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Intermolecular Photoredox Coupling: Alternative to Norrish

Type Il Reaction and Yang Cyclization in Ketones with

v-C—H Bonds

Heiko Hoffmann*? and Michael W. Tausch™

A new reaction pathway for the photoconversion of butyrophe-
none in acetonitrile was investigated. In addition to the classic
intramolecular photoreactivity of ketones with y-C—H bonds
(Norrish type Il fragmentation and Yang cyclization), intermo-
lecular generated species were isolated and characterized: 1,2-
Dibenzoylethane, 2-phenacylacetonitrile (oxidized species) and
pinacols (reduced species). They account for approx. 20% of the
converted starting material, similar to the Yang product. The
acetophenone enol intermediate, formed in situ via the Norrish
type Il reaction, has been identified as an H-atom donor for the
main intermolecular reaction steps, and has been distinguished
from other conceivable mechanistic possibilities. Experimental
results with analogue compounds suggest that the intermolec-
ular product formation pathway may be of general relevance.

Butyrophenone (6) holds a special place in the history of
photochemistry as stated by Sundaresan, Jockusch and Turro.!"
The intramolecular deactivation pathways by photoreactions
(Norrish type Il fragmentation®” to acetophenone enol and
ethene,***% and Yang cyclization” to 1-phenylcyclobutanol
(4)3498%) gre well established and can be found as common
textbook knowledge. The formation of 1-tetralone (3)*® has
also been reported in the literature.

In contrast, to the best of our knowledge, 1,2-dibenzoyl-
ethane (7) has rarely been reported as a photoproduct in the
literature, and is formed in only very small amounts'"' To
understand its photochemical formation from butyrophenone
(6), further studies were carried out by irradiation in
acetonitrile."?
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The expected compounds acetophenone (2) and ethene
(main products) as well as 1-phenylcyclobutanol (4) and 1-
tetralone (3) were found, all formed by intramolecular reaction
steps (HPLC and standard addition, MS-APCI, MS-ESI or GCQ). In
addition, other photoproducts were obtained (oxidized and
reduced species with respect to the H-atom balance), which
must have been formed by intermolecular reaction steps.!*™
Together they account for approx. 20% of the conversion,
similar to 1-phenylcyclobutanol® (Figure 1). They are referred
to in the following as “intermolecular photoproducts”. No
formation of oxetanes,™™ hydrols,™*'® mixed recombination
products” (from phenacyl and ketyl radicals), and hydrogen®
has been observed. The time course of the stable components
shows the parallel formation of 1,2-dibenzoylethane (7) and
the sum of the pinacols (5, 8-12) (Figure 2). The 1,2-dibenzoyl-
ethane signal (7) is already observed (HPLC) in the initial phase
of the reaction after a very short irradiation time (2 min, the
total turnover would require at least 60 min). Variation experi-
ments of the reaction parameters (Figure 3) show reduced
intermolecular product formation at 0.005 M and none at all at
0.0005 M butyrophenone concentration. The experiments also
indicated complex mutual dependencies between turnover
time, irradiation intensity, temperature, solvent and the
presence of UVB radiation (through the use of quartz glass
between the light source and reaction volume). In the case of
the 0.05 M reactant concentration, intermolecular photoprod-
uct formation was generally observed. Qualitative comparative
experiments (using 0.05 M butyrophenone) showed an in-
creased formation of the intermolecular photoproducts at
rather long turnover time, low temperature, relatively high
radiation intensity and the use of UVB light sources and quartz
glass.

The irradiation of the analogues hexanophenone and
octanophenone (both 0.05 M) provided also evidence of an
increased formation of 1,2-dibenzoylethane (7) compared to
the acetophenone system (2) (see below). First experiments to
irradiate the aliphatic analogue 2-pentanone show a hexane-
2,5-dione signal which is about a factor of 2 higher than the
corresponding signal found after acetone irradiation” (each
HPLC and standard addition).

In developing the mechanism proposed in Scheme 1 for
the formation of intermolecular photoproducts, the following
experimental findings were also considered: 1. The irradiation
of acetophenone (2) (0.05 M) resulted in about a factor of
10 less intermolecular product formation than that from
butyrophenone (6) (HPLC, MS). 2.The irradiation of the
analogue propiophenone (0.05 M), which is a-alkyl-substituted
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oxidized forms of the initial reactant

reduced forms of the initial reactant (both enantiomeric pairs in each case)

(0] N (0] (o} HO OH HO OH HO OH O
4
7
o N
compound:  2-phenacyl- 1,2-dibenzoylethane acetophenone acetophenone- butyrophenone 3-methyl-1,3,4-triphenyl-2,7-
acetonitrile pinacol butyrophenone pinacol dioxabicyclo[2.2.1]heptane
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Figure 1. Intermolecular photoproducts of butyrophenone (6) (2.2 g, 2.25 mL, 0.05 M, complete conversion). No enantiomers were separated (due to
instrument-based limitations). The small isolated quantities were determined gravimetrically, and were extrapolated to the total reaction volume. Reaction
conditions: Irradiation (4 h) in acetonitrile (290 mL in a quartz flask) using 2 UVA-LED and 4 UVB light bulb sources (combined) under ventilator cooling
(approx. 25°Q).
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Figure 2. The time course of the stable components of the photochemical butyrophenone (6) turnover (2.2 g, 2.25 mL, 0.05 M, complete conversion), shown
by layered chromatograms (HPLC, each sample taken after different irradiation times). The small amounts of presumed acetophenone-1,2-dibenzoylethane
pinacol were not assigned (see Figure 1). Reaction conditions: Irradiation (4 h) in acetonitrile (290 mL in a quartz flask) using 2 UVA-LED and 4 UVB light bulb
sources (combined) under ventilator cooling (approx. 25 °C).
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chemical conversion of a-ethyl-substituted 1,2-dibenzoyl-
ethanes, no signal strengths matching those of the 1,2-

but cannot undergo the Norrish type Il reaction, gave
comparable findings (HPLC, MS). 3. After synthesis and photo-
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transfer (HAT) from the intermediate acetophenone enol® to
excited keto forms, phenacyl and ketyl radicals are formed.*”
These then react by phenacyl radical addition'**® to acetophe-
none enol, followed by H-atom loss via HAT or via ketyl radical

1(2)88 T 20 1 transfer to ground state ketones (2, 6),”” and by radical
800 LR B B B B recombination to give 1,2-dibenzoylethane (7)***® and pinacols
600 +— — 10 44— 88 (5, 8_12).[4,6,13,20,29]
388 il I I ST 1 1 B: By radical a-C—H abstraction namely HAT between
0 - 0 - excited keto forms and ground state acetonitrile, acetonitrile
Q‘P@ .QODQQQ%Q g‘s Q‘:SQ‘J\&QQ‘O‘ZQ‘S radicals® and ketyl radicals could be formed. The acetonitrile
o N radicals could form 2-phenacylacetonitrile (1) (analogous to
Scheme 1A) by addition to acetophenone enol (followed by H-
B atom loss) or by recombination with a phenacyl radical.
C: Recombination of a 1,2-dibenzoylethane ketyl radical with
1,2-dibenzoylethane time to full

HPLC signal [AU] conversion [min]

an acetophenone ketyl radical could form 1,2-dibenzoylethane-
acetophenone pinacol (analogous to Scheme 1A). Presumably, 3-

N 1207 methyl-1,34-triphenyl-2,7-dioxabicyclo[2.2.1]heptane (13, 14) has

13888 i B 138 N been formed from it during the work-up, by cyclization and

6000 + — — — 60 - — —— release of water.

‘2‘888 I I I B ‘2‘8 jI I B B In conclusion, it can be assumed that the intermolecular
0 70 P 0 70 o photoredox coupling can occur as an alternative reaction
S eSS S S S pathway to the known Norrish type Il process and can proceed

Figure 3. Selected results of reaction parameter variation experiments
demonstrating the relevance of the intermolecular photoproduct formation
under typical conditions using modern light sources (UVB, quartz glass, 3 mL
reaction volume micro scale in thermostatic quartz jacket, 20°C). A: Variation
of the butyrophenone (6) concentration. For signal comparison, the different
dilutions and the different conversions were taken into account by
calculation, resulting in an approx. conversion of 15-20% (assuming linearity
of the concentration-signal ratios). B: Variation of the reaction temperature.

dibenzoylethane (7) amount of the butyrophenone system (6)
could be observed (HPLC, MS). 4. The synthesis of isotopically
labeled acetophenones and their addition to the butyrophe-
none system (6) prior to irradiation revealed that de facto no
isotopically labeled ketone building blocks are incorporated
into 1,2-dibenzoylethane (7), but incorporation into formed
pinacols (5, 8-12) occurs approximately statistically (El-, APCI-,
and ESI-MS; after separation by TLC or HPLC). 5. For excluding
any catalytic event (e.g. via enolization by alcohols®'*?"), small
amounts of a second known component (1-phenylcyclobuta-
nol (4), acetophenone pinacol (5, 8), 1-tetralone (3), 1-
naphthol) were added to acetophenone (2) prior to irradiation.
No 1,2-dibenzoylethane (7) signal intensities (HPLC) compara-
ble to those of the pure butyrophenone system (6) were
found. Based on these experimental findings, the main path-
ways of formation of the intermolecular photoproducts shown
in Scheme 1 are proposed. Other mechanisms initially conceiv-
able with regard to Scheme 1A, which would proceed via (i) a-
C—H-abstraction from ground-state ketones (2, 6)"*' and
subsequent release of ethene, (ii) a-C—H-abstraction after
radical-radical coupling at the phenyl moiety®" or (jii) [2 + 2]-
cycloaddition of excited acetophenone enol,”? are excluded
on the basis of the literature’®* and experimental findings.

A: Acetophenone enol ketonizes uncatalyzed on the
second-minute scale to acetophenone (2)."**¥ By H-atom
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with similar yields as the Yang cyclization. Therefore, it is
proposed to add this option to the photoreaction modes and
photoproducts of ketones with y-C—H bonds typically shown in
relevant textbooks®?" (Scheme 2).

Experimental Section
(See Supporting Information for details):

The reaction volumes were irradiated using UVA-LED or UVA, UVB
or UVC light bulb sources in borosilicate or quartz glass (cf. also®?).
Reaction volumes on a preparative scale (290 mL or similar) in
acetonitrile (quality “for chromatography”) were sealed (pressure
compensation by gas syringes, also to capture the gas phase) and
irradiated from the outside (after flushing with argon), under
stirring and ventilator cooling. Reaction volumes on a micro scale
(1mL or 3mL) were irradiated comparably and partly under
isothermal conditions.

Product isolation and characterization: After removal of the solvent,
acetophenone (2) was allowed to evaporate and 1,2-dibenzoyl-
ethane (7) was partially separated by crystallization. The residue
was fractionated by preparative RP-chromatography. Ethyl-substi-
tuted 1,2-dibenzoylethanes and isotopically labeled acetophenones
were thermally synthesized and isolated using preparative RP-
chromatography or flash-chromatography. The obtained products
were characterized by a selection of the following methods resp.
compared with literature data: NMR ('H, *C, DEPT, COSY, HSQC,
HMBC, NOESY), MS (APCI, ESI, El) and IR (ATR). 1,2-dibenzoylethane
(7) was additionally identified by a crystal structure. 3-methyl-1,3,4-
triphenyl-2,7-dioxabicyclo[2.2.1]heptane (13, 14) has been identified
by spectra comparison ('H- and COSY-NMR, MS-APCl) with a
product prepared in larger quantities (via another reaction).

Component mixtures were investigated using analytical HPLC,
mostly by using a MeOH-H,0-gradient method.

© 2021 The Authors. European Journal of Organic Chemistry published
by Wiley-VCH GmbH
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Scheme 1. Proposed formation mechanisms of the obtained intermolecular photoproducts (explanations in the text).
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A new reaction pathway of the photo-
conversion of butyrophenone is
reported. In addition to the Norrish
type Il fragmentation and Yang cycli-
zation, intermolecular species are
generated: 1,2-Dibenzoylethane, 2-
phenacylacetonitrile and pinacols.

They account for approx. 20% of the
converted starting material, similar to
the Yang product. The acetophenone
enol intermediate has been identified
as an H-atom donor for the proposed
mechanistic steps.
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