

Design, Synthesis, and Anticancer Activity of Novel Benzothiazole Analogues

Aisha Y. Hassan,^a D Marwa T. Sarg,^{b*} D and Ebtehal M. Hussein^b

^aDepartment of Chemistry, Faculty of Science (Girls), Al-Azhar University, Cairo, Egypt ^bDepartment of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt *E-mail: m.t.sarg@hotmail.com

Received October 29, 2018

DOI 10.1002/jhet.3524 Published online 00 Month 2019 in Wiley Online Library (wileyonlinelibrary.com).

On the pharmaceutical account of the reported anticancer activity of benzothiazole derivatives, differently substituted benzothiazole derivatives 2a-c to 34a,b, attached at 2-position to different heterocyclic moieties, were synthesized *via* different chemical reactions. Thirteen of the newly synthesized compounds were selected by the National Cancer Institute, Bethesda, Maryland, USA, and evaluated for their *in vitro* antitumor activity against 60 human tumor cell lines in a one-dose screening panel among which two compounds 4 and 17 showed high activity and were selected for further evaluation in the five-dose full panel assay, in which compound 4 exerted powerful growth inhibitory activity against all cell lines with GI₅₀ ranging from 0.683 to 4.66 μ M/L in addition to excellent lethal activity against most of the cell lines.

J. Heterocyclic Chem., **00**, 00 (2019).

Month 2019

INTRODUCTION

Benzothiazole derivatives represent an important class of biologically active molecules having diverse pharmacological activities including anticancer [1–3], antimicrobial [4,5], anti-inflammaotory [6], antiviral [7], antioxidant [8], antitubercular [9], anticonvulsant [10], antimalarial [11], and antileshmanial [12] activities. Besides, many benzothiazole derivatives were found to be responsible for inhibition of topoisomerase II [13–15] and tyrosine kinase histone deacetylase [16] enzymes.

Therefore, it was aimed to synthesize novel compounds comprising a benzothiazole moiety attached at the 2position to various substituted heterocyclic rings such as thiazole, thiazinane, pyrazole, thiophene, pyrrole, thienopyrimidine, indole, furan, pyridine, chromen, quinoline, triazoloquinoline, and triazepinoquinoline rings, in which benzothiazol-2-acetonitrile was an excellent synthone for these syntheses. The newly synthesized heterocyclic compounds possessed variable substituents, which were designed to fulfill the objectives of the target anticancer activity.

DISCUSSION

Chemistry. 2-(Benzo[d]thiazol-2-yl)acetonitrile 1 was synthesized adopting the reported method [17] (Scheme 1). However, the base-catalyzed reaction of active methylene bearing compounds with phenyl isothiocyanate was reported to yield their corresponding ketene N,S-acetals that were further subjected to cyclization via their reaction with alkylating agent. Therefore, compound 1 was reacted with phenyl isothiocyanate in the presence of finely powdered potassium hydroxide and dimethyl formamide that was followed by addition of chloroacetyl chloride, 1,3dichloropropane, or ethyl bromoacetate to afford the thiazolidinone 2a, thiazinane 2b, or the open-chain ester derivative 2c, respectively.

¹H NMR spectrum of compound **2a** revealed a singlet integrated for two protons at δ 4.17 ppm corresponding to thiazolidinone–CH₂ protons. While compound **2b** showed a multiplet and two triplets each integrated for two protons at δ 3.22–3.29 ppm and 3.59 and 3.97 ppm assigned for thiazinane–C₅, C₄, and C₆–H, respectively, **Scheme 1.** Reagents and conditions: (i) phenyl isothiocyanate/KOH/DMF/0°C, chloroacetyl chloride or 1,3-dichloropropane or ethyl bromoacetate/0°C/RT; (ii) phenyl isothiocyanate/KOH/DMF/RT, ethyl iodide; (iii) hydrazine hydrate 99%/absolute ethanol/reflux; (iv) carbon disulfide/KOH/DMF/10°C, dimethyl sulfate; (v) 4-X-C₆H₄-CHO/absolute ethanol/TEA/reflux.

compound **2c** revealed a deuterium oxide exchangeable singlet signal at δ 10.12 ppm attributed to NH proton.

Aminopyrazoles have been widely reported to be synthesized via several methods [21-28]. Therefore, compound 1 was reacted with phenyl isothiocyanate/ethyl iodide, carbon disulfide/dimethyl sulfate, or differently 4substituted benzaldehyde derivatives to afford the corresponding acrylonitrile derivatives 3, 5, and 7a-c, respectively, which were further subjected to hydrazinolysis through their reaction with hydrazine hydrate 99% in ethanol to yield the target aminopyrazole derivatives 4, 6, and 8, respectively. It is worth mentioning that compounds 7b and 7c upon hydrazinolysis failed to yield the target aminopyrazole derivatives.

¹H NMR spectra of compounds **4** and **6** revealed two deuterium oxide exchangeable singlet signals at δ 6.86–6.16 and 9.36–11.45 ppm attributed to NH₂ and pyrazole-NH protons, respectively.

It is to be noted that C-acylation [29] of compound 1 was achieved *via* reaction with benzoyl chloride in toluene containing a catalytic amount of triethyl amine to yield the target compound 9 (Scheme 2). Also, compound 1 upon heating under reflux with thiosemicarbazide in glacial acetic acid yielded unexpectedly the acyclic hydrazinyl acrylonitrile derivative 10.

¹H NMR spectrum of compound **10** showed three dueterium oxide exchangeable singlet signals at δ 4.74, 7.18 and 9.66 ppm attributed to NH₂, NH–NH₂, and NH protons, respectively.

The reaction of acetonitrile derivatives with chloroacetamide analogues was reported to afford the corresponding aminopyrrolone derivatives [30]. However, 2-(benzo[d]thiazol-2-yl)acetonitrile derivative 1 upon reaction with chloroacetamide in ethanol containing a catalytic amount of potassium carbonate yielded both the alkylated β -cyanoamide derivative 11 and the cyclic aminopyrrolone derivative 12.

¹H NMR spectrum of compounds **11** revealed one deuterium oxide exchangeable singlet signal in compound **11** at δ 7.26 ppm integrated for two protons corresponding to NH₂ protons, while the spectrum of compound **12** showed two deuterium oxide exchangeable singlet signals at δ 4.10 and 7.68 ppm assigned for NH₂ and NH protons, respectively.

It is well documented that Gewald multicomponent reaction of activated nitriles with ketones and elemental sulfur in the presence of a basic catalyst led to the synthesis of the corresponding aminothiophene derivatives [31–35] through the formation of non-isolated acrylonitrile intermediate [31,35].

Scheme 2. Reagents and conditions: (i) benzoyl chloride/toluene/TEA/reflux; (ii) thiosemicarbazide, glacial acetic acid/reflux; (iii) chloroacetamide/ $K_2CO_3/absolute$ ethanol/reflux; (iv) 1-tetralone/sulfur, absolute ethanol/TEA/reflux; (v) 4-nitroacetophenone/NH₄OAc/fusion at 160–170°C; (vi) malononitrile/absolute ethanol/TEA/reflux.

One pot reaction of 2-(benzo[*d*]thiazol-2-yl)acetonitrile 1, 1-tetralone, and elemental sulfur in ethanol containing a catalytic amount of triethyl amine was carried out to afford the acrylonitrile intermediate 13 and the cyclic aminothiophene derivative 14. ¹H NMR spectra of compounds 13 and 14 revealed multiplet signals at δ 0.80–1.40 and 2.60–2.77 ppm due to dihydronaphthyl and dihydronapthothiophene protons, respectively, in addition to a triplet signal in compound 13 at δ 4.12 ppm corresponding to dihydronapthyl–C₂–CH₂ protons. Besides, ¹H NMR spectrum of compound 14 showed a deuterium oxide exchangeable singlet signal at δ 7.50 ppm integrated for two protons corresponding to NH₂ protons.

Treatment of activated nitriles with different ketones in basic medium was reported to afford alkylidene Knoevenagel condensation products [36,37] that were cyclized *via* their reaction with malononitrile [36].

Consequently, compound 1 was condensed with 4nitroacetophenone by fusion in ammonium acetate at $160-170^{\circ}$ C to yield the corresponding benzylidene derivative 15 that was cyclized with malononitrile *via* heating under reflux in ethanol in the presence of triethylamine as a base adopting the reported procedure. [36] The electron impact mass spectrum of compound 16 revealed the molecular ion peak at 387 (1.37), while the base peak appeared at 95 (100).

Base-catalyzed reactions of active methylene bearing compounds with phenyl isothiocyanate were reported to afford the corresponding potassium salt of thiocarbamoyl derivative that upon cyclization with phenacyl halide yielded their corresponding thiophene derivative [21,38] (Scheme 3). Compound 1 was stirred with phenyl isothiocyanate in dimethyl formamide containing potassium hydroxide at room temperature followed by treatment with 4-chlorophenacyl bromide to provide the corresponding thiophene derivative 17. ¹H NMR spectrum of compound 17 showed two deuterium oxide exchangeable singlet signals at δ 8.54 and 10.42 ppm assigned for NH₂ and NH protons, respectively.

Furthermore, the reaction of active methylene moiety in cyanomethyl containing compounds with electrophilic reagents such as carbon disulfide yielded ketene-acetal intermediates, which were cyclized with haloesters to afford their corresponding thiophene derivatives [39]. So compound 1 was stirred with carbon disulfide in dimethyl formamide containing potassium hydroxide at 10°C followed by addition of ethyl chloroacetate to form the corresponding 2-aminoester derivative 18 that was subjected to hydrazinolysis via refluxing with hydrazine hydrate to yield the acid hydrazide analogue **19**. ¹H NMR spectrum of compound 18 showed a triplet signal at δ 1.13 ppm and a quartet signal at δ 4.04 ppm due to ester methyl and methylene protons, respectively, while ¹H NMR spectrum of compound 19 lacked the triplet and quartet signals characteristic to ester ethyl protons and revealed three dueterium oxide exchangeable singlet signals at δ 5.01, 5.79, and 11.86 ppm assigned for acid hydrazide NH₂, thiophene-C₃-NH₂, and NH protons, respectively.

Scheme 3. Reagents and conditions: (i) phenyl isothiocyanate/KOH/DMF/0°C/4-chlorophenacyl bromide; (ii) carbon disulfide/KOH/DMF/10°C, ethyl chloroacetate; (iii) hydrazine hydrate 99%/absolute ethanol/reflux; (iv) phthalic anhydride/gl. AcOH/reflux; (v) gl. AcOH/Ac₂O/reflux.

Condensation of acid hydrazide analogue **19** with either phthalic anhydride or glacial acetic acid/acetic anhydride mixture yielded the corresponding carboxamide derivatives **20** and acetamide derivative **21**, respectively. Electron impact mass spectra of compounds **20** and **21** revealed their molecular ion peaks at m/z (%) 452 (3.73) and 388 (7.71), while their base peaks appeared at m/z (%) 248 (100) and 91 (100), respectively.

Compound 1 was stirred with ethyl 2-chloro-3oxobutanoate in sodium ethoxide solution at room temperature to yield the corresponding furan-3carboxylate derivative 22 (Scheme 4). This reaction is postulated to proceed *via* nucleophilic substitution reaction with removal of hydrogen chloride molecule followed by subsequent addition of tautomeric OH group on the cyano function.

¹H NMR spectrum of compound **22** revealed a triplet and a quartet signal at δ 1.35 and 4.34 ppm corresponding to ester methyl and methylene protons, respectively, in addition to a deuterium oxide exchangeable singlet signal at δ 7.83 ppm integrated for two protons assigned for NH_2 protons.

Elzahabi [40] documented that the reaction of 2-(benzo[*d*]thiazol-2-yl)acetonitrile with benzvlidene malononitrile afforded the corresponding aminopyridine carbonitrile analogue. Therefore, compound 1 was heated under reflux with 2-(2,4-dimethoxybenzylidene) malononitrile 23 [41] in absolute ethanol containing a catalytic amount of piperidine to provide the aminopyridine carbonitrile derivative 24. The reaction was suggested to proceed via Michael addition of the active methylene to the arylidene double bond followed by the nucleophilic addition of exocyclic NH on the cyano function to yield the target aminopyridine derivative.

¹H NMR spectrum of compound **24** revealed two singlet signals at δ 3.91 and 3.97 ppm corresponding to two methoxy protons, in addition to a deuterium oxide exchangeable singlet signal at δ 6.81 ppm due to NH₂ protons.

Scheme 4. Reagents and conditions: (i) ethyl 2-chloro-3-oxobutanoate/NaOEt/RT; (ii) 2-(2,4-dimethoxybenzylidene)malononitrile 23/absolute ethanol/ piperidine/reflux; (iii) 5-bromosalicylaldehyde/absolute ethanol/piperidine/reflux; (iv) hydrazine hydrate 99%/absolute ethanol/reflux.

Moreover, cyclocondensation of compound 1 with 5bromosalicylaldehyde in absolute ethanol containing a catalytic amount of piperidine yielded the corresponding chromen-2-imine derivative 25. The reaction was assumed to proceed through condensation of salicylaldehyde with activated nitrile with subsequent intramolecular cyclization through addition of phenolic hydroxyl function on the triple bond of cyano group. Such chromen-2-imine derivative was subjected to hydrazinolysis via heating under reflux with hydrazine hydrate in absolute ethanol to afford the corresponding iminoquinolinamine derivative 26.

However, the 2-iminoquinoline-1-amine derivative **26** was further utilized for the synthesis of different triazine and triazepine derivatives (Scheme 5). In which compound **26** was reacted with ethyl 2-chloro-3-oxobutanoate to yield the target triazin-6-one derivative **27**. ¹H NMR spectrum of compound **27** revealed two singlet signals at δ 2.30 and 3.57 ppm assigned for CH₃ and triazine-C₃ protons, respectively, in addition to a deuterium oxide exchangeable singlet signal at δ 8.15 ppm attributed to NH proton.

It is to be noted that multicomponent reaction of compound **26** with compound **1** and 4-chorobenzaldehyde in dioxane afforded the corresponding aminotriazepine analogue **28**. The reaction was suggested to proceed *via*

initial reaction of 4-chlorobenzaldehyde with compound **1** to yield the benzylidine derivative, which reacted with compound **26** *via* Michael addition of amino group to the benzylidene double bond followed by intramolecular cyclization through addition of imino NH on the cyano function. ¹H NMR spectrum of compound **28** revealed a deuterium oxide exchangeable singlet signal at δ 11.11 ppm integrated for two protons assigned for NH₂ protons.

Also, compound **26** was heated with 1-tetralone and 2,4dichlorobenzaldehyde in dioxane containing a catalytic amount of p-toluene sulfonic acid to afford the corresponding triazepine derivative **29**. The reaction was suggested to proceed through the reaction of 1-tetralone with the aldehyde to yield the arylidine intermediate that was subjected to Michael addition of imino NH to the arylidene double bond with subsequent cyclocondensation.

¹H NMR spectrum of compound **29** revealed two triplet signals at δ 2.03 and 2.59 ppm attributed to tetrahydronaphthyl–C₄ and C₃–CH₂ protons, respectively. Besides, a singlet signal at δ 4.56 ppm integrated for one proton assigned for triazepine–C₅ proton.

Furthermore, the reaction of compound 26 with the reagents of either 23 and 30[41] was carried out *via* heating under reflux in absolute ethanol containing a catalytic amount of piperidine to yield the target

Scheme 5. Reagents and conditions: (i) ethyl 2-chloro-3-oxobutanoate/fusion at 180–190°C; (ii) 2-(benzo[*d*]thiazol-2-yl)acetonitrile 1/ 4-chlorobenzaldehyde/dioxane/ reflux; (iii) 1-tetralone/2,4-dichlorobenzaldehyde/p-toluene sulfonic acid/dioxane/reflux; (iv) 2-(2,4dimethoxybenzylidene)malononitrile 23 or ethyl 2-cyano-3-(2,4-dimethoxyphenyl)acrylate 30/absolute ethanol/piperidine/reflux; (v) 2-(bis(methylthio)methylene) malononitrile 32 or ethyl 2-cyano-3,3-bis(methylthio)acrylate 33/DMF/TEA/reflux.

Table 1

The mean growth percent, delta values, the percent growth inhibition, and the lethality percent against some subpanel cell lines of the selected compounds of Scheme 1.

Comp. no.	Mean growth		Subpanel cell lines (lethality
(NSC-number)	percent	Panel: Subpanel cell lines (growth inhibition percent)	percent)
2b (790032)	89.94 (31.26)	Leukemia: MOLT-4 (19.40), SR (16.52). Non-Small Cell Lung Cancer: HOP-92 (24.08), NCI-H226 (27.48), NCI-H23 (16.90), NCI-H522 (41.32). Colon Cancer: HCT-116 (19.25). CNS Cancer: SNB-75 (18.28). Melanoma: UACC-62 (39.54). Ovarian Cancer: IGROV1 (31.48), OVCAR-4 (23.11). Renal Cancer: UO-31 (37.94). Braget Cancer: MDA MB 231(ATCC (22.45), T.47D (27.20))	
3 (790038)	83.86 (43.20)	 Leukemia CCRF-CEM (20.16), K-562 (15.37), MOLT-4 (26.29), RPMI-8226 (34.62), Non-Small Cell Lung Cancer: A549/ATCC (15.04), HOP-62 (18.00), HOP-92 (57.51), NCI-H226 (20.56), NCI-H522 (24.98). Colon Cancer: HCT-116 (40.42), HCT-15 (17.00), HT29 (19.48), KM12 (20.09). CNS Cancer: SNB-19 (16.75), SNB-75 (23.70), U251 (15.56). Melanoma: UACC-62 (50.91). Ovarian Cancer: IGROV1 (29.88), OVCAR-4 (28.67), SK-OV-3 (22.35). Renal Cancer: ACHN (20.13), CAKI-1 (15.31), SN12C (18.34), UO-31 (37.45). Prostate Cancer: PC-3 (27.03). Breast Cancer: MCF7 (34.58), MDA-MB-231/ATCC (29.61), BT-549 (17.63), T-47D (59.34), MDA-MB-468 (31.89). Leukemia CCME CEM (01.55). 	
4 (790039)	23.76 (102.88)	Leukema CCRF-CEM (91.55), HL-60 (1B) (83.39), K-562 (95.17), MOL1-4 (95.94), RPMI-8226 (76.03), SR (86.39). Non-Small Cell Lung Cancer A549/ATCC (80.01), EKVX (80.98), HOP-62 (71.35), NCI-H226 (42.68), NCI-H23 (75.84), NCI-H322M (62.38), NCI-H460 (94.06). Colon Cancer Colo 205 (35.78), HCC-2998 (81.72), HCT-116 (96.27), HCT-15 (88.91), HT29 (41.52), KM12 (84.38), SW-620 (84.53). CNS Cancer SF-268 (68.96), SF-295 (71.37), SF-539 (44.88), SNB-19 (65.95), SNB-75 (55.84), U251 (77.97).	HOP-92 (15.78), NCI-H522 (44.56).
5 (790035)	57.78 (70.63)	 Melanoma: MALME-3 M (16.62), M14 (93.59), MDA-MB-435 (77.20), SK-MEL-2 (73.22), SK-MEL-28 (64.59), SK-MEL-5 (42.35), UACC-257 (49.36), UACC-62 (72.77). Ovarian Cancer: IGROV1 (71.54), OVCAR-3 (74.66), OVCAR-4 (70.46), OVCAR-5 (65.52), OVCAR-8 (61.61), NCI/ADR-RES (69.96), SK-OV-3 (51.23). Renal Cancer 786–0 (89.83), A498 (53.24), ACHN (84.50), CAKI-1 (74.88), RXF 393 (63.74), SN12C (65.80), TK-10 (77.05), UO-31 (81.24). Prostate Cancer PC-3 (85.06), DU-145 (72.18). Breast Cancer MCF7 (87.57), HS 578 T (57.76), BT-549 (61.86), T-47D (97.10), MDA-MB-468 (82.47). Leukemia: CCRF-CEM (75.29), HL-60 (TB) (55.41), K-562 (52.57), MOLT-4 (36.37), RPMI-8226 (74.96), SR (18.78). Non-Small Cell Lung Cancer: A549/ATCC (25.24), EKVX (25.75), HOP-62 (27.49), NCI-H226 (41.01), NCI-H23 (41.74), NCI-H322M (20.56), NCI-H460 (42.27), NCI-H522 (93.73). Colon Cancer: HCC-2998 (17.82), HCT-116 (85.75), HCT-15 (38.17), KM12 (41.73), SW-620 (18.47). CNS Cancer: SF-268 (44.93), SF-539 (39.83), SNB-19 (33.10), SNB-75 (25.72), U251 (23.48). Melanoma: LOX IMVI (15.85), MALME-3 M (32.05), M14 (51.92), MDA-MB-435 (23.52), SK-MEL-2 (59.99), SK-MEL-28 (61.21), SK-MEL-5 (72.14), UACC-257 (46.00), UACC-62 (90.56). 	LOX IMVI (79.12). MDA-MB-231/ ATCC (16.96). HOP-92 (12.85).

Month 2019

		(Continued)	
Comp. no. (NSC-number)	Mean growth percent	Panel: Subpanel cell lines (growth inhibition percent)	Subpanel cell lines (lethality percent)
	*	Ovarian Cancer: IGROV1 (50 70) OVCAR-3 (29 99) OVCAR-4 (31 88)	· ·
		OVCAR-5 (27.51), OVCAR-8 (29.84), NCI/ADR-RES (23.34), SK-OV-3	
		(80.37).	
		Renal Cancer: 786-0 (38.16), A498 (50.08), ACHN (37.55), CAKI-1	
		(44.20), SN12C (65.05), UO-31 (48.21).	
		Prostate Cancer: PC-3 (69.96).	
		Breast Cancer: MCF7 (52.70), MDA-MB-231/ATCC (47.07), HS 578 T	
		(22.94), BT-549 (86.91), T-47D (66.82), MDA-MB-468 (56.23).	
8	99.42	Non-Small Cell Lung Cancer: NCI-H322M (15.38).	
(790023)	(20.81)	Melanoma: MALME-3 M (21.39).	
		Ovarian Cancer: IGROV1 (21.24).	
		Renal Cancer: UO-31 (17.70).	
		Breast Cancer: MDA-MB-231/ATCC (15.23).	

Table 1

Table 2

The mean growth percent, delta values, the percent growth inhibition, and the lethality percent against some subpanel cell lines of the selected compounds of Schemes 2 and 3.

Comp. no. (NSC-number)	Mean growth percent (Delta)	Panel: Subpanel cell lines (growth inhibition percent)	Subpanel cell lines (lethality percent)
12 (790028)	85.16 (37.09)	LEUKEMIA: CCRF-CEM (16.58), MOLT-4 (20.27).	
		NON-SMALL CELL LUNG CANCER: A549/ATCC (21.15), HOP-92 (20.68), NCI-H226 (18.70), NCI-H23 (15.96), NCI-H322M (16.63), NCI-H460 (20.93), NCI-H522 (35.24).	
		COLON CANCER: HCT-116 (15.92), HT29 (17.05), KM12 (18.92), SW-620 (16.66).	
		CNS CANCER: SF-268 (18.35), SNB-19 (22.52), SNB-75 (21.67), U251 (16.35)	
		MELANOMA: SK-MEL-2 (25.67), SK-MEL-28 (15.41), UACC-62 (30.91).	
		Ovarian Cancer: IGROV1 (32.97). RENAL CANCER: A498 (27.15), ACHN (15.03), UO-31 (29.92). Prostate Cancer: PC-3 (23.97).	
		BREAST CANCER: MCF7 (51.93), MDA-MB-231/ATCC (16.22), T-47D (38.14), MDA-MB-468 (31.75).	
17 (790031)	29.23 (53.64)	Leukemia: CCRF-CEM (39.74), HL-60 (TB) (30.41), K-562 (44.79), MOLT-4 (23.53), RPMI-8226 (71.68), SR (66.85).	
((2000)	Non-Small Cell Lung Cancer: A549/ATCC (82.20), EKVX (40.09), NCI-H226 (50.11), NCI-H23 (82.96), NCI-H322M (69.47), NCI-H522 (92.62).	HOP-62 (7.72), HOP-92 (18.74), NCI- H460 (0.30).
		Colon Cancer: COLO 205 (48.64), HCC-2998 (32.48), HCT-116 (86.05), HCT- 15 (60.25), HT29 (82.07), KM12 (83.91), SW-620 (60.70).	
		CNS Cancer: SF-268 (54.53), SF-539 (56.77), SNB-19 (37.93), SNB-75 (81.88), U251 (95.06).	SF-295 (24.41).
		Melanoma: LOX IMVI (82.17), MALME-3 M (79.34), M14 (69.40), MDA- MB-435 (83.26), SK-MEL-2 (61.47), SK-MEL-28 (57.40), SK-MEL-5 (44.90), UACC-257 (41.20), UACC-62 (92.12).	
		 Ovarian Cancer: IGROV1 (70.92), OVCAR-3 (95.90), OVCAR-5 (53.64), OVCAR-8 (77.00), NCI/ADR-RES (81.21). Renal Cancer: 786-0 (91.90), A498 (53.85), ACHN (73.76), CAKI-1 (74.80), RXF 393 (27.24), SN12C (17.44), UO-31 (80.66). Prostate Cancer: PC-3 (89.72), DU-145 (74.54). 	OVCAR-4 (9.61), SK-OV-3 (0.59). TK-10 (13.30).

Та	bl	e	2	

(Continued)

Comp. no. (NSC-number)	Mean growth percent (Delta)	Panel: Subpanel cell lines (growth inhibition percent)	Subpanel cell lines (lethality percent)
		Breast Cancer: MCF7 (56.06), MDA-MB-231/ATCC (81.18), HS 578 T	
		(67.57), BT-549 (44.80), T-47D (88.22), MDA-MB-468 (85.30).	
20	95.06	Non-Small Cell Lung Cancer: NCI-H226 (19.48), NCI-H522 (28.63).	
(790059)	(26.28)		
		Melanoma: UACC-62 (23.84).	
		Ovarian Cancer: IGROV1 (25.68), SK-OV-3 (23.08).	
		Renal Cancer: UO-31 (26.80).	
		Prostate Cancer: PC-3 (17.60).	
		Breast Cancer: MCF7 (19.39), MDA-MB-231/ATCC (16.26), T-47D	
		(31.22).	

Table 3

: The mean growth percent, delta values, and the percent growth inhibition against some subpanel cell lines of the selected compounds of Schemes 4 and 5.

Comp. no.	Mean growth	
	percent	
(NSC-number)	(Delta)	Panel: Subpanel cell lines (growth inhibition percent)
24	97.94	Leukemia: HL-60(TB) (26.25).
(790020)	(24.19)	
		Renal Cancer: A498 (21.91).
20	62.06	Breast Cancer: MDA-MB-231/ATCC (21.02).
(790050)	(50.81)	SR (69.02).
		Non-Small Cell Lung Cancer: A549/ATCC (27.46), EKVX (33.08), HOP-62 (32.44), HOP-92 (56.79), NCI-
		H226 (31.02), NCI-H23 (40.18), NCI-H460 (22.49), NCI-H522 (57.47).
		Colon Cancer: COLO 205 (18.88), HCC-2998 (37.26), HCT-116 (55.16), HCT-15 (40.11), HT29
		(30.54), KM12 (48.75), SW-620 (58.91).
		CNS Cancer: SF-268 (29.97), SF-295 (19.12), SNB-19 (32.90), SNB-75 (27.90), U251 (28.76).
		Melanoma: LOX IMVI (40.81), MALME-5 M (28.73), M14 (55.59), MDA-MB-455 (88.75), SK-MEL-
		2 (27.95), SK-WEL-26 (22.74), SK-WEL-5 (30.85), UACC-257 (20.99), UACC-02 (37.34). Overian Cancer: IGROV1 (55.96), OVCAR-3 (35.83), OVCAR-4 (40.90), OVCAR-5 (20.43), OVCAR-
		8 (26 58) NCI/ADR-RES (29 26) SK-OV-3 (36 27)
		Renal Cancer: A498 (27.04), ACHN (19.71), CAKI-1 (20.70), RXF 393 (16.89), SN12C (36.98), UO-31
		(60.30).
		Prostate Cancer: PC-3 (48.25).
		Breast Cancer: MCF7 (76.56), MDA-MB-231/ATCC (42.32), HS 578 T (23.05), T-47D (74.92), MDA-
	00.00	MB-468 (72.01).
31a (70002()	88.68	Leukemia: CCRF-CEM (27.03), RPMI-8226 (17.00).
(790036)	(40.33)	Non Small Call Lung Concert A540/ATCC (17.66) HOD 62 (15.02) HOD 02 (26.64) NCL H226 (16.10)
		Non-Sman Cen Lung Cancer. A349/ATCC (17.00), HOF-02 (13.95), HOF-92 (20.04), NCI-H220 (10.10), NCI-H522 (31.06).
		Melanoma: LOX IMVI (15.57), SK-MEL-2 (15.32), SK-MEL-28 (22.91), UACC-257 (16.32), UACC-
		62 (36.32).
		Ovarian Cancer: OVCAR-5 (15.17), SK-OV-3 (28.25).
		Renal Cancer: A498 (25.70), ACHN (17.98), UO-31 (34.97).
		Prostate Cancer: PC-3 (31.05).
24-	90.45	Breast Cancer: MCF/ (3/./6), MDA-MB-231/ATCC (29.21), BT-549 (1/./5), T-4/D (51.65).
54a (700020)	69.45 (33.62)	Leukelina: $CCKF$ - CEM (25.57), $MOL1$ -4 (17.11), SK (15.50).
(190029)	(55.02)	Non-Small Cell Lung Cancer: HOP-62 (22.06) HOP-92 (26.33) NCI-H226 (24.07)
		CNS Cancer: SNB-75 (18.24).
		Melanoma: LOX IMVI (16.02), UACC-62 (21.78).
		Ovarian Cancer: IGROV1 (35.38), OVCAR-5 (18.30), SK-OV-3 (16.77).
		Renal Cancer: ACHN (15.00), UO-31 (44.17).
		Prostate Cancer: PC-3 (31.83).

Month 2019

(Continued)			
Comp. no.	Mean growth		
(NSC-number)	(Delta)	Panel: Subpanel cell lines (growth inhibition percent)	
		Breast Cancer: MCF7 (27.54), MDA-MB-231/ATCC (27.87), BT-549 (17.10), T-47D (41.02).	
34b	92.45	Leukemia: MOLT-4 (15.86), SR (24.63).	
(790030)	(30.77)		
		Non-Small Cell Lung Cancer: HOP-62 (17.14), HOP-92 (19.41), NCI-H226 (18.22), NCI-H522 (15.34).	
		CNS Cancer: SNB-75 (22.53).	
		Melanoma: UACC-62 (23.34).	
		Ovarian Cancer: IGROV1 (32.35).	
		Renal Cancer: UO-31 (38.32).	
		Prostate Cancer: PC-3 (23.87).	
		Breast Cancer: MCF7 (35.65), MDA-MB-231/ATCC (21.71), T-47D (36.33).	

Table 3

triazepine carbonitrile derivative **31a,b**, respectively. ¹H NMR spectra of compound **31a,b** revealed two singlet signals at δ 2.73–3.90 ppm attributed to two methoxy protons.

Finally, 2-iminoquinoline-1-amine derivative **26** was heated under reflux with either 2-[bis(methylthio) methylene]malononitrile **32**[42] or ethyl 2-cyano-3,3bis(methylthio)acrylate **33**[42] in dimethyl formamide containing a catalytic amount of triethylamine to give the corresponding 4-amino-2-methylsulfanyl-3-carbonitrile derivative **34a** or 4-amino-2-methylsulfanyl-3-carboxylate analogue **34b**, respectively. ¹H NMR spectra of compound **34a,b** revealed singlet signals at δ 2.89 ppm assigned for S-CH₃ protons, while ¹H NMR spectrum of compound **34b** showed a triplet and a multiplet signal at δ 1.06 and δ 3.38–3.50 ppm attributed to ester methyl and methylene protons, respectively.

Anticancer screening. Thirteen of the newly synthesized compounds, 2b, 3, 4, 5, 8, 12, 17, 20, 24, 29, 31a, 34a, and 34b, were selected by Developmental Therapeutic Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute (NCI), Bethesda, Maryland, USA, to be evaluated in vitro in a single high dose (10 µmol) against 60 human tumor cell lines for their primary anticancer activity [45]. Among which two compounds 4 and 17 showed strong anticancer activity against various cell lines as they fulfilled the criteria required to be further evaluated by the NCI in the fivedose full panel assay. The one-dose screening results of the selected compounds are represented as the mean growth inhibition percent, delta values, and percent growth inhibition against some subpanel cell lines in (Tables 1, 2, and 3), while the results of the five-dose full panel assay of compounds 4 and 17 are presented in Tables 4 and 5), respectively.

However, Figures 1 and 2 represent the dose-response curves of compounds 4 and 17 against various cancer cell

	I ubic I			
$\rm GI_{50},$ TGI, and $\rm LC_{50}$ of five	ve-dose scre	ening of con	pound 4.	
1/ 11 1:	CI	TOI	LC	

Table 4

Panel/cell line	GI ₅₀	TGI	LC ₅₀	
Leukemia				
CCRF-CEM	0.911	9.61	>100	
HL-60(TB)	2.61	7.00	42.7	
K-562	1.88	7.81	>100	
MOLT-4	0.683	7.81	84.3	
RPMI-8226	2.24	6.65	67.5	
SR	1.84	8.02	>100	
Non-small cell lung cancer				
A549/ATCC	2.69	11.9	50.0	
EKVX	1.26	4.28	22.0	
HOP-62	2.08	5.87	28.1	
HOP-92	1.40	3.77	10.6	
NCI-H226	3.71	17.00	72.7	
NCI-H23	1.73	5.04	23.2	
NCI-H322M	2.20	11.7	39.6	
NCI-H460	1.94	4.17	8.97	
NCI-H522	1.58	3.63	8.31	
Colon cancer				
Colo 205	1.89	3.92	8.15	
HCC-2998	1.88	4.21	9.41	
HCT-116	1.29	2.71	5.70	
HCT-15	1.18	3.04	7.86	
HT29	3.39	11.5	37.9	
KM12	1.61	3.60	8.07	
SW-620	2.58	7.29	28.3	
CNS cancer				
SF-268	2.36	8.83	43.6	
SF-295	1.56	3.27	6.84	
SF-539	1.68	3.34	6.64	
SNB-19	2.08	4.56	10.1	
SNB-75	2.39	10.9	43.6	
U251	2.26	5.50	20.7	
Melanoma				
LOX IMVI	1.59	2.97	5.53	
MALME-3M	2.79	8.58	42.8	
M14	1.55	3.58	8.29	
MDA-MB-435	1.94	4.89	15.9	
SK-MEL-2	2.77	8.90	34.1	
SK-MEL-28	2.06	4.29	8.93	
SK-MEL-5	4.66	15.8	41.4	

(0	Continued)		
Panel/cell line	GI ₅₀	TGI	LC ₅₀
UACC-62	1.40	2.96	6.27
Ovarian cancer			
IGROV1	2.58	8.88	42.3
OVCAR-3	1.70	3.76	8.34
OVCAR-4	2.19	11.8	55.0
OVCAR-5	2.26	8.77	46.6
OVCAR-8	2.36	5.98	31.3
NCI/ADR-RES	2.11	6.64	31.5
SK-OV-3	4.63	15.7	39.6
Renal cancer			
786-0	1.34	3.08	7.11
A498	1.69	4.01	9.51
ACHN	2.08	6.27	23.2
SN12C	1.58	3.25	6.65
TK10	3.02	9.10	32.1
UO-31	1.33	7.16	34.9
Prostate cancer			
PC-3	1.58	3.39	7.27
DU-145	3.02	11.6	39.5
Breast cancer			
MCF7	2.26	8.68	45.8
MDA-MB-231/ATCC	1.59	3.75	8.83
HS 578T	2.53	9.86	60.9
BT-549	1.52	3.34	7.34
T-47D	2.20	11.2	55.0
MDA-MB-468	2.23	5.98	47.6

 Table 5

 d L C
 of five does correspond to f compose

GI_{50} , IGI , and LC_{50} of five-dose screening of compound 17.					
Panel/cell line	GI ₅₀	TGI	LC ₅₀		
Leukemia					
CCRF-CEM	6.69	>100	>100		
HL-60(TB)	>100	>100	>100		
K-562	2.13	>100	>100		
MOLT-4	8.41	80.3	>100		
RPMI-8226	1.64	>100	>100		
SR	0.523	>100	>100		
Non-small cell lung cancer					
A549/ATCC	_	_	>100		
EKVX	1.61	>100	>100		
HOP-62	0.875	_	>100		
HOP-92	1.19	4.72	43.0		
NCI-H226	2.29		>100		
NCI-H23	1.67	_	>100		
NCI-H322M	_	>100	>100		
NCI-H460	0.402	_	>100		
NCI-H522	3.22	>100	>100		
Colon cancer					
Colo 205	—	>100	>100		
HCC-2998	>100	>100	>100		
HCT-116	0.724		>100		
HCT-15	2.40	>100	>100		
HT29		>100	>100		
KM12	0.615	_	>100		

0.55

0.928

>100

>100

SW-620

CNS cancer

SF-268

>100 (Continues)

>100

Table 5										
	(Continued)									
Panel/cell line	GI ₅₀	TGI	LC ₅₀							
SF-295	1.32	3.19	_							
SF-539	1.68	_	>100							
SNB-19	3.49	>100	>100							
SNB-75	1.87	6.92	>100							
U251	1.88	_	_							
Melanoma										
LOX IMVI	2.22	_	>100							
MALME-3M	0.782		>100							
M14	1.77	>100	>100							
MDA-MB-435	_	_	>100							
SK-MEL-2	2.48	6.92	>100							
SK-MEL-28	_	_	>100							
SK-MEL-5	1.66	_	>100							
UACC-62	1.29	3.47	_							
Ovarian cancer										
IGROV1	1.72	>100	>100							
OVCAR-3	1.02	_	_							
OVCAR-4	0.217	_	_							
OVCAR-5	_	>100	>100							
OVCAR-8	1.92	>100	>100							
NCI/ADR-RES	4.25	>100	>100							
SK-OV-3	2.14	10.8	>100							
Renal cancer										
786–0	1.41	3.34	_							
A498	1.81	5.17	>100							
ACHN	1.41	_	>100							
SN 12C	4.08	>100	>100							
TK-10	1.91	4.58	>100							
UO-31	1.66	_	>100							
Prostate cancer										
PC-3	0.759	_	>100							
DU-145	_	>100	>100							
Breast cancer										
MCF7	1.94	>100	>100							
MDA-MB-231/ATCC	1.35	_	>100							
HS 578 T	0.561	7.87	>100							
BT-549	2.29	19.5	>100							
T-47D	1.40	>100	>100							
MDA-MB-468	1.37	3.30	_							

lines, while Table 6 shows the MG-MID and the selectivity ratio of compound 4 toward different cancer cell lines.

As revealed from one-dose screening results presented in Tables 1–3 and in a trial to shed more light on the SAR of compounds bearing benzothiazole, it is evident that the presence of arylidene nitrile at 2-position of benzothiazole as in compounds 2b and 3 bearing thiazinane and aminophenyl exhibited weak to moderate growth inhibitory activity against several cancer cell lines. However, replacement of arylidene moiety by two *S*-methyl functions as in compound **5** resulted in marked increase in growth inhibitory activity against many cell lines.

It is to be noted that the conversion of arylidene moiety into amino pyrazole nucleus as in compound 4 containing phenylamino side chain resulted in powerful anticancer activity against all cell lines. However, replacement of

Figure 1. Dose-response curves of compound 4 against variable cancer cell lines. [Color figure can be viewed at wileyonlinelibrary.com]

Figure 2. Dose-response curves of compound 17 against variable cell lines. [Color figure can be viewed at wileyonlinelibrary.com]

Full Panel GI ₅₀ MG-MID (µM/L)	_	Subpanel tumor cell lines GI_{50} MG-MID (μ M/L) (SI)								
	Ι	II	III	IV	V	VI	VII	VIII	IX	
2.10	1.694 (1.24)	2.095 (1.00)	1.974 (1.06)	2.055 (1.02)	2.345 (0.89)	2.547 (0.82)	1.84 (1.14)	2.3 (0.91)	2.055 (1.02)	

 $\label{eq:Table 6} Table \ 6$ The MG-MID (GI_{50}) $\mu M/L$ and the selectivity ratio of compound 4.

I, leukemia; II, non-small cell lung cancer; III, colon cancer; IV, CNS cancer; V, melanoma; VI, ovarian cancer; VII, renal cancer; VIII, prostate cancer; IX, breast cancer. SI, selectivity index.

phenylamino side chain of aminopyrazole ring in compound **4** with 4-bromophenyl moiety in compound **8** diminished the anticancer activity.

ovarian cancer OVCAR-4, prostate cancer PC-3, andbreast cancer HS578T.

In a trial to investigate the effect of linkage of different heterocyclic rings to the benzothiazole backbone, it was found that attachment of aminopyrrolone ring to the benzothiazole nucleus as in compound **12** exhibited weak to moderate anticancer activity against most of the cell lines. However, it showed promising growth inhibition activity against breast cancer MDA-MB-468 cell line.

Also, attachment of 3-amino-5-(phenylamino)thiophen-2-yl-(4-chlorophenyl)methanone to the benzothiazole backbone as in compound **17** resulted in strong growth inhibitory activity and lethal effect toward all of the cancer cell lines.

Furthermore, replacement of 4-chlorophenylmethanone and 5-phenylamino moieties in compound **17** by dioxoisoindolin amide moiety and mercapto function, respectively, as in compound **20** diminished the anticancer activity. Also, attachment of 2-aminopyridine ring to the benzothiazole nucleus as in compound **24** resulted in weak anticancer activity.

Moreover, attachment of triazepinoquinoline to the benzothiazole backbone as in compounds **29**, **31a**, **34a**, and **34b** resulted in variable activities in which only compound **29** bearing 2,4-dichlorophenyl moiety at C5 and fused dihydronaphthyl nucleus at C6 and C7 showed moderate to strong anticancer activity against various cancer cell lines.

The five-dose screen results of compounds 4 and 17 presented in Tables 4 and 5 revealed that compound 4 exhibited powerful growth inhibitory activity against all cell lines exerting GI₅₀ ranging from 0.683 to 4.66 μ M/L and TGI ranging from 2.97 to 17 μ M/L, and it exerted lethal effect against many cell lines. However, it was non-selective showing selectivity index less than 3 as presented in Table 6.

It is to be noted that the five-dose screening results of compound **17** revealed potent growth inhibitory activity with GI_{50} less than 1 μ M/L against many cell lines including leukemia SR, non-small cell lung cancer HOP-62 and NCI-H460, colon cancer HCT-116, KM12 and SW-620, CNS cancer SF-268, melanoma MALME-3M,

CONCLUSION

It can be concluded that attachment of different heterocyclic moieties to the biologically active benzothiazole backbone resulted in variable anticancer activities upon screening in the single-dose 60 cell line panel assay performed by the NCI, Bethesda, Maryland, USA. Among which compounds **4** and **17**, bearing 3amino-5-phenylaminopyrazole and 3-amino-5-phenylami nothiophen-2-yl-(4-chlorophenyl)methanone, respectively, attached to the 2-position of benzothiazole exhibited powerful anticancer activity in the five-dose full panel screening assay exerting highly potent growth inhibitory activity against all cell lines as well as strong lethal activity against many cell lines.

MATERIALS AND METHODS

All melting points were measured on Electro thermal LA 9000 SERIS, Digital Melting point Apparatus, and are uncorrected. IR spectra were recorded, for potassium bromide discs, on a Perkin-Elmer 1430 Infrared spectrophotometer at IR analytical unit, Faculty of Pharmacy, Cairo University. ¹H NMR and ¹³ C NMR spectra were recorded in DMSO- d_6 at 300 MHz on a Varian Gemini NMR spectrometer (δ , ppm) using TMS as an internal standard at Microanalytical Research Center, Chemical Warfare Department, Ministry of Defense. Mass spectra were carried out using a Schimadzu GCMS-OP-1000EX mass spectrometer at 70 ev at Regional Center for Mycology and Biotechnology, Al-Azhar University. Elemental analyses were performed on Elementar Vario EI III CHN analyzer at the microanalytical unit, Regional center for Mycology and Biotechnology, Al-Azhar University. Reactions were monitored by thin-layer chromatography on silica gel (60 GF 254, Merck), using glass plates. The spots were visualized by exposure to UV-lamp at λ 254 nm for few seconds.

General procedure for the synthesis of compounds (2a-c).

To a well-stirred and ice-cooled suspension of compound 1 [17] (0.35 g, 2 mmol) and finely powdered potassium hydroxide (0.22 g, 4 mmol) in dry dimethyl formamide (6 mL), phenyl isothiocyanate (0.27 g, 0.24 mL, 2 mmol) was added portion wise. After complete addition, stirring was continued at room temperature for 3 h. The reaction mixture was cooled to 0°C, treated with equimolar amounts of chloroacetyl chloride (0.22 g, 0.16 mL, 2 mmol), 1,3-dichloropropane (0.23 g, 0.19 mL, 2 mmol), or ethyl bromoacetate (0.33 g, 0.22 mL, 2 mmol), and stirring was continued for additional 6 h at room temperature then poured onto icecold water. The obtained precipitate was filtered, washed with water, and dried and crystallized from the appropriate solvent to afford compounds 2a, 2b, and 2c, respectively.

2-(Benzo[d]thiazol-2-yl)-2-(5-oxo-3-phenylthiazolidin-2-

ylidene)acetonitrile (2a). Bright light brown crystals; crystallized from toluene; yield 0.4 g (57%); mp 214-216°C. IR (KBr, v cm⁻¹): 3083 (CH–Ar); 2914 (CH– aliph.); 2187 (C=N); 1720 (C=O); 1589 (C=N); 1520 (C=C); 1245, 1004 (C-S-C). ¹H NMR (DMSO-*d*₆, δ ppm): 4.17 (s, 2H, thiazolidinone-CH₂); 7.17-7.22 (m, 1H, $C_6H_5-C_4-H$; 7.25–7.43 (m, 2H, $C_6H_4-C_{2,6}-H$); 7.51–7.54 (m, 2H, $C_6H_4-C_{3,5}-H$); 7.67 (d, 1H, J = 8.1 Hz, benzothiazole–C₄–H); 7.84–7.91 (m, 1H, benzothiazole-C₆-H); 7.92-7.95 (m, 1H, benzothiazole-C₅-H); 8.06 (d, 1H, J = 8.1 Hz, benzothiazole-C₇-H). ¹³C NMR (DMSO- d_6 , δ ppm): 79.29 (thiazolidinone–C₄); 114.84 (C–CN); 122.08 (C \equiv N); 122.58 (C₆H₅–C_{2,6}); 125.38 ($C_6H_5-C_4$); 125.85 (benzothiazole- C_4); 127.23 (benzothiazole– C_6); 128.66 (benzothiazole– C_7); 129.96 (benzothiazole-C₅); 130.13 (C₆H₅-C₃); 131.15 (C₆H₅- C_5 ; 133.27 (benzothiazole– C_{1a}); 135.30 (C_6H_5 – C_1); 153.44 (thiazolidinone– C_2); 164.37 (benzothiazole– C_{3a}); 165.01 (benzothiazole-C₂); 173.65 (C=O). Anal. Calcd (%) for C₁₈H₁₁N₃OS₂: C, 61.87; H, 3.17; N, 12.03. Found: C, 62.03; H, 3.20; N, 12.17.

2-(Benzo/d/thiazol-2-yl)-2-(3-phenyl-1,3-thiazinan-2-

ylidene)acetonitrile (2b). Light orange powder; crystallized from ethanol; yield 0.38 g (54%); mp 208–210°C. IR (KBr, $v \text{ cm}^{-1}$): 3091, 3055 (CH–Ar); 2899, 2866 (CH–aliph.); 2187 (C \equiv N); 1591 (C=N); 1537 (C=C); 1282, 1070 (C–S–C). ¹H NMR (DMSO-*d*₆, δ ppm): 3.22–3.29 (m, 2H, thiazinane–C₅–CH₂); 3.59 (t, 2H, *J* = 6.8 Hz, thiazinane–C₄–CH₂); 3.97 (t, 2H, *J* = 6.8 Hz, thiazinane–C₆–CH₂); 7.18 (t, 1H, *J* = 7.5 Hz, C₆H₅–C₄–H); 7.33–7.39 (m, 2H, C₆H₅–C_{2,6}–H); 7.42–7.49 (m, 2H, C₆H₄–C_{3,5}–H); 7.67 (d, 1H, *J* = 7.7 Hz, benzothiazole–C₄–H); 7.82–7.96 (m, 2H, benzothiazole–C₅–CH): 8.06 (d, 1H, *J* = 7.7 Hz, benzothiazole–C₅); 32.08 (thiazinane–C₆); 43.74 (thiazinane–C₄); 78.12 (C–CN); 114.06 (C≡N); 122.51

 $(C_6H_5-C_2)$; 122.64 $(C_6H_5-C_6)$; 124.59 $(C_6H_5-C_4)$; 125.85 (benzothiazole–C₄); 126.35 (benzothiazole–C₆); 127.11 (benzothiazole–C₇); 127.68 (benzothiazole–C₅); 128.67 $(C_6H_5-C_{3,5})$; 129.74 (benzothiazole–C_{1a}); 138.84 $(C_6H_5-C_1)$; 140.60 (benzothiazole–C_{3a}); 169.06 (benzothiazole–C₂); 187.13 (thiazinane–C₂). *Anal.* Calcd (%) for $C_{19}H_{15}N_3S_2$: C, 65.30; H, 4.33; N, 12.02. Found: C, 65.49; H, 4.41; N, 12.21.

Ethyl 2-(2-(benzo[d]thiazol-2-yl)-2-cyano-1-(phenylamino) vinyl thio)acetate (2c). Dark gray powder; crystallized from ethanol; yield 0.55 g (69%); mp 142-144°C. IR (KBr, $v \text{ cm}^{-1}$): 3313 (NH); 3055, 3028 (CH–Ar); 2900, 2866 (CH-aliph.); 2198 (C=N); 1725 (ester C=O); 1597 (C=N); 1573 (C=C); 1288, 1068 (C-S-C); 1230, 1053 (C–O–C). ¹H NMR (DMSO- d_6 , δ ppm): 1.23 (t, 3H, J = 7.2 Hz, CH₂CH₃); 2.87 (s, 2H, S-CH₂); 4.18 (q, 2H, J = 7.2 Hz, CH₂CH₃); 7.07 (t, 1H, J = 7.6 Hz, C₆H₅-C₄-H); 7.21–7.32 (m, 2H, $C_6H_5-C_{2.6}-H$); 7.33–7.40 (m, 2H, $C_6H_5-C_{3,5}-H$; 7.91 (d, 1H, J = 8.4 Hz, benzothiazole- C_4 -H); 8.05-8.18 (m, 3H, benzothiazole- $C_{5.6.7}$ -H); 10.12 (s, 1H, NH, D₂O exchangeable). Anal. Calcd (%) for C₂₀H₁₇N₃O₂S₂: C, 60.74; H, 4.33; N, 10.62. Found: C, 60.98; H, 4.39; N, 10.91.

2-(Benzo[d]thiazol-2-yl)-3-(ethylthio)-3-(phenylamino)

acrylonitrile (3). To a stirred solution of potassium hydroxide (0.11 g, 2 mmol) in dimethyl formamide (10 mL), compound **1** was added (0.35 g, 2 mmol). After stirring for 30 min, phenyl isothiocyanate (0.27 g, 0.24 mL, 2 mmol) was added to the resulting mixture, and stirring was continued for further 6 h at room temperature, then ethyl iodide (0.31 g, 0.16 mL, 2 mmol) was added, and the reaction mixture was stirred overnight, diluted with cold water (5 mL), and the solid precipitate was collected, filtered, washed with water, dried and crystallized from hexane.

Lemon yellow powder; yield 0.5 g (74%); mp 134– 135°C. IR (KBr, cm⁻¹): 3394 (NH); 3059 (CH-Ar); 2868, 2854 (CH–aliph.); 2194 (C \equiv N); 1593 (C=N); 1494 (C=C); 1278, 1085 (C–S–C). ¹H NMR (DMSO d_6 , δ ppm): 1.15 (t, 3H, J = 7.5 Hz, CH₂CH₃); 2.65 (q, 2H, J = 7.5 Hz, CH₂CH₃); 7.32–7.44 (m, 5H, C₆H₅); 7.47–7.50 (m, 2H, benzothiazole–C_{5.6}–H); 7.92 (d, 1H, J = 8.1 Hz, benzothiazole–C₄–H); 8.07 (d, 1H, J = 8.1 Hz, benzothiazole–C₇–H); 12.37 (s, 1H, NH, D₂O exchangeable). *Anal.* Calcd (%) for C₁₈H₁₅N₃S₂: C, 64.06; H, 4.48; N, 12.45. Found: C, 64.24; H, 4.53; N, 12.69.

4-(Benzold)thiazol-2-yl)- N^5 -phenyl-1H-pyrazole-3,5-diamine (4). A mixture of compound 3 (0.34 g, 1 mmol) and hydrazine hydrate 99% (0.1 g, 0.1 mL, 2 mmol) in absolute ethanol (10 mL) was heated under reflux for 6 h. The reaction mixture was allowed to cool, and the solid crystals were filtered, washed with ethanol, then dried and recrystallized from ethanol.

Creamy white crystals; yield 0.2 g (65%); mp 181-183°C. IR (KBr, v cm⁻¹): 3360, 3186, 3136 (NH₂, NH); 3089, 3051 (CH-Ar); 1616, 1593 (C=N); 1550 (C=C); 1290, 1090 (C–S–C). ¹H NMR (DMSO-*d*₆, δ ppm): 6.16 (s, 2H, NH₂, D₂O exchangeable); 6.76 (t, 1H, J = 7.5 Hz, $C_6H_5-C_4-H$; 7.17–7.29 (m, 4H, $C_6H_5-C_{2356}-H$); 7.43 (t, 2H, J = 8.1 Hz, benzothiazole–C_{5.6}–H); 7.91 (d, 1H, J = 8.1 Hz, benzothiazole–C₄–H); 7.96 (d, 1H, J = 8.1 Hz, benzothiazole–C₇–H); 8.73 (s, 1H, NH– phenyl, D₂O exchangeable); 11.45 (s, 1H, pyrazole-NH, D₂O exchangeable). ¹³C NMR (DMSO- d_6 , δ ppm): 70.03 (pvrazole– C_4): 115.83 $(C_6H_5-C_{2,6});$ 119.17 (benzothiazole– C_4); 121.00 (benzothiazole– C_7); 121.93 $(C_6H_5-C_4);$ 123.73 $(benzothiazole-C_6);$ 126.43 $(benzothiazole-C_5);$ 129.28 132.24 $(C_6H_5-C_{3,5});$ 144.24 (benzothiazole– C_{1a}); $(C_6H_5-C_1);$ 148.83 $(pyrazole-C_3);$ 149.01 (benzothiazole– C_2); 152.54 (pyrazole-C₅); 161.74 (benzothiazole-C_{3a}). Anal. Calcd (%) for C₁₆H₁₃N₅S: C, 62.52; H, 4.26; N, 22.78. Found: C. 62.67; H. 4.34; N. 22.95.

2-(Benzo[d]thiazol-2-yl)-3,3-bis(methylthio)acrylonitrile

(5). To a stirred suspension of finely powdered potassium hydroxide (0.22 g, 4 mmol) in dry DMF (10 mL), compound 1 (0.35 g, 2 mmol) was added, and the reaction mixture was stirred at 10°C in an ice bath, then carbon disulfide (0.15 g, 0.12 mL, 2 mmol) was added slowly, and stirring was continued for 6 h. Then, dimethylsulfate (0.25 g, 0.19 mL, 2 mmol) was added to the reaction mixture, and stirring was continued for additional 3 h. The reaction mixture was poured onto crushed ice and neutralized with 10% HCl, and the obtained precipitate was filtered, washed with water, dried and crystallized from ethanol.

Orange powder; yield 0.51 g (91%); mp 118–120°C as reported [43]. IR (KBr, v cm⁻¹): 3050 (CH-Ar); 2870 (CH–aliph.); 2220 (C \equiv N); 1620 (C=N); 1506 (C=C); 1232, 1060 (C–S–C).

4-(Benzo[d]thiazol-2-yl)-5-(methylthio)-1H-pyrazol-3-amine (6). An equimolar mixture of compound **5** (0.56 g, 2 mmol) and hydrazine hydrate 99% (0.1 g, 0.1 mL, 2 mmol) was heated under reflux for 8 h in absolute ethanol (15 mL). The reaction mixture was concentrated and allowed to cool, and the obtained precipitate was filtered, washed with ethanol, left to dry then crystallized from DMF.

Brown powder; yield 0.32 g (61%); mp >300°C. IR (KBr, v cm⁻¹): 3290, 3163, 3151 (NH₂, NH); 3012 (CH– Ar); 2856 (CH–aliph.); 1620, 1583 (C=N); 1541 (C=C); 1270, 1070 (C–S–C). ¹H NMR (DMSO- d_6 , δ ppm): 2.55 (s, 3H, SCH₃); 6.86 (s, 2H, NH₂, D₂O exchangeable); 6.87–7.03 (m, 1H, benzothiazole–C₆–H); 7.20–7.60 (m, 1H, benzothiazole–C₅–H); 7.73 (d, 1H, J = 7.5 Hz, benzothiazole–C₄–H); 7.94–8.08 (m, 1H, benzothiazole– C₇–H); 9.36 (s, 1H, pyrazole–N₁H, D₂O exchangeable). *Anal.* Calcd (%) for C₁₁H₁₀N₄S₂: C, 50.36; H, 3.84; N, 21.36. Found: C, 50.53; H, 3.88; N, 21.51.

General procedure for the synthesis of 2-(benzo[d]thiazol-2yl)-3-(4-substituted phenyl)acrylonitriles (7a-c). An equimolar mixture of compound 1 (0.35 g, 2 mmol) and the appropriate 4-substituted benzaldehyde (2 mmol), namely, 4-bromobenzaldehyde, 4-chlorobenzaldehde, and 4-dimethylaminobenzaldehde, was heated under reflux for 4-6 h in absolute ethanol (10 mL) containing few drops of triethyl amine The reaction mixture was concentrated, and the obtained solid product was filtered, washed with ethanol, dried and recrystallized from ethanol.

2-(Benzo[d]thiazol-2-yl)-3-(4-bromophenyl)acrylonitrile (7*a*). Greenish yellow crystals; yield 0.51 g (74%); mp 146–148°C as reported [44].

2-(Benzo[d]thiazol-2-yl)-3-(4-chlorophenyl)acrylonitrile (*7b*). Creamy white crystals; yield 0.5 g (84%); mp 154–156°C as reported [44].

2-(Benzofd]thiazol-2-yl)-3-(4-(dimethylamino)phenyl) acrylonitrile (7c). Red crystals; yield 0.45 g (73%); mp 237–238°C. IR (KBr, v cm⁻¹): 3051, 3005 (CH–Ar); 2920, 2854 (CH–aliph.); 2214 (C \equiv N); 1612 (C=N); 1566 (C=C); 1280, 1060 (C–S–C). ¹H NMR (DMSO-*d*₆, δ ppm): 3.09 (s, 6H, two CH₃); 6.87 (d, 2H, *J* = 9 Hz, 4-N (CH₃)₂-C₆H₄–C_{3,5}–H); 7.43 (t, 1H, *J* = 7.5 Hz, benzothiazole–C₆–H); 7.53 (t, 1H, *J* = 7.5 Hz, benzothiazole–C₅–H); 7.95–8.04 (m, 2H, 4-N (CH₃)₂– C₆H₄–C_{2,6}–H); 8.10 (d, 2H, *J* = 7.5 Hz, benzothiazole– C_{4,7}–H); 8.14 (s, 1H, arylidene–H). Anal. Calcd (%) for C₁₈H₁₅N₃S: C, 70.79; H, 4.95; N, 13.76. Found: C, 71.03; H, 4.99; N, 13.98.

4-(Benzo[d]thiazol-2-yl)-3-(4-bromophenyl)-1H-pyrazol-5-

amine (8). Hydrazine hydrate 99% (0.5 g, 0.49 mL, 10 mmol) was added to a solution of compound **7a** (0.34 g, 1 mmol) in absolute ethanol (10 mL). The reaction mixture was heated under reflux for 12 h then concentrated and left to cool. The obtained solid precipitate was filtered, washed with ethanol, dried and recrystallized from ethanol.

Yellow crystals; yield 0.16 g (43%); mp 225–227°C. IR (KBr, v cm⁻¹): 3262 (broad NH₂, NH); 3056 (CH–Ar); 1616 (C=N); 1576 (C=C); 1250, 1060 (C–S–C). EI-MS: m/z (%): 373 (M + 2, 0.76); 371 (M⁺, 1.31); 104 (C₇H₆N, 100). *Anal*. Calcd (%) for C₁₆H₁₁BrN₄S: C, 51.76; H, 2.99; N, 15.09 Found (%): C, 51.94; H, 3.04; N, 15.32.

2-(Benzo[d]thiazol-2-yl)-3-oxo-3-phenylpropanenitrile (9).

To a solution of compound 1 (0.35 g, 2 mmol) in toluene (10 mL), benzoyl chloride (0.42 g, 0.35 mL, 3 mmol) was added, and the reaction mixture was heated under reflux for 12 h in the presence of triethyl amine (three drops). The reaction mixture was then concentrated and left to cool, and the desired product was filtered, washed with toluene, dried and crystallized from acetone.

Reddish brown powder; yield 0.36 g (64%); mp 288–290°C. IR (KBr, v cm⁻¹): 3412, 3387 (broad tautomeric OH); 3057 (CH–Ar); 2929 (CH–aliph.); 2194 (C \equiv N); 1685 (C=O); 1624 (C=N); 1545 (C=C); 1274, 1076 (C–S–C). ¹H NMR (DMSO-*d*₆, δ ppm): 2.06 (s, 1H, CH–CN); 7.29–7.34 (m, 2H, benzothiazole–C_{5,6}–H); 7.40–7.42 (m, 3H, C₆H₅–C_{3,4,5}–H); 7.48 (d, 2H, *J* = 8.4 Hz, C₆H₅–C_{2,6}–H); 7.59 (d, 1H, *J* = 7.8 Hz, benzothiazole–C₄–H); 7.92 (d, 1H, *J* = 7.8 Hz, benzothiazole–C₇–H). *Anal.* Calcd (%) for C₁₆H₁₀N₂OS: C, 69.04; H, 3.62; N, 10.06. Found: C, 69.31; H, 3.68; N, 10.29.

3-Amino-2-(benzo[d]thiazol-2-yl)-3-hydrazinylacrylonitrile (10). An equimolar mixture of compound 1 (0.35 g, 2 mmol) and thiosemicarbazide (0.18 g, 2 mmol) was heated under reflux for 20 h in glacial acetic acid (10 mL). The reaction mixture was concentrated and cooled, and the desired precipitate was filtered, washed with ethanol, dried and crystallized from toluene.

Pale brown powder; yield 0.26 g (56%); mp 270–272°C. IR (KBr, v cm⁻¹): 3385, 3278, 3215 (NH₂, NH); 3061 (CH–Ar); 2206 (C \equiv N); 1618 (C=N); 1533 (C=C); 1255, 1083 (C–S–C). ¹H NMR (DMSO-*d*₆, δ ppm): 4.74 (s, 2H, NH₂, D₂O exchangeable); 7.18 (s, 2H, NHNH₂, D₂O exchangeable); 7.18 (s, 2H, NHNH₂, D₂O exchangeable); 7.18 (s, 2H, NHNH₂, D₂O exchangeable); 7.35–7.60 (m, 1H, benzothiazole–C₆–H); 7.94–8.03 (m, 1H, benzothiazole–C₅–H); 8.08 (d, 1H, *J* = 8 Hz, benzothiazole–C₄–H); 8.27 (d, 1H, *J* = 8 Hz, benzothiazole–C₇–H); 9.66 (s, 1H, NHNH₂, D₂O exchangeable). *Anal*. Calcd (%) for C₁₀H₉N₅S: C, 51.93; H, 3.92; N, 30.28. Found: C, 52.14; H, 3.94; N, 30.45.

3-(Benzo[d]thiazol-2-yl)-3-cyanopropanamide (11) and 5-amino-4-(benzo[d]thiazol-2-yl)-1H-pyrrol-2(3H)-one (12).

A mixture of compound 1 (0.35 g, 2 mmol), chloroacetamide (0.19 g, 2 mmol), and finely divided potassium carbonate (0.35 g, 2.5 mmol) in absolute ethanol (10 mL) was heated under reflux for 6 h. The reaction mixture was then cooled, triturated with water, filtered, washed with excessive amount of H_2O , dried, and crystallized from ethanol, in which the insoluble part in boiling ethanol was filtered to give the cyclic compound 12, while the filtrate was concentrated and allowed to cool to afford the open-chain derivative 11.

3-(Benzo[d]thiazol-2-yl)-3-cyanopropanamide (11). Green powder; crystallized from ethanol; yield 0.32 g (69%); mp 253–255°C. IR (KBr, v cm⁻¹): 3383, 3360 (NH₂); 3059 (CH–Ar); 2927 (CH–aliph.); 2198 (C≡N); 1660 (C=O); 1614 (C=N); 1556 (C=C); 1280, 1089 (C–S–C). ¹H NMR (DMSO-*d*₆, δ ppm): 1.88–1.91 (m, 1H, CHCN); 2.69–2.73 (m, 1H, CH₂CO); 2.86–2.89 (m, 1H, CH₂CO); 7.26 (s, 2H, NH₂, D₂O exchangeable); 7.35–7.74 (m, 2H, benzothiazole–C_{5,6}–H); 8.03–8.15 (m, 2H, benzothiazole– C_{4,7}–H). *Anal.* Calcd (%) for C₁₁H₉N₃OS: C, 57.13; H, 3.92; N, 18.17. Found: C, 57.34; H, 3.90; N, 18.39.

5-Amino-4-(benzo[d]thiazol-2-yl)-1H-pyrrol-2(3H)-one

(12). Dark green powder; washed with boiling solvents; yield 0.1 g (22%); mp >300°C. IR (KBr, v cm⁻¹): 3388,

3305, 3248 (NH₂, NH); 3059 (CH–Ar); 2926 (CH– aliph.); 1678 (C=O); 1645 (C=N); 1543 (C=C); 1282, 1087 (C–S–C). ¹H NMR (DMSO- d_6 , δ ppm): 2.73 (s, 2H, CH₂); 4.10 (s, 2H, NH₂, D₂O exchangeable); 7.47– 7.55 (m, 2H, benzothiazole–C_{5,6}–H); 7.68 (s, 1H, NH, D₂O exchangeable); 7.94–8.01 (m, 1H, benzothiazole– C₄–H); 8.05–8.10 (m, 1H, benzothiazole–C₇–H). MS: *m/z* (%): 231 (M⁺, 9.60); 83 (C₄H₅NO, 100). *Anal*. Calcd (%) for C₁₁H₉N₃OS: C, 57.13; H, 3.92; N, 18.17. Found: C, 57.28; H, 3.96; N, 18.41.

2-(Benzo[d]thiazol-2-yl)-2-(3,4-dihydronaphthalen-1(2H)ylidene) acetonitrile (13) and 1-(benzo[d]thiazol-2-yl)-4,5dihydronaphtho[2,1-b]thiophen-2-amine (14). An equimolar mixture of compound 1 (0.35 g, 2 mmol), elemental sulfur (0.06 g, 2 mmol), and 1-tetralone (0.29 g, 0.27 mL, 2 mmol) in absolute ethanol (10 mL) containing triethyl amine (0.5 mL) was heated under reflux for 12 h. The reaction mixture was filtered while hot, and the obtained solid precipitate was crystallized from toluene to afford two products. The insoluble part in boiling toluene was filtered, dried to give the cyclic compound 14, while the filtrate was concentrated and allowed to cool to yield the open-chain derivative 13.

2-(Benzo[d]thiazol-2-yl)-2-(3,4-dihydronaphthalen-1(2H)ylidene)acetonitrile (13). Green powder; crystallized from toluene; yield 0.2 g (33%); mp 125-127°C. IR (KBr, v cm⁻¹): 3057, 3032 (CH–Ar); 2926, 2858 (CH–aliph.); 2206 (C=N); 1577 (C=N); 1533 (C=C); 1271, 1055 (C–S–C). ¹H NMR (DMSO- d_6 , δ ppm): 0.80–0.90 (m, 2H, dihydronaphthyl $-C_3-CH_2$); 1.20–1.40 (m, 2H, dihy dronaphthyl– C_4 – CH_2); 4.12 (t, 2H, J = 5.2 Hz, dihy dronaphthyl-C₂-CH₂); 7.19-7.36 (m, 1H, dihydronap hthyl- C_6 -H); 7.42–7.52 (m, 1H, dihydronaphthyl- C_7 -H); 7.55–7.68 (m, 1H, benzothiazole–C₆–H); 7.69–7.70 (m, 1H, benzothiazole– C_5 –H); 7.94 (d, 1H, J = 7.6 Hz, dihydronaphthyl–C₅–H); 8.01 (d, 1H, J = 7.6 Hz, dihydronaphthyl- C_8 -H); 8.07 (d, 1H, J = 7.6 Hz, benzothiazole– C_4 –H); 8.25 (d, 1H, J = 7.6 Hz, benzothiazole– C_7 –H). Anal. Calcd (%) for $C_{19}H_{14}N_2S$: C, 75.47; H, 4.67; N, 9.26. Found: C, 75.52; H, 4.70; N, 9.26.

1-(Benzo[d]thiazol-2-yl)-4,5-dihydronaphtho[2,1-b]thiophen-2-amine (14). Dark olive green powder; washed with boiling solvents; yield 0.3 g (45%); mp >300°C. IR (KBr, $\nu \text{ cm}^{-1}$): 3385, 3107 (NH₂); 3057 (CH–Ar); 2924 (CH–aliph.); 1560 (C=N); 1508 (C=C); 1247, 1093 (C–S–C). ¹H NMR (DMSO-*d*₆, δ ppm): 2.60–2.65 (m, 2H, dihydronaphthothiophene–C₅–CH₂); 2.72–2.77 (m, 2H, dihydronaphthothiophene–C₄–CH₂); 7.32–7.35 (m, 2H, dihydronaphthothiophene–C_{7,8}–H); 7.50 (s, 2H, NH₂, D₂O exchangeable); 7.69–7.73 (m, 2H, dihydronaphthothiophene–C_{5,6}–H); 7.91–8.23 (m, 2H, benzo thiazole–C_{5,6}–H); 8.28–8.35 (m, 2H, benzothiazole–C_{4,7}–H). *Anal.* Calcd (%) for C₁₉H₁₄N₂S₂: C, 68.23; H, 4.22; N, 8.38. Found: C, 68.37; H, 4.29; N, 8.54. Month 2019

2-(Benzo[d]thiazol-2-yl)-3-(4-nitrophenyl)but-2-enenitrile

(15). An equimolar mixture of compound 1 (0.35 g, 2 mmol), 4-nitroacetophenone (0.33 g, 2 mmol), and ammonium acetate (0.15 g, 2 mmol) was fused in an oil bath at $160-170^{\circ}$ C for 2 h. The resulted mass was triturated with ethanol, and the obtained precipitate was filtered, washed with ethanol, dried and crystallized from ethanol.

Pale brown powder; yield 0.41 g (64%); mp 153–155°C. IR (KBr, v cm⁻¹): 3071 (CH–Ar); 2855 (CH–aliph.); 2227 (C \equiv N); 1583 (C=N); 1516, 1335 (NO₂); 1450 (C=C); 1230, 1013 (C–S–C). ¹H NMR (DMSO- d_6 , δ ppm): 2.84 (s, 3H, CH₃); 7.42–7.55 (m, 1H, benzothiazole–C₆–H); 7.58–7.67 (m, 1H, benzothiazole–C₆–H); 7.76 (d, 1H, J = 7.8 Hz, benzothiazole–C₄–H); 7.95 (d, 1H, J = 7.8 Hz, benzothiazole–C₄–H); 7.95 (d, 1H, J = 7.8 Hz, benzothiazole–C₄–H); 8.03 (d, 1H, J = 8 Hz, 4–NO₂–C₆H₄–C₂–H); 8.16 (d, 1H, J = 8 Hz, 4–NO₂–C₆H₄–C₆–H); 8.25 (d, 1H, J = 8 Hz, 4–NO₂–C₆H₄–C₆–H); 8.25 (d, 1H, J = 8 Hz, 4–NO₂–C₆H₄–C₅–H). *Anal.* Calcd (%) for C₁₇H₁₁N₃O₂S: C, 63.54; H, 3.45; N, 13.08. Found (%): C, 63.70; H, 3.48; N, 13.21.

3,5-Diamino-2-(benzo[d]thiazol-2-yl)-4'-nitrobiphenyl-4-

carbonitrile (16). An equimolar mixture of compound 15 (0.32 g, 1 mmol) and malononitrile (0.07 g, 1 mmol) in absolute ethanol (10 mL) containing three drops of triethyl amine was heated under reflux for 50 h. The reaction mixture was concentrated and cooled, and the resulted precipitate was filtered, washed with ethanol, dried and crystallized from DMF.

Brown powder; yield 0.16 g (41%); mp > 300°C. IR (KBr, v cm⁻¹): 3385, 3246 (NH₂); 3057 (CH-Ar); 2200 (C \equiv N); 1597 (C=N); 1516, 1340 (NO₂); 1445 (C=C); 1290, 1090 (C–S–C). EI-MS: *m/z* (%): 387 (M⁺, 1.37); 95 (C₄H₅N₃, 100). *Anal*. Calcd (%) for C₂₀H₁₃N₅O₂S: C, 62.00; H, 3.38; N, 18.08. Found: C, 62.24; H, 3.36; N, 18.19.

(3-Amino-4-(benzo[d]thiazol-2-yl)-5-(phenylamino)thiophen-2-yl)(4-chlorophenyl)-methanone (17). To a well-stirred, ice-cold suspension of finely powdered potassium hydroxide (0.22 g, 4 mmol) and compound 1 (0.35 g, 2 mmol) in dry dimethyl formamide (10 mL), phenyl isothiocyanate (0.27 g, 0.24 mL, 2 mmol) was added portion wise. After complete addition, stirring was continued at room temperature for 3 h. Then the reaction mixture was cooled to 0°C and treated with 2-bromo-4'chloroacetophenone (0.47 g, 2 mmol), and stirring was continued for another 6 h. The reaction mixture was then poured onto ice-cold water, and the obtained precipitate was filtered, washed with water, dried and crystallized from ethanol.

Pale orange powder; yield 0.62 g (67%); mp 225–227°C. IR (KBr, v cm⁻¹): 3404, 3282, 3267, 3221 (NH₂, NH); 3057, 3026 (CH–Ar); 1665 (C=O); 1645

(C=N); 1571 (C=C); 1265, 1050 (C-S-C). ¹H NMR (DMSO- d_6 , δ ppm): 7.08–7.18 (m, 1H, C₆H₅–C₄–H); 7.36–7.45 (m, 2H, C₆H₅–C_{2,6}–H); 7.47–7.51 (m, 2H, C₆H₅–C_{3,5}–H); 7.53–7.60 (m, 4H, 4–Cl–C₆H₄–C_{3,5}–H & benzothiazole–C_{5,6}–H); 7.68 (d, 2H, J = 8.4 Hz, 4–Cl–C₆H₄–C_{2,6}–H); 8.04–8.18 (m, 2H, benzothiazole–C_{4,7}–H); 8.54 (s, 2H, NH₂, D₂O exchangeable); 10.42 (s, 1H, NH, D₂O exchangeable). *Anal.* Calcd (%) for C₂₄H₁₆ClN₃OS₂: C, 62.40; H, 3.49; N, 9.10. Found (%): C, 62.53; H, 3.57; N, 9.15.

Ethvl 3-amino-4-(benzo[d]thiazol-2-yl)-5mercaptothiophene-2-carboxylate (18). An equimolar mixture of compound 1 (0.35 g, 2 mmol) and finely powdered potassium hydroxide (0.22 g, 4 mmol) in dry DMF (10 mL) was cooled at 10°C in an ice bath, then carbon disulfide (0.15 g, 0.12 mL, 2 mmol) was added slowly over a period of 10 min, and stirring was continued for 6 h. Ethyl chloroacetate (0.25 g, 0.21 mL, 2 mmol) was added to the reaction mixture, then stirring was continued for another 3 h. The reaction mixture was poured onto crushed ice and neutralized with 10% HCl. The obtained precipitate was filtered, washed with water, dried and crystallized from ethyl acetate.

Shiny orange powder; yield 0.55 g (81%); mp 169– 171°C. IR (KBr, v cm⁻¹): 3446, 3421 (NH₂); 3040 (CH– Ar); 2924 (CH–aliph.); 1735 (C=O); 1600 (C=N); 1510 (C=C); 1292, 1023 (C–S–C); 1232, 1008 (C–O–C). ¹H NMR (DMSO- d_6 , δ ppm): 1.13 (t, 3H, J = 6.6 Hz, CH₂CH₃); 1.99 (s, 1H, SH, D₂O exchangeable); 4.04 (q, 2H, J = 6.6 Hz, CH₂CH₃); 4.25 (s, 2H, NH₂, D₂O exchangeable); 7.59 (t, 1H, J = 7.7 Hz, benzothiazole–C₆– H); 7.68 (t, 1H, J = 7.7 Hz, benzothiazole–C₅–H); 8.13 (d, 1H, J = 7.7 Hz, benzothiazole–C₄–H); 8.27 (d, 1H, J = 7.7 Hz, benzothiazole–C₇–H). *Anal.* Calcd (%) for C₁₄H₁₂N₂O₂S₃: C, 49.98; H, 3.59; N, 8.33. Found: C, 50.16; H, 3.64; N, 8.49.

3-Amino-4-(benzo/d/thiazol-2-yl)-5-mercaptothiophene-2carbohydrazide (19). To a suspension of compound 18 (0.67 g, 2 mmol) in absolute ethanol (10 mL), hydrazine hydrate 99% (1 g, 0.97 mL, 20 mmol) was added, and the reaction mixture was heated under reflux for 5 h. The reaction mixture was concentrated and cooled, and the obtained precipitate was filtered, washed with ethanol, left to dry then crystallized from dioxane.

Brown powder; yield 0.3 g (47%); mp > 300°C. IR (KBr, v cm⁻¹): 3304, 3116 (NH₂, NH); 3040 (CH–Ar); 1660 (C=O); 1581 (C=N); 1544 (C=C); 1282, 1095 (C–S–C). ¹H NMR (DMSO- d_6 , δ ppm): 4.48 (s, 1H, SH, D₂O exchangeable); 5.01 (br. s, 2H, NHNH₂, D₂O exchangeable); 5.79 (s, 2H, NH₂, D₂O exchangeable); 7.23 (t, 1H, J = 7.7 Hz, benzothiazole–C₆–H); 7.39 (t, 1H, J = 7.7 Hz, benzothiazole–C₆–H); 7.70 (d, 1H, J = 7.7 Hz, benzothiazole–C₄–H); 7.96 (d, 1H, 1H, NH, D₂O benzothiazole– C_4 –H

J = 7.7 Hz, benzothiazole–C₇–H); 11.86 (s, 1H, NH, D₂O exchangeable). *Anal.* Calcd (%) for C₁₂H₁₀N₄OS₃: C, 44.70; H, 3.13; N, 17.38. Found: C, 44.98; H, 3.17; N, 17.57.

3-Amino-4-(benzo[d]thiazol-2-yl)-N-(1,3-dioxoisoindolin-2-

yl)-5-mercaptothiophene-2-carboxamide (20). An equimolar mixture of compound **19** (0.32 g, 1 mmol) and phthalic anhydride (0.15 g, 1 mmol) in glacial acetic acid (10 mL) was heated under reflux for 12 h. The reaction mixture was concentrated and cooled, and the obtained product was filtered, washed with ethanol, dried and crystallized from methanol.

Dark green powder; yield 0.35 g (78%); mp 188–190°C. IR (KBr, v cm⁻¹): 3383, 3367, 3213 (NH₂, NH); 3095 (CH–Ar); 1732 (cyclic C=O); 1685 (C=O); 1585 (C=N); 1543 (C=C); 1280, 1072 (C–S–C). EI-MS: *m/z* (%): 452 (M⁺, 3.73); 248 (C₁₁H₆NS₃, 100). *Anal.* Calcd (%) for $C_{20}H_{12}N_4O_3S_3$: C, 53.08; H, 2.67; N, 12.38. Found: C, 53.24; H, 2.69; N, 12.52.

N-(7-(Benzo[d]thiazol-2-yl)-6-mercapto-2-methyl-4oxothieno[3,2-d]pyrimidin-3(4H)-yl)acetamide (21).

Compound **19** (0.32 g, 1 mmol) was heated under reflux in a mixture of glacial acetic acid (5 mL) and acetic anhydride (5 mL) for 12 h. The reaction mixture was allowed to cool, and the obtained precipitate was filtered, washed with dioxane, dried and crystallized from dioxane.

Dark brown powder; yield 0.28 g (73%); mp >300°C. IR (KBr, v cm⁻¹): 3410 (tautomeric OH); 2924 (CH–Ar); 2854 (CH–aliph.); 1680 (cyclic C=O); 1660 (amidic C=O); 1600 (C=N); 1543 (C=C); 1246, 1041 (C–S–C). EI-MS: m/z (%): 389 (M + H, 1.81); 388 (M⁺, 7.17); 91 (C₆H₅N, 100). *Anal.* Calcd (%) for C₁₆H₁₂N₄O₂S₃: C, 49.47; H, 3.11; N, 14.42. Found: C, 49.68; H, 3.17; N, 14.60.

Ethyl 5-amino-4-(benzo[d]thiazol-2-yl)-2-methylfuran-3carboxylate (22). A solution of compound 1 (0.35 g, 2 mmol) and ethyl 2-chloro-3-oxobutanoate (0.33 g, 0.28 mL, 2 mmol) in absolute ethanol (10 mL) was added drop wise at room temperature to a solution of sodium ethoxide [prepared from sodium metal (0.05 g, 2 mmol) in absolute ethanol (10 mL)]. The reaction mixture was stirred at room temperature for 2 h during which a white precipitate separated out. The obtained product was filtered, washed several times with water, dried and crystallized from ethanol.

Pale yellow powder; yield 0.5 g (82%); mp 179–180°C. IR (KBr, v cm⁻¹): 3392, 3288 (NH₂); 3066 (CH–Ar); 2924, 2900 (CH–aliph.); 1697 (C=O); 1624 (C=N); 1500 (C=C); 1271, 1089 (C–S–C); 1240, 1030 (C–O–C). ¹H NMR (DMSO- d_6 , δ ppm): 1.35 (t, 3H, J = 7.2 Hz, CH₂CH₃); 2.46 (s, 3H, CH₃); 4.34 (q, 2H, J = 7.2 Hz, CH₂CH₃); 7.25 (t, 1H, J = 7.8 Hz, benzothiazole–C₆–H); 7.40 (t, 1H, J = 7.8 Hz, benzothiazole–C₆–H); 7.83 (s, 2H, NH₂, D₂O exchangeable); 7.84 (d, 1H, J = 7.8 Hz,

benzothiazole– C_4 –H); 7.94 (d, 1H, J = 7.8 Hz, benzothiazole– C_7 –H). ¹³C NMR (DMSO- d_6 , δ ppm): 13.96 (CH₃); 14.59 (CH₂CH₃); 60.82 (CH₂CH₃); 88.92 (furan– C_3); 111.18 (benzothiazole– C_4); 120.79 (benzothiazole– C_7); 121.59 (benzothiazole– C_6); 123.59 (benzothiazole– C_5); 126.19 (furan– C_4): 133.43 (benzothiazole– C_{1a}); 149.29 $(furan-C_5);$ 152.37 (benzothiazole– C_2); 158.79 (benzothiazole– C_{3a}); 162.20 (furan-C₂); 163.82 (C=O). Anal. Calcd (%) for C₁₅H₁₄N₂O₃S: C, 59.59; H, 4.67; N, 9.27. Found: C, 59.75; H. 4.74; N. 9.45.

6-Amino-5-(benzo[d]thiazol-2-yl)-4-(2,4-imethoxyphenyl) nicotinonitrile (24). A mixture of compound 1 (0.35 g, 2 mmol), 2-(2,4-dimethoxybenzylidene)malononitrile 23[41] (0.43 g, 2 mmol), and piperidine (0.1 mL) in absolute ethanol (20 mL) was heated under reflux for 2 h. The formed needle crystals were filtered, washed with ethanol, dried and recrystallized from acetone.

Light orange crystals; yield 0.71 g (91%); mp 175-177°C. IR (KBr, v cm⁻¹): 3310 (NH₂); 3095 (CH–Ar); 2930 (CH-aliph.); 2217 (C=N); 1566 (C=N); 1460 (C=C); 1278, 1025 (C-S-C); 1211, 1010 (C-O-C). ¹H NMR (DMSO- d_6 , δ ppm): 3.91 (s, 3H, 2,4–(OCH₃)₂– C₆H₃-C₄-OCH₃); 3.97 (s, 3H, 2,4-(OCH₃)₂-C₆H₃-C₂-OCH₃); 6.70–6.80 (m, 2H, 2,4–(OCH₃)₂–C₆H₃–C_{3 5}–H); 6.81 (s, 2H, NH₂, D₂O exchangeable); 7.49 (t, 1H, J = 7.8 Hz, benzothiazole–C₆–H); 7.57 (t, 1H, J = 7.8 Hz, benzothiazole–C₅–H); 8.06 (d, 1H, J = 8.1 Hz, 2,4–(OCH₃)₂–C₆H₃–C₆–H); 8.14 (d, 1H, J = 7.8 Hz, benzothiazole–C₄–H); 8.24 (d, 1H, J = 7.8 Hz, benzothiazole–C₇–H); 8.50 (s, 1H, pyridine– C₂-H). ¹³C NMR (DMSO-*d*₆, δ ppm): 56.34 (C₄-OCH₃); 56.79 (C₂-OCH₃); 98.89 (pyridine-C₅); 101.49 (2,4- $(OCH_3)_2 - C_6H_3 - C_5$; 107.50 $(C \equiv N)$; 114.08 (pyridine- $(2,4-(OCH_3)_2-C_6H_3-C_1);$ C_3 ; 117.38 122.83 (benzothiazole– C_4); 123.31 (benzothiazole– C_7); 126.34 (benzothiazole– C_6); 127.34 (benzothiazole– C_5); 130.03 $(2,4-(OCH_3)_2-C_6H_3-C_6);$ 134.43 (benzothiazole-C_{1a}); 141.56 (pyridine– C_6); 151.92 (benzothiazole– C_2 & pyridine– C_4); 153.52 $(benzothiazole-C_{3a});$ 161.11 $(\text{pyridine}-C_2 \& 2,4-(\text{OCH}_3)_2-C_6\text{H}_3-C_2); 164.27 (2,4 (OCH_3)_2 - C_6H_3 - C_4$; 165.39 $(2, 4 - (OCH_3)_2 - C_6H_3 - C_3)$. Anal. Calcd (%) for C₂₁H₁₆N₄O₂S: C, 64.93; H, 4.15; N, 14.42. Found: C, 65.12; H, 4.19; N, 14.58. 3-(Benzo[d]thiazol-2-yl)-6-bromo-2H-chromen-2-imine

(25). An equimolar mixture of compound 1 (0.35 g, 2 mmol) and 5-bromosalicylaldehyde (0.4 g, 2 mmol) was heated under reflux in absolute ethanol (15 mL) containing a catalytic amount of piperidine (five drops) for 1 h. A yellow precipitate was separated out, which was filtered, washed with ethanol, left to dry and crystallized from methanol.

Yellow powder; yield 0.6 g (84%); mp 250–251°C. IR (KBr, v cm⁻¹): 3249 (NH); 3048 (CH–Ar); 1659 (C=N); 1544 (C=C); 1225, 1061 (C–S–C); 1210, 1061 (C–O– C). ¹H NMR (DMSO- d_6 , δ ppm): 7.21 (d, 1H, J = 8 Hz, chromen–C₈–H); 7.47 (t, 1H, J = 7.7 Hz, benzothiazole–C₆–H); 7.57 (t, 1H, J = 7.7 Hz, benzothiazole–C₅–H); 7.68 (d, 1H, J = 8 Hz, chromen–C₇–H); 8.05–8.18 (m, 2H, benzothiazole–C_{4,7}–H); 8.47 (s, 1H, chromen–C₅–H); 8.73 (s, 1H, chromen–C₄–H) 9.23 (s, 1H, imino NH, D₂O exchangeable). *Anal.* Calcd (%) for C₁₆H₉BrN₂OS: C, 53.80; H, 2.54; N, 7.84. Found: C, 54.03; H, 2.57; N, 7.95.

3-(Benzo[d]thiazol-2-yl)-6-bromo-2-iminoquinolin-1(2H)amine (26). To a suspension of compound 25 (0.71 g, 2 mmol) in absolute ethanol (20 mL), hydrazine hydrate 99% (0.1 g, 0.09 mL, 2 mmol) was added, and the reaction mixture was heated under reflux for 8 h. It was then left to cool, and the reaction mixture was diluted with water and neutralized with 10% HCl. The obtained product was filtered, washed with water, dried and crystallized from toluene.

Dark yellow powder; yield 0.45 g (61%); mp 295–296°C. IR (KBr, v cm⁻¹): 3419, 3387 (NH₂, NH); 3068 (CH–Ar); 1625 (C=N); 1564 (C=C); 1267, 1078 (C–S–C). ¹H NMR (DMSO- d_6 , δ ppm): 6.95 (d, 1H, J = 8.7 Hz, quinoline–C₈–H); 7.52–7.55 (m, 3H, quinoline–C₇–H & benzothiazole–C_{5,6}–H); 7.87–7.97 (m, 3H, quinoline–C₅–H & benzothiazole–C_{4,7}–H); 8.90–8.95 (m, 2H, quinoline–C₄–H & imino NH); 11.12 (s, 2H, NH₂, D₂O exchangeable). *Anal.* Calcd (%) for C₁₆H₁₁BrN₄S: C, 51.76; H, 2.99; N, 15.09. Found (%): C, 51.98; H, 3.04; N, 15.34.

3-Acetyl-5-(benzo[d]thiazol-2-yl)-8-bromo-1H-[1,2,4]

triazino[2,3-a]quinolin-2(3H)-one (27). Equimolar amounts of compound 26 (0.37 g, 1 mmol) and ethyl 2-chloro-3-oxobutanoate (0.16 g, 0.14 mL, 1 mmol) were fused at 170–180°C for 27 h. The reaction mixture was filtered, and the solid product was washed with ethanol, dried and boiled with ethanol, benzene, dioxane and DMF.

Reddish brown powder; yield 0.37 g (82%); mp >300°C. IR (KBr, v cm⁻¹): 3437 (tautomeric OH); 3090 (CH–Ar); 2870 (CH–aliph.); 1728 (broad C=O); 1616 (C=N); 1556 (C=C); 1260, 1095 (C–S–C). ¹H NMR (DMSO- d_6 , δ ppm): 2.30 (s, 3H, CH₃); 3.57 (s, 1H, triazine–C₃–H); 7.15–7.21 (m, 4H, quinoline–C_{4,5,78}–H); 7.22–7.27 (m, 4H, benzothiazole–C_{4,5,6,7}–H); 8.15 (s, 1H, NH, D₂O exchangeable). MS: *m*/*z* (%): 454 (M + H, 1.16); 105 (C₇H₇N, 100). *Anal.* Calcd (%) for C₂₀H₁₃BrN₄O₂S: C, 52.99; H, 2.89; N, 12.36. Found: C, 53.00; H, 2.91; N, 12.37.

3,6-Di(benzo[d]thiazol-2-yl)-9-bromo-2-(4-chlorophenyl)-

[1,2,4]triazepino[2,3-a]quinolin-4-amine (28). Compound **26** (0.37 g, 1 mmol) was added to an equimolar mixture of compound **1** (0.17 g, 1 mmol) and 4-chlorobenzaldehyde (0.14 g, 1 mmol) in dioxane (10 mL) as solvent. The reaction mixture was heated under reflux for 54 h, then concentrated and cooled, and the obtained

precipitate was filtered, washed with dioxane, dried and crystallized from methanol.

Brown powder; yield 0.42 g (63%); mp 118–120°C. IR (KBr, v cm⁻¹): 3398, 3385 (NH₂); 3057 (CH–Ar); 1624 (C=N); 1560 (C=C); 1269, 1087 (C-S-C). ¹H NMR $(DMSO-d_6, \delta ppm): 6.95 (d, 1H, J = 7.8 Hz,$ quinolinine– C_8 –H); 7.19-7.80 (m. 4H. two benzothiazole– $C_{5.6}$ –H); 7.89 (d, 1H, J = 7.8 Hz, quinoline-C7-H); 8.13-8.22 (m, 2H, 4-Cl-C6H4-C26-H); 8.28–8.39 (m, 2H, 4–Cl–C₆H₄–C_{3.5}–H); 8.70 (s, 1H, quinoline-C₅-H); 8.80 (s, 1H, quinoline-C₄-H); 8.90 (d, 4H, J = 11.7 Hz, two benzothiazole–C_{4.7}–H); 11.11 (s, 2H, NH₂, D₂O exchangeable). Anal. Calcd (%) for C₃₂H₁₈BrClN₆S₂: C, 57.71; H, 2.72; N, 12.62. Found: C, 57.89; H, 2.70; N, 12.81.

6-(Benzo[d]thiazol-2-yl)-9-bromo-4-(2,4-dichlorophenyl)-1,4-dihydro-3',4'-dihydronaphthyl[1',2':6,7][1,2,4]

triazepino[2,3-a]quinoline (29). Equimolar amounts of compound **26** (0.37 g, 1 mmol), 1-tetralone (0.15 g, 0.13 mL, 1 mmol), and 2,4-dichlorobenzaldehyde (0.18 g, 1 mmol) were heated under reflux in dioxane (10 mL) containing a catalytic amount of p-toluene sulfonic acid for 35 h. The reaction mixture was then cooled, and the solid product was filtered, washed with dioxane, dried and crystallized from benzene.

Dark brown powder; yield 0.33 g (50%); mp 88–90°C. IR (KBr, v cm⁻¹): 3170 (NH); 3066, 3035 (CH–Ar); 2927, 2870 (CH-aliph.); 1597 (C=N); 1477 (C=C); 1284, 1080 (C–S–C). ¹H NMR (DMSO- d_6 , δ ppm): 2.03 (t, 2H, J = 5.7 Hz, tetrahydronaphthyl–C₄–CH₂); 2.59 (t, 2H, J = 5.7 Hz, tetrahydronaphthyl–C₃–CH₂); 4.56 (s, 1H, triazepine– C_5 –H); 6.94 (d, 1H, J = 7.2 Hz, quinoline- C_8 -H); 7.10 (d, 2H, J = 6.6 Hz, 2,4-(Cl)₂- $C_6H_3-C_{5.6}-H$; 7.24 (s, 1H, 2,4-(Cl)₂-C₆H₃-C₃-H); 7.34 (d, 1H, J = 7.2 Hz, quinoline–C₇–H); 7.42–7.63 (m, 4H, tetrahydronaphthyl– $C_{5,6,7,8}$ –H); 7.62 (s, 1H, quinoline-C5-H); 7.68-7.82 (m, 2H, benzothiazole- $C_{5.6}$ -H); 7.84–8.00 (m, 2H, benzothiazole– $C_{4.7}$ -H); 8.93 (s, 1H, quinoline-C₄-H); 11.12 (s, 1H, NH, D₂O exchangeable). Anal. Calcd (%) for $C_{33}H_{21}BrCl_2N_4S$: C, 60.38; H, 3.22; N, 8.54. Found: C, 60.64; H, 3.20; N, 8.70.

4-Amino-6-(benzo[d]thiazol-2-yl)-9-bromo-2-(2,4dimethoxyphenyl)[1,2,4]triazepino-[2,3-a]quinoline-3-

carbonitrile (31a) and 6-(berzo[d]thiazol-2-yl)-9-bromo-2-(2,4dimethoxyphenyl)-4-hydroxy-[1,2,4]triazepino[2,3-a]quinoline-3-carbonitrile (31b). An equimolar mixture of compound 26 (0.37 g, 1 mmol) and compound 23 (41) (0.21 g, 1 mmol) or compound 30[41] (0.26 g, 1 mmol) was heated under reflux in absolute ethanol (20 mL) containing a catalytic amount of piperidine (0.5 mL) for 35 h. The reaction mixture was concentrated and cooled, and the solid product was filtered, washed with ethanol, dried and crystallized from ethanol to yield compounds 31a and 31b, respectively.

4-Amino-6-(benzo[d]thiazol-2-yl)-9-bromo-2-(2,4dimethoxyphenyl)[1,2,4]triazepino-[2,3-a]quinoline-3-

carbonitrile (31a). Light orange crystals; yield 0.24 g (41%); mp 264–266°C. IR (KBr, v cm⁻¹): 3400 (NH₂); (CH–Ar); 2927, 2852 (CH–aliph.); 2195 3005 $(C \equiv N);$ 1616, 1602 (C = N); 1541 (C = C);1269. 1099 (C-S-C); 1234, 1074 (C-O-C). ¹H NMR (DMSO d_6 , δ ppm): 3.86, 3.90 (two s, 6H, two OCH₃); 6.61 (s, 1H, 2,4–(OCH₃)₂–C₆H₃–C₃–H); 6.66 (d, 1H, J = 8.3 Hz, $2,4-(OCH_3)_2-C_6H_3-C_5-H$; 6.95 (d, 1H, J = 8.3 Hz, 2,4- $(OCH_3)_2 - C_6H_3 - C_6 - H);$ 7.44-7.60 (m, 2H, quinoline-C_{7.8}-H); 7.83-7.93 (m, 2H, benzothiazole-C_{5.6}-H); 8.81 (s, 1H, quinoline– C_5 –H); 8.86 (d, 2H, J = 7.8 Hz, benzothiazole– $C_{4,7}$ –H); 8.93 (s, 1H, quinoline– C_4 –H); 11.10 (s, 2H, NH₂, D₂O exchangeable). Anal. Calcd (%) for C₂₈H₁₉BrN₆O₂S: C, 57.64; H, 3.28; N, 14.40. Found: C, 57.89; H, 3.25; N, 14.62.

6-(Benzo[d]thiazol-2-yl)-9-bromo-2-(2,4-dimethoxyphenyl)-4-hydroxy-[1,2,4]triazepino[2,3-a]quinoline-3-carbonitrile

(31b). Pale brown powder; yield 0.26 g (45%); mp 218–220°C. IR (KBr, v cm⁻¹): 3446, 3421 (broad OH); 3095 (CH–Ar); 2929, 2854 (CH–aliph.); 2220 (C \equiv N); 1624 (C=N); 1560 (C=C); 1267, 1074 (C–S–C & C–O–C). ¹H NMR (DMSO- d_6 , δ ppm): 2.73, 2.89 (two s, 6H, two OCH₃); 6.91–7.00 (m, 3H, 2,4–(OCH₃)₂–C₆H₃–C_{3.5,6}–H); 7.53 (d, 2H, J = 8.4 Hz, quinoline–C_{7,8}–H); 7.84–7.91 (m, 2H, benzothiazole–C_{5,6}–H); 7.95 (s, 1H, quinoline–C₅–H); 7.98–8.03 (m, 2H, benzothiazole–C_{4,7}–H); 8.93 (s, 1H, quinoline–C₄–H); 11.10 (s, 1H, OH, D₂O exchangeable). *Anal.* Calcd (%) for C₂₈H₁₈BrN₅O₃S: C, 57.54; H, 3.10; N, 11.98. Found: C, 57.81; H, 3.14; N, 12.17.

4-Amino-6-(benzo[d]thiazol-2-yl)-9-bromo-2-(methylthio) [1,2,4]triazepino[2,3-a]quinoline-3-carbonitrile (34a) and ethyl 4-amino-6-(benzo[d]thiazol-2-yl)-9-bromo-2-(methylthio)-

[1,2,4]triazepino[2,3-az]quinoline-3-carboxylate (34b). To a solution of compound 26 (0.37 g, 1 mmol) in DMF (10 mL) an equimolar amount of either compound 32 [42] (0.17 g, 1 mmol) or compound 33 [42] (0.22 g, 1 mmol) was added, and the reaction mixture was heated under reflux in the presence of TEA (two drops) for 66–70 h. The solvent was then evaporated, and the solid mass was triturated with ethanol, and the obtained solid was filtered, washed with ethanol, dried and crystallized from ethanol to afford compounds 34a and 34b, respectively.

4-Amino-6-(benzo[d]thiazol-2-yl)-9-bromo-2-(methylthio) [1,2,4]triazepino[2,3-a]quinoline-3-carbonitrile (34a).

Brown powder; yield 0.23 g (47%); mp 248–250°C. IR (KBr, v cm⁻¹): 3427, 3419 (NH₂); 3068 (CH–Ar); 2924 (CH–aliph.); 2210 (C \equiv N); 1624 (C=N); 1548 (C=C); 1267, 1078 (C–S–C). ¹H NMR (DMSO-*d*₆, δ ppm): 2.89 (s, 3H, S–CH₃); 6.95 (d, 2H, *J* = 8.4 Hz, quinoline–C_{7.8}–H); 7.48–7.60 (m, 4H, benzothiazole–C_{4.5,6,7}–H); 7.89 (s, 1H, quinoline–C₅–H); 8.93 (s, 1H, quinoline–C₄–H); 11.10 (s, 2H, NH₂, D₂O exchangeable). *Anal.* Calcd (%)

for C₂₁H₁₃BrN₆S₂: C, 51.12; H, 2.66; N, 17.03. Found (%): C, 51.30; H, 2.63; N, 17.19.

Ethyl4-amino-6-(benzo[d]thiazol-2-yl)-9-bromo-2-(methylthio)[1,2,4]triazepino[2,3-a]quinoline-3-carboxylate(34b).Brown powder; yield 0.27 g (50%); mp 280–282°C. IR (KBr, v cm⁻¹): 3421 (NH₂); 3068 (CH–Ar);2924, 2868 (CH–aliph.); 1710 (C=O); 1624 (C=N);1475 (C=C); 1267, 1078 (C–S–C); 1234, 1078 (C–O–C).^IH NMR (DMSO-d₆, δ ppm): 1.06 (t, 3H, J = 6.9 Hz,CH₂CH₃); 2.89 (s, 3H, S–CH₃); 3.38–3.50 (m, 2H,CH₂CH₃); 6.95 (d, 2H, J = 9 Hz, quinoline–C_{7,8}–H);7.50–7.60 (m, 4H, benzothiazole–C_{4,5,6,7}–H); 7.89 (s, 1H,quinoline–C₅–H); 8.93 (s, 1H, quinoline–C₄–H); 11.10(s, 2H, NH₂, D₂O exchangeable). Anal. Calcd (%) forC₂₃H₁₈BrN₅O₂S₂: C, 51.11; H, 3.36; N, 12.96. Found: C,51.23; H, 3.35; N, 13.14.

Acknowledgments. We would like to thank the National Cancer Institute (NCI), Bethesda, Maryland, USA, for performing the anticancer screening of the newly synthesized compounds.

REFERENCES AND NOTES

[1] Kumbhare, R. M.; Dadmal, T. L.; Ramaiah, M. J.; Kishore, K. S. V.; Valli, S. N. C. V. L. P.; Tiwar, S. K.; Appalanaidu, K.; Rao, Y. K.; Bhadra, M. P. Bioorg Med Chem Lett 2015, 25, 654.

[2] Gabr, M. T.; El-Gohary, N. S.; El-Bendary, E. R.; El-Kerdawy, M. Med Chem Res 2015, 24, 860.

[3] Kamal, A.; Ashraf, M. D.; Vadhan, M. V. P. S. V.; Faazil, S.; Nayak, V. L. Bioorg Med Chem Lett 2014, 24, 147.

[4] Kumbhare, R. M.; Dadmal, T. L.; Pamanji, R.; Kosurkar, U. B.; Velatooru, L. R.; Appalanaidu, K.; Rao, Y. K.; Rao, J. V. Med Chem Res 2014, 23, 4404.

[5] Saeed, S.; Rashid, N.; Jones, P. G.; Ali, M.; Hussain, R. Eur J Med Chem 2010, 45, 1323.

[6] Kharbanda, C.; Alam, M. S.; Hamid, H.; Javed, K.; Bano, S.; Dhulap, A.; Ali, Y.; Nazreen, S.; Haider, S. Bioorg Med Chem 2014, 22, 5804.

[7] Ke, S.; Wei, Y.; Yang, Z.; Wang, K.; Liang, Y.; Shi, L. Bioorg Med Chem Lett 2013, 23, 5131.

[8] Bhat, M.; Belagali, S. L. Res Chem Intermed 2016, 42, 6195.

[9] Shaikh, F. M.; Patel, N. B.; Sanna, G.; Busonera, B.; Colla, P. L.; Rajani, D. P. Med Chem Res 2015, 24, 3129.

[10] Amir, M.; Asif, S.; Ali, I.; Hassan, M. Z. Med Chem Res 2012, 21, 2661.

[11] Pudhom, K.; Kasai, K.; Terauchi, H.; Inoue, H.; Kaiser, M.; Brun, R.; Ihara, M.; Takasu, K. Bioorg Med Chem 2006, 14, 8550.

[12] Delmas, F.; Avellaneda, A.; Giorgio, C. D.; Robin, M.; Clercq, E. D.; Timon-David, P.; Galy, J.-P. Eur J Med Chem 2004, 39, 685.

[13] Keri, R. S.; Patil, M. R.; Patil, S. A.; Budagumpi, S. Eur J Med Chem 2015, 89, 207.

[14] Kamal, A.; Kumar, A. P.; Suresh, P.; Shankaraiah, N.; Kumar, M. S. Bioorg Med Chem Lett 2011, 21, 350.

[15] Kaplan-Ozen, C.; Tekiner-Gulbas, B.; Foto, E.; Yildiz, I.; Diril, N.; Aki, E.; Yalcin, I. Med Chem Res 2013, 22, 5798.

[16] Oanh, D. T. K.; Hai, H. V.; Park, S. H.; Kim, H.-J.; Han, B.-W.; Kim, H.-S.; Hong, J.-T.; Han, S.-B.; Hue, V. T. M.; Nam, N.-H. Bioorg Med Chem Lett 2011, 21, 7509.

[17] Elgmemie, G. H.; Shams, H. Z.; Elkholy, Y. M.; Abbas, N. S. Phosph Sulf Silicon 2000, 165, 265.

[18] Rida, S. M.; Ashour, F. A.; El-Hawash, S. A. M.; Elsemary, M. M.; Badr, M. H.; Shalaby, M. A. Eur J Med Chem 2005, 40, 949.

[19] Rostom, S. A. F.; El-Ashmawy, I. M.; El Razik, H. A.; Badr,

- M. H.; Ashour, H. M. A. Bioorg Med Chem 2009, 17, 882.
 - [20] Refaat, H. M. Eur J Med Chem 2949, 2010, 45.
- [21] Bondock, S.; Fadaly, W.; Metwally, M. A. Eur J Med Chem 2010, 45, 3692.
- [22] El-Mekabaty, A. Chem Heterocy Compoun 2015, 50, 1698.
- [23] Elgemeie, G. H.; Elghandour, A. H.; Adb Elaziz, G. W. Synth Commun 2827, 2007, 37.
- [24] Britsun, V. N.; Esipenko, A. N.; Lozinskii, M. O. Chem Heterocyc Compoun 2008, 44, 1429.
- [25] Komarova, E. S.; Makarov, V. A.; Granik, V. G.; Parkanyi, C. J Heterocyclic Chem 2012, 49, 969.
- [26] Bondock, S.; Adel, S.; Etman, H. A.; Badria, F. A. Eur J Med Chem 2012, 48, 192.
- [27] Hassan, A. S.; Hafez, T. S.; Osman, S. A. Scient Pharmaceut 2015, 83, 27.
- [28] Abdel-Latif, E.; Khalil, A.-G. Res Chem Intermed 2015, 41, 4555.
- [29] Dawood, K. M.; Elwan, N. M.; Farahat, A. A.; Abdel-Wahab, B. F. J Heterocyclic Chem 2010, 47, 234.
- [30] Resnyanskaya, E. V.; Tverdokhlebov, A. V.; Tolmachev, A. A.; Volovenko, Y. M. Rus J Org Chem 2005, 41, 257.
 - [31] Huang, Y.; Domling, A. Mol Divers 2011, 15, 3.
- [32] Mohareb, R. M.; Fleita, D. H.; Sakka, O. K. Molecules 2011, 16, 16.
 - [33] Ghorab, M. M.; Al-Said, M. S. Arch Pharm Res 2012, 35, 965.
- [34] Velezheva, V. S.; Lepyoshkin, A. Y.; Turchin, K. F.; Fedorova, I. N.; Peregudov, A. S.; Brennan, P. J. A. J Heterocyclic Chem
- 2013, 50, 225. [35] Voskressensky, L. G.; Festa, A. A.; Varlamov, A. V. Tetrahe-
- dron 2014, 70, 551.

[36] Ahmed, H. H.; Elmegeed, G. A.; El-Sayed, E. M.; Abd-Elhalim, M. M.; Shousha, W. G.; Shafic, R. W. Eur J. Med Chem 2010, 45, 5452.

- [37] Wardakhan, W. W.; Ibrahim, D. A.; Zaki, M. Y. Heterocycl Commun 2011, 17, 155.
- [38] Khalil, A. M.; Berghot, M. A.; Abd El-Ghani, G. E.; Gouda, M. A. Synth Commun 2010, 40, 1658.

[39] Zubarev, A. A.; Shestopalov, A. M.; Larionova, N. A.; Rodinovskaya, L. A.; Shestopalov, A. A. Tetrahydron 2013, 69, 9648.

[40] Elzahabi, H. S. A. Eur J Med Chem 2011, 46, 4025.

[41] Beukers, M. W.; Chang, L. C. W.; Frijtag, J. K. V.; Kunzel, D.; Mudler-krieger, T.; Spanjersberg, R. F.; Brussee, J.; Ijzerman, A. P. J Med Chem 2004, 47, 3707.

- [42] Liu, R. X. Molecules 2014, 19, 14036.
- [43] Fadda, A. A. Phosphor Sulf Silicon Relat Elem 1999, 155, 59.[44] Maddila, S.; Jonnalagadda, S. B. Bullet Chem Soc Ethiop 2012, 26, 467.

[45] Monks, A.; Scdiero, D. A.; Skehan, P.; Shoemaker, R. H.; Pall, K. D.; Vistica, D. T.; Hose, C.; Langley, J.; Cronice, P.; Vaigro-Wolf, M.; Gary-Goodrich, M.; Campbell, H.; Mayo, M. R. J. Nat Cancer Inst 1991, 83, 757.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of the article.