32) ppm for proton aromatic protons.triplet peak at  $\delta$  (4.32-4.77) ppm for proton of (N-CH)group, doublet peak at  $\delta$  (3.99) ppm for protonCH<sub>2</sub> in (CH<sub>2</sub>-OH), singelt peak at  $\delta$  (3.45) ppm for proton (OH) group, triplet peak at  $\delta$  (3.05) ppm for (CH-CH<sub>2</sub>) group and doublet peak at  $\delta$  (1.54) ppm for proton (CH<sub>2</sub>-CH) group . The UV-Vis spectrum of compound [14], Fig. (3.14) shows the absorption peaks at (332-402) may attributed to( $\pi$ -  $\pi$ \*) and (n- $\pi$ \*).

## Biological Activity Antibacterial activity

All the newly synthesized derivatives were screened for their *in vitro* antimicrobial activity against *Escherichia coli*, *Bacillus cereus* by measuring the zone of inhibition in mm. Result showed that compounds[6]<sub>f</sub> and [16]<sub>f</sub> exhibit some antibacterial activity with penciline against *E.coli* while compounds [15]<sub>f</sub> and [17]<sub>f</sub> showed antibacterial activity closed to penciline against *Bacillus cereus*. Resalts of all compounds all compounds and their antibacterial activities listed in Table. (3.4).

| Com. No.         | (O-H) cm <sup>-1</sup> | (C-H) arom. cm <sup>-1</sup> | (C-H) aliph. cm <sup>-1</sup> | (C=O) imide. cm <sup>-1</sup> | (C=O) carboxlic |
|------------------|------------------------|------------------------------|-------------------------------|-------------------------------|-----------------|
| [3]              | 3400-2400              | 3053                         | 2968-2879                     | 1732-1770                     | 1681            |
| [3] <sub>b</sub> | 3473                   | 3072                         | 2987-2873                     | 1722-1784                     | 1691            |
| [3]              | 3392                   | 3066                         | 2970-2890                     | 1743-1782                     | 1680            |
| [3] <sub>d</sub> | 3400-2400              | 3055                         | 2965-2877                     | 1728-1770                     | 1690            |
| [3]              | 3464                   | 3075                         | 2939-2855                     | 1716—1774                     | 1691            |
| [3] <sub>f</sub> | 3462                   | 3084                         | 2939-2872                     | 1749-1772                     | 1697            |
| [3]              | 3442                   | 3093                         | 2920-2850                     | 1745-1774                     | 1693            |
| [3] <sub>h</sub> | 3400-2600              | 3051                         | 2985-2939                     | 1718-1735                     | 1685            |
| [3]              | 3400-2400              | 3086                         | 2972-2926                     | 1722-1780                     | 1680            |
| [4] <sub>a</sub> | 3344                   | 3049                         | 2989-2883                     | 1734-1780                     | 1683            |
| [4] <sub>b</sub> | 3400-2400              | 3080                         | 2990-2951                     | 1755-1786                     | 1697            |
| [4] <sub>c</sub> | 3300-2400              | 3049                         | 2966-2890                     | 1712-1761                     | 1691            |
| [4] <sub>d</sub> | 3400-2600              | 3109                         | 3018-2990                     | 1712-1764                     | 1701            |
| [4] <sub>e</sub> | 3396                   | 3090                         | 2933-2877                     | 1710-1772                     | 1696            |
| [4] <sub>f</sub> | 3394                   | 3089                         | 2947-2885                     | 1735-1776                     | 1697            |
| [4]              | 3462                   | 3084                         | 2939-2872                     | 1749-1772                     | 1697            |
| [4] <sub>h</sub> | 3435                   | 3088                         | 2962-2893                     | 1716-1772                     | 1685            |
| [4]              | 3392                   | 3045                         | 2980-2943                     | 1710-1770                     | 1662            |
| [5] <sub>b</sub> | 3392                   | 3089                         | 2995-2941                     | 1724-1784                     | 1695            |
| [5]              | 3408                   | 3041                         | 2970-2881                     | 1726-1784                     | 1690            |
| [5]              | 3400-2400              | 3115                         | 2960-2860                     | 1732-1782                     | 1683            |
| [5]              | 3400-2400              | 3064                         | 2926-2854                     | 1716-1780                     | 1683            |
| [5],             | 3398                   | 3024                         | 2990-2889                     | 1732-1776                     | 1681            |
| [5]              | 3408                   | 3097                         | 3039-2926                     | 1716-1780                     | 1690            |
| [5] <sub>h</sub> | 3400-2600              | 3026                         | 2929-2856                     | 1716-1734                     | 1701            |

Table. 1: FT-IR data of compounds[3-5]

| Com. No.         | (O-H) cm <sup>-1</sup> | (C-H) arom. cm <sup>-1</sup> | (C-H) ali | ph. cm <sup>-1</sup> | (C=O) carboxli | c (C=O) amid. cm <sup>-1</sup> |
|------------------|------------------------|------------------------------|-----------|----------------------|----------------|--------------------------------|
| [6]              | 3442                   | 3049                         | 2943-2    | 895                  | 1685           | 1643                           |
| [6]              | 3400-2400              | 3043                         | 2989-2    | 933                  | 1683           | 1643                           |
| [6]              | 3442                   | 3061                         | 2966-2    | 879                  | 1680           | 1645                           |
| [6]              | 3433                   | 3024                         | 2968-2    | 889                  | 1697           | 1676                           |
| [6]              | 3305                   | 3064                         | 2966-2    | 877                  | 1683           | 1645                           |
| [6]              | 3400-2600              | 3062                         | 3030-2    | 951                  | 1683           | 1668                           |
| [6]              | 3400-2400              | 3064                         | 2960-2    | 883                  | 1685           | 1643                           |
| [6] <sup>°</sup> | 3300-2600              | 3051                         | 2960-2    | 887                  | 1685           | 1643                           |
| [6]              | 3400-2600              | 3062                         | 2926-2    | 858                  | 1690           | 1654                           |
| [7]              | 3502                   | 3078                         | 2965-2    | 879                  | 1681           | 1645                           |
| [7] <sub>b</sub> | 3400-2400              | 3082                         | 2985-2    | 858                  | 1693           | 1655                           |
| [7]              | 3400-2600              | 3059                         | 2999-2    | 854                  | 1689           | 1645                           |
| [7]              | 3508                   | 3057                         | 2962-2    | 875                  | 1681           | 1640                           |
| [7] <sub>,</sub> | 3498                   | 3080                         | 2924-2    | 850                  | 1689           | 1655                           |
| [7]              | 3508                   | 3061                         | 2985-2    | 856                  | 1681           | 1647                           |
| [7] <sub>b</sub> | 3300-2400              | 3007                         | 2929-2    | 827                  | 1690           | 1666                           |
| [7] <sub>i</sub> | 3508                   | 3061                         | 2929—2    | 2856                 | 1681           | 1668                           |

Table. 2: FT-IR data of compounds  $[6,7]_{a_i}$ 

Table. 3 : The inhibition zone of some synthesized compounds

| Compound         | <i>E .coli</i><br>(mm) | <i>Bacillus cereus</i><br>mm |
|------------------|------------------------|------------------------------|
| Peinciline       | 16                     | 22                           |
| DMSO             | Nil                    | Nil                          |
| [3] <sub>b</sub> | 10                     | 10                           |
| [13]             | 15                     | 16                           |
| [4]              | 10                     | 10                           |
| [14]             | 10                     | 21                           |
| [5], "           | 15                     | 16                           |
| [15],            | 15                     | 23                           |
| [6],             | 16                     | 13                           |
| [16],            | 16                     | 21                           |
| [7],             | 14                     | 18                           |
| [17],            | 14                     | 25                           |

Table. 4 : The inhibition zone of some synthesized compounds

| Compound          | <i>E .coli</i><br>mm | Bacillus cereus<br>mm |
|-------------------|----------------------|-----------------------|
| Penciline         | 16                   | 22                    |
| DMSO              | Nil                  | Nil                   |
| [3] <sub>b</sub>  | 10                   | 10                    |
| [13] <sub>h</sub> | 15                   | 16                    |
| [4] <sub>h</sub>  | 10                   | 10                    |
| [14] <sub>b</sub> | 10                   | 21                    |
| [5],              | 15                   | 16                    |
| [15] <sub>f</sub> | 15                   | 23                    |
| [6],              | 16                   | 13                    |
| [16] <sub>f</sub> | 16                   | 21                    |
| [7] <sub>f</sub>  | 14                   | 18                    |
| [17] <sub>f</sub> | 14                   | 25                    |







Fig. 3. Antibacterial activities of compounds against *E.coli* 





Fig. 4. Antibacterial activities of compounds against Bacillus cereus



Fig. 5. Image of before well Staining



Fig. 6. Image of well after Staining



Fig. 7. Image of plate before Staining



Fig.8. Image of plate after Staining



Fig. 9. SEM of compound[9]f

#### Anticancer activity

Fifteen compounds modified polyvinyl alcohol were selected for examend their anticancer activity in Bio-technology research center, Al-Nahrain University, Baghdad, Iraq. Two cell lines were used (mice intestines carcinoma cell line L20b and human pelvic rhabdomyosarcoma (RD). according to the method described by Freshney<sup>26</sup> Results are expressed in percentage. All compounds except [17]<sub>b</sub> and [17]<sub>d</sub> showed more than 50% inhibition for mice intestines carcinoma cell line, while these compounds[17]<sub>b</sub> and [17]<sub>d</sub> exhibit inhibition more than 50% inhibition for mice than 50% inhibition for mice han 50% inhibition for mice han 50% inhibition for mice han 50% inhibition for human pelvic rhabdomyosarcoma.

#### CONCLUSION

Compounds react with SOCI<sub>2</sub> in the presence of benzene to produce compounds.

#### REFRENCES

- SS. Rajput and R.A. Mohammed Ali Sayyed. Synthesis, characterization and Biological Evaluation of 3,4-bis(substituted-Phenyl)-7-(2,6- dichloro-4-(trifluoromethyl)phenyl)-7Hpyrrolo [2,3-C: 5,4- C'] diisoxazoles from2, 6dichloro-4-trifluoro methyl aniline. Shankarsing Sardarsing Rajput, *IJCTPR.*, 2017, 2321-3760, *5*(1): 17–22.
- A. H. Samir, I. y. Majeed and S. M. Hasan, Ibn-Al-haitham *J. for Pure & Appl. Sci.*, 2014, 27(3), 407-420.
- SS. Rajput and RM.Sayyed. Synthesis and formylation of cyclic imides using Vilsmeire-Haack reaction from 2, 6 dichloro-4triflouromethyl



Fig. 10. SEM of compound[9]f

Chemical modification of Poly(vinyl alcohol) were obtained by reaction of PVA with compounds using the dimethyl formamide to give compounds. The structure of the synthesized compounds was characterized by their analytical and spectral data as, IR spectra, <sup>1</sup>H, <sup>13</sup>C-NMR, Elemental analysis (CHN), UV-Vis Spectroscopy, Scanning electron microscopy (SEM), Antibacterial activity were screened via two kinds of bacteria. Also, anticancer activity were examined for most of the modified polyvinyl alcohol.

#### ACKNOWLEDGMENTS

I would like to thank the University of Baghdad- Faculty of Education (Ibn-Al-Haitham) Department of Chemistry to help me for complete this article.

aniline and their anti-microbial activity. *World Journal of Pharmaceutical Research.*, **2015**, *12*, 1689-1695.

- 4. MM .Patil and SS. Rajput.Succinimides synthesis and biological activity. *International Journal of Pharmacy and Pharmaceutical Sciences.*, **2014**, *11*, 0975-1491.
- RS.Dhivare and SS. Rajput. Synthesis and antimicrobial evaluation of some novel bisheterocyclicchalcones from cyclic imides under microwave irradiation. *Chemical Science Review and letter.*, 2015, 4(15), 937-944.
- 6. FC Pennington, PA Guercio and IA. Solomons. The antihypertensive effect of a selective

central muscarinic cholinergic antagonist: N-(4- diethyl amino -2-butynyl)-succinimide. *J. Am Chem Soc*, **1953**, *75*(9), 2261-1.

- DL Musso, FR Cochran, JL Kelley, EW McLean, JL Selph and GC Rigdon, Design and synthesis of (E)-2-(4,6-Difluoro-1indanylidene) acetamide, a potent, centrally acting muscle relaxant with anti- inflammatory and analgesicactivity. *J Med Chem.*, 2003, 46(3), 399-408.
- JH Mansoory and SS Rajput. Synthesis, characterization and biological evaluation of some novel Schiff's bases from Halovinyl aldehyde and 4- amino-5(pyridine-4-yl)-4H-1, 2, 4-triazole-3-thiol. *Der Pharma Chemica.*, 2015, 7(10), 510-514.
- 9. M.Isaka, W.Prathumpai, P.Wongsa, M. Tanticharoen and Hirsutellone F.A dimer of antitubercular alkaloids from the seed fungus Trichoderma species BCC7579. *Org Lett.*, **2006**, *8*(13):2815-7.
- A. M.Al-Azzawi and A. S.Hamd ,synthesis, characterization and antimicrobial activity evaluation of new cyclic imides containing 1,3,4-thiadiazole and 1,3,4- oxadiazole moieties. *International journal of research in pharmacy and chemistry.*, 2013, 3(4), 2231-2781.
- GS Gruzdyes,VA Zincchenko, RI Slovtsov. The Chemical Protection of Plants, by Gruzdyes GS.Mir Publishers, Moscow., **1983**, 272.
- YL Nene, PN Thapliyal. Fungicides In Plant Disease Control, 3th Ed., Oxford & IBH Publishing Co. Pvt. Ltd., New Delhi. 1993, 170.
- 13. US RamuluSree.Chemistry of Insecticides & Fungicides, 2nd Ed., Oxford & IBH Publishing Co. Pvt. Ltd., New Delhi. **1995**, *246*.
- 14. Ullmanns.Encyclopedia of Industrial Chemistry, 5th Ed., Vol. A 20, Editors Elvers B, Hawkins S, Sehulz G. **1991**,190.
- OMO Habib,EB Moawad, SD Badawy, JAF Mansour. Some New Heterocyclic Sulphonates with potential antimicrobial activity: J. Prakt. Chem. 1990; 332: 791. Skehan, P.; Storeng R, Scudiero. D. J. Natl, Cancer Ins., 1990, 82, 1107.
- 16. O.W. Guirguis, and M.T.H. Moselhey. Thermal and structural studies of poly(vinyl alcohol) and *hydroxypropyl cellulose blends Natural Science.*, **2012**, *4*(1), 57-67.
- A.M.Shehap and Dana S.Akil.Structural and optical properties of TiO2 nanoparticles/PVA for different composites thin films. *Int. J. Nanoelectronics and Materials.*, 2016, *9*, 17-36
- SN Zadeh, S Rajabnezhad, Zandkarimi M, S Dahmardeh, Mir L, Mucoadhesive

Microspheres of Chitosan and Polyvinyl Alcohol as A Carrier for Intranasal Delivery of Insulin: In Vitro and *In Vivo* Studies. MOJ Bioequiv Availab., **2017**, *3*(2), 00030. DOI: 10.15406/mojbb. 2017.03.00030

- A.Samzadeh-Kermani,M.Mirzaeeand Mansour Ghaffari-Moghaddam. Polyvinyl Alcohol/ Polyaniline/ ZnO Nanocomposite: Synthesis, Property. Advances in Biological Characterization and Bactericidal Chemistry., 2016, 6, 1-11
- T. Sumer Gaaz, Abu Bakar Sulong, Majid Niaz Akhtar, Abdul Amir H. Kadhum, Abu Bakar Mohamad and Ahmed A. Al-Amiery Properties andApplications of Polyvinyl Alcohol, Halloysite Nanotubes and Their Nanocomposites. Molecules., 2015, 20, 22833–22847.
- 21. G.Deepa, P. Pantel, M.shah; P.S.Patel; Der pharmachemia., **2012**, 4(2), 626-628.
- 22. YA .Nagiev, J .Russiam. Organic chemistry., **2012**, 48(3), 469-472.
- 23. M.S Fouad , I .RedhaAl-Bagati ;A. Al –Juboori; Al-Mustansiriya., *J. Sci* , **2006**, *17*(3), 15-26.
- L.S.Ahamed. Synthesis of New Polyester-Amides from Polyvinyl Alcohol and Convert Some of Them to Polyester-Imide, *Journal of Al-Nahrain University.*, 2011, 14(2), 29-42.
- A.L Barry, The Antimiccrobial Susceptibility Test: principle and practices, (Len and Febiger, Philadelphia, USA), BiolAbstr., 1977, 180(64), 25183.
- RI. Freshney, "Culture of Animal Cells: A manual of Basic Technique and Specialized Applications," 6<sup>th</sup> Edition, Wiley: New York, 2010.
- S. Gao .et al, "Antiproliferative effect of octreotide on gastric cancer cells mediated by inhibition of Akt/PKB and telomerase," *World J. Gastroenterol.*, 2003, 9(10), 2362-2365.
- E.T. Ali ;K.M.Lazim AL-Aliawy and J.H. Tomma. IBN AL-Hatham *J. For pure and Appl .Sci*.
  2011, *24*(3).
- 29. Solomons and fryhle "organic chemistry main and advanced" maestro Awiley Brand., **2013**.
- H. Awada and C. Daneault, Chemical Modification of Poly(Vinyl Alcohol) in *Water Appl. Sci.* 2015, *5*, 840-850.
- E. G. Crispim, J. F. Piai<sup>1</sup>, A. R. Fajardo, E. R. F. Ramos, T. U. Nakamura, C. V. Nakamura, A. F. Rubira, E. C. Muniz, eXPRESS Polymer Letters., 2012, 6(5), 383–395. 2012, 2(5), 79-84
- Smith J.G.,OrganicChemistry, 1st ed, MC Graw Hill, New York, 2006, 522.
- Roman Jantas, Zbigniew Draczynski, Lucyna Herczynska, Dawid Stawski, Poly(vinyl alcohol)-Salicylic Acid Conjugate: Synthesis and Characterization, *American Journal of Polymer Science.*, 2012, 2(5), 79-84 DOI: 10.5923/j.ajps.20120205.01.