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Abstract. The synthesis of new alkenyl iodobenzoate derivatives as allylic esters was investigated via the

reaction of tert-butyl iodobenzoperoxoate with alkenes in the presence of copper salts. The best result was

obtained using tert-butyl-iodobenzoperoxoate in the presence of copper (I) iodide (5 mol%) in refluxing

acetonitrile with good yield (92%) in 32 h. The structure of peresters and alkenyl iodobenzoate derivatives

were characterized on the basis of their FT-IR, 1HNMR, 13CNMR, and Mass spectra.

Keywords. Kharasch–Sosnovsky reaction; Allylic C–H bond oxidation; tert-Butyl iodobenzoperoxoate;

Alkenyl iodobenzoate; copper (I) iodide; Alkenes.

1. Introduction

In 1958, Kharasch and Sosnovsky reported the

preparation of allylic esters via allylic C-H bond oxi-

dation of olefins using tert-butyl perbenzoate in the

presence of catalytic copper (I) bromide in refluxing

benzene.1,2 Because of the special nature of the allylic

C-H bond, it can be replaced by the benzyloxy group

directly.1–10 This kind of reaction introduces a suit-

able synthetic route for preparing the pharmaceuticals

and natural products11–14 such as leukotriene B4 as

inflammation mediator,15 chrysanthemic acid,16

amyrin17 and brevetoxin.18 Essentially, the successful

development of allylic C–H bond oxidation relies

strongly on the copper salt, the perester oxidant, and

the reaction conditions such as additives, solvents, and

temperature.1,3–10

The literature survey only shows two reports for the

synthesis of alkenyliodobenzoate derivatives: In 2000,

the Andrus’ group reported the synthesis of allylic

esters from cyclohexene and cyclopentene for the first

time by using tert-butyl o-iodo benzoperoxoate in the

presence of bi-o-tolyl bisoxazoline ligands and

Cu(CH3CN)4PF6 resulted in 68% and 61% yields,

respectively at -20 �C after 120 h in acetonitrile.19

And in 2005 Branchaud group reported the synthesis

and application of cyclohexnyl-2-iodobenzoate as a

precursor for Heck reaction.20 However allylic C-H

bond oxidation in different conditions generally suf-

fers from long reaction time and moderate yields.

Hence, as a part of our ongoing research on Kharasch-

Sosnovsky reaction for developing the preparation of

allylic esters and the importance of iodo-allylic esters

as intermediates in organic synthesis,9,19,21–27 we

encouraged to synthesis the new derivatives of them

through Kharasch and Sosnovsky reaction. Herein, we

report the preparation of new iodo-allylic esters from

alkenes in the presence of copper salts in good to

excellent yields.

2. Experimental

2.1 Synthesis of iodobenzoyl chlorides 2a-c

To a round bottom flask under the nitrogen atmosphere,

o-iodo-benzoic acids 1a (3.0 mmol, 0.74 g) and dried

methylene chloride (10 mL) were added. After cooling
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to 0 �C, oxalyl chloride (6 mmol, 0.62 mL) and

dimethylformamide (60 lL) were slowly added. The

mixture was warmed up to room temperature and stirred

for 8 h (Scheme 1). After the completion of the reac-

tion, the solvent was removed on a rotary evaporator to

provide the o-iodo-benzoyl chloride 2a (0.8 g, quanti-

tative). The total yield for m-iodo-benzoyl chloride 2b
and p-iodo-benzoyl chloride 2c were 99%, 99%,

respectively.

2.2 Synthesis of tert-butyl iodo benzoperoxoate
3a-c

To a round bottom flask (100 mL) under the nitrogen

atmosphere, o-iodo-benzoyl chloride 2a (3.0 mmol, 0.8 g)

was dissolved in dried methylene chloride (6 mL). After

cooling to - 20 �C, pyridine (3.5 mmol, 0.28 mL) and tert-
butyl hydroperoxide (3.5 mmol, 0.24 mL) were slowly

added and stirred for 4.5 h at -20 �C (Scheme 1). After

consumption of o-iodo-benzoyl chloride, the reaction

solution was diluted with CH2Cl2 (40 mL) and washed with

the saturated NaHCO3 in the workup. The organic phase

was evaporated and the obtained residues were purified by

silica gel column chromatography (n-hexane: EtOAc; 95:5)
to afford the tert-butyl-o-iodo benzoperoxoates 3a (98%

yield). The total yield for tert-butyl-m-iodo benzoperox-

oates 3b and tert-butyl-p-iodo benzoperoxoates 3c were

92%, 95%, respectively (S3-4 in Supplementary

Information).

2.2a tert-Butyl-2-iodobenzoperoxoate 3a:19

Light yellow solid; M.p.: 37-41 �C.; FT-IR (KBr) (mmax/

cm-1): 2926, 1758, 466.; 1HNMR (300 MHz, CDCl3): dH
(ppm) = 7.97 (1H, d, J = 7.9 Hz, Ar), 7.59 (1H, d,

J = 7.7 Hz, Ar), 7.42 (1H, t, J = 7.5 Hz, Ar), 7.20 (1H, t,

J = 7.6 Hz, Ar), 1.43 (9H, s, CH3).;
13CNMR (75 MHz,

CDCl3): dC (ppm) = 165.2, 141.9, 134.3, 133.0, 130.3,

127.9, 93.3, 84.3, 26.2.; m/z (%): 320 (0.2, M), 248 (58),

194 (5), 122 (100), 74 (75).

2.2b tert-Butyl-3-iodobenzoperoxoate 3b:

Light yellow oil.; FT-IR (KBr) (mmax/cm
-1): 2922, 1748,

473.; 1H NMR (400 MHz, CDCl3): dH (ppm) = 8.44 (1H, s,

Ar), 8.18 (1H, d, J = 8.1 Hz, Ar), 8.14 (1H, d, J = 8.4 Hz,

Ar), 7.64 (1H, m, Ar), 1.45 (9H, s, CH3).;
13C NMR

Scheme 1. The synthesis of alkenyl iodobenzoate derivatives via allylic C–H bond oxidation
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(100 MHz, CDCl3): dC (ppm) = 163.9, 142.2, 136.7, 131.5,

130.1, 128.7, 95.0, 86.4, 25.5; m/z (%): 320 (0.26, M), 248

(60), 194 (7), 122 (100), 74 (75).

2.2c tert-Butyl-4-iodobenzoperoxoate 3c:28

Light yellow oil.; FT-IR (KBr) (mmax/cm
-1): 2933, 1752,

471.; 1H NMR (400 MHz, CDCl3): dH (ppm) = 7.82 (2H, d,

J = 8.1 Hz, Ar), 7.78 (2H, d, J = 7.9 Hz, Ar), 1.45 (9H, s,

CH3).;
13C NMR (100 MHz, CDCl3): dC (ppm) = 164.4,

139.5, 131.3, 126.8, 99.1, 88.1, 26.0; m/z (%): 320 (0.22,

M), 248 (53), 194 (9), 122 (100), 74 (72).

2.3 General procedure for Kharasch-Sosnovsky
reaction using tert-butyl iodo benzoperoxoate

To a Schlenk tube under the nitrogen atmosphere, copper

(I) iodide (0.05 mmol, 10 mg), phenyl hydrazine (6 lL) and
acetonitrile (3 mL) were added at room temperature. Then

alkenes (3 mmol) and tert-butyl-o-iodo benzoperoxoates 3a
(0.85 mmol, 0.27 g) were slowly added to the light yellow

mixture and stirred at room temperature until TLC analysis

showed complete consumption of the tert-butyl-o-iodo
benzoperoxoates 3a (Scheme 1). After that, acetonitrile was

removed under the reduced pressure and the obtained resi-

due was extracted with 10% NH4OH and EtOAc. The

organic phase was dried with anhydrous MgSO4, and then

purified by silica gel column chromatography using n-
hexane and ethyl acetate (90:10) to afford the o-iodo-allylic
esters (yield up to 92%). The m-iodo-allylic esters and p-
iodo-allylic esters were obtained in a similar procedure (S5-

20 in electronic supplementary material).

2.3a Cyclopent-2-en-1-yl 2-iodobenzoate 4a:19

Colorless oil, FT-IR (KBr) (mmax/cm
-1): 3054, 2926,

1718, 1653, 458.; 1H NMR (300 MHz, CDCl3): dH
(ppm) = 7.98 (1H, d, J = 7.9 Hz, Ar), 7.75-7.80 (1H, m,

Ar), 7.39 (1H, t, J = 7.2 Hz, Ar), 7.14-7.17 (1H, m, Ar),

6.19-6.21 (1H, m, HC=CH), 5.96-6.00 (2H, m, HC=CH and

H-C-O), 2.57-2.60 (1H, m, CH2), 2.38-2.43 (3H, m, CH2).;
13C NMR (100 MHz, CDCl3): dC (ppm) = 166.7, 141.2,

138.3, 135.7, 132.4, 130.9, 128.9, 127.9, 93.9, 82.1, 31.2,

29.8.; m/z (%): 314 (0.3, M), 248 (9), 127 (27), 111 (38), 97

(65), 85 (100), 57 (78).

2.3b Cyclohex-2-en-1-yl 2-iodobenzoate 5a:19,20

Light yellow oil.; FT-IR (KBr) (mmax/cm
-1): 3063, 2932,

1722, 1649, 462.; 1H NMR (300 MHz, CDCl3): dH
(ppm) = 7.99 (1H, d, J = 7.9 Hz, Ar), 7.79 (1H, d,

J = 7.6 Hz, Ar), 7.40 (1H, t, J = 7.5 Hz, Ar), 7.12-7.17

(1H, m, Ar), 6.00-6.05 (1H, m, HC=CH), 5.90 (1H, d,

J = 1.4 Hz, HC=CH), 5.54 (1H, d, J = 2.8 Hz, H-C-O),

1.95-2.13 (6H, m, CH2).;
13C NMR (100 MHz, CDCl3): dC

(ppm) = 166.4, 141.2, 135.7, 133.3, 132.4, 130.9, 127.9,

125.2, 93.9, 69.5, 29.7, 24.9, 18.8.; m/z (%): 328 (0.5, M),

248 (6), 231 (11), 127 (15), 111 (25), 97 (49), 85 (71), 57

(100).

2.3c Cyclohex-2-en-1-yl 3-iodobenzoate 5b:

 

Light yellow oil.; FT-IR (KBr) (mmax/cm
-1): 3042, 2929,

1758, 1585, 466.; 1H NMR (400 MHz, CDCl3): dH
(ppm) = 8.39 (1H, s, Ar), 8.03 (2H, t, J = 7.5 Hz, Ar),

7.53-7.56 (1H, m, Ar), 6.11-6.08 (1H, m, HC=CH), 5.94-

5.81(1H, m, HC=CH), 5.63-5.58 (1H, m, H-C-O), 2.01-2.07

(m, 6H, CH2).;
13C NMR (100 MHz, CDCl3): dC (ppm) =

165.3, 141.8, 137.7, 132.2, 131.8, 130.4, 128.5, 127.8,

96.3, 70.2, 30.1, 25.1, 20.0.; m/z (%): 328 (0.5, M), 248 (8),

231 (11), 127 (14), 111 (25), 97 (55), 85 (71), 57 (100).

2.3d Cyclohex-2-en-1-yl 4-iodobenzoate 5c:

 

Light yellow oil.; FT-IR (KBr) (mmax/cm
-1): 3042, 2929,

1758, 1585, 466.; 1H NMR (400 MHz, CDCl3): dH
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(ppm) = 7.77-7.84 (4H, m, Ar), 6.03-6.06 (1H, m, HC=CH),

5.85-5.86 (1H, m, HC=CH), 5.52-5.53 (1H, m, H-C-O),

1.85-2.20 (m, 6H, CH2).;
13C NMR (100 MHz, CDCl3): dC

(ppm) = 165.8, 137.7, 133.1, 131.1, 130.3, 125.5, 100.5,

69.0, 28.4, 24.9. 18.9.; m/z (%): 328 (0.5, M), 248 (6), 231

(11), 127 (17), 111 (25), 97 (61), 85 (71), 57 (100).

2.3e Cyclooct-2-en-1-yl 2-iodobenzoate 6a:

 

Red oil.; FT-IR (KBr) (mmax/cm
-1): 3072, 2967, 1717,

1644, 475.; 1H NMR (300 MHz, CDCl3): dH (ppm) = 7.98

(1H, d, J = 7.9 Hz, Ar), 7.78-7.81 (1H, m, Ar), 7.40 (1H, t,

J = 7.6 Hz, Ar), 7.12-7.17 (1H, m, Ar), 5.90-5.95 (1H, m,

HC=CH), 5.62-5.72 (2H, m, HC=CH and H-C-O), 2.88-2.92

(m, 1H, CH2), 2.27-2.40 (m, 1H, CH2), 2.13-2.17 (m, 4H,

CH2), 1.61-1.66 (m, 4H, CH2).;
13C NMR (300 MHz,

CDCl3): dC (ppm) = 166.0, 141.2, 135.6, 132.5, 131.1, 130.6,

130.3, 127.9, 94.1, 74.1, 35.1, 28.8, 26.3, 25.8, 23.4.;m/z (%):

356 (0.4, M), 248 (12), 230 (6), 127 (28), 124 (100), 57 (65).

2.3f Cyclooct-2-en-1-yl 2-iodobenzoate 6c:

Light red oil.; FT-IR (KBr) (mmax/cm
-1): 3077, 2954,

1725, 1675, 456.; 1H NMR (400 MHz, CDCl3): dH
(ppm) = 7.77-7.83 (4H, m, Ar), 5.91-5.93 (1H, m,

HC=CH), 5.72-5.79 (1H, m, HC=CH), 5.60-5.64 (1H, m,

H-C-O), 2.31-2.40 (2H, m, CH2), 2.06-2.20 (4H, m, CH2),

1.46-1.65 (4H, m, CH2).;
13C NMR (100 MHz, CDCl3): dC

(ppm) = 165.5, 137.7, 131.1, 130.4, 130.3, 130.1, 100.5,

73.4, 35.1, 28.4, 26.4, 25.9, 23.4.; m/z (%): 356 (0.6, M),

248 (18), 230 (6), 127 (27), 124 (100), 57 (73).

2.3g Cycloocta-2,6-dien-1-yl 2-iodobenzoate 7a:

Red to brown oil.; FT-IR (KBr) (mmax/cm
-1): 3080, 2959,

1737, 1659, 486.; 1H NMR (300 MHz, CDCl3): dH

(ppm) = 7.96 (1H, d, J = 7.3 Hz, Ar), 7.78 (1H, d,

J = 6.4 Hz, Ar), 7.36-7.40 (1H, m, Ar), 7.13 (1H, d,

J = 6.2 Hz, Ar), 6.23-6.25 (1H, m, HC=CH), 5.62-5.68

(4H, m, HC=CH and H-C-O), 2.83-2.88 (1H, m, CH2),

2.53-2.60 (3H, m, CH2), 2.15-2.35 (2H, m, CH2).;
13C NMR

(75 MHz, CDCl3): dC (ppm) = 166.0, 141.2, 135.4, 132.6,

130.9, 129.8, 129.6, 129.5, 128.7, 127.9, 125.1, 94.1, 74.0,

33.9, 28.0, 27.9.; m/z (%): 354 (0.7, M), 248 (34), 228 (10),

127 (19), 122 (100), 57 (65), 54 (100).

2.3h Cycloocta-2,6-dien-1-yl 4-iodobenzoate 7c:

 

Red to brown oil.; FT-IR (KBr) (mmax/cm
-1): 3072, 2953,

1726, 1668, 472.; 1H NMR (400 MHz, CDCl3): dH
(ppm) = 7.76 7.84 (4H, m, Ar), 6.21-6.23 (1H, m, HC=CH),

5.58-5.75 (4H, m, HC=CH and H-C-O), 2.84-2.88 (1H, m,

CH2), 2.53-2.61 (3H, m, CH2), 2.26-2.35 (2H, m, CH2).;
13C NMR (100 MHz, CDCl3): dC (ppm) = 165.5, 137.7,

131.1, 130.0, 129.9, 129.4, 128.9, 125.1, 100.7, 73.4, 33.9,

28.0, 27.9.; m/z (%): 354 (0.5, M), 248 (43), 228 (12), 127

(23), 122 (92), 57 (52), 54 (100).

2.3i Cyclohex-2-en-1-yl benzoate 10:

 

Colorless oil.; FT-IR (KBr, cm-1): 3065, 2939, 1711,

1653, 1491, 1066.; 1H NMR (400 MHz, CDCl3): dH
(ppm) = 8.08-8.10 (2H, m, Ar), 7.56-7.60 (1H, m, Ar),

7.45-7.48 (2H, m, Ar), 6.03-6.05 (1H, m, HC=CH), 5.88-

5.89 (1H, m, HC=CH), 5.54 (1H, dd, J = 3.4, 1.6 Hz, H-C-

O), 1.62-2.16 (6H, m, CH2).;
13C NMR (100 MHz, CDCl3):

dC (ppm) = 166.2, 132.9, 132.8, 130.8, 129.6, 128.2, 125.8,

68.6, 28.4, 25.0, 19.0.; m/z (%): 202 (0.5, M), 122 (23), 111

(37), 97 (54), 85 (53), 57 (100).

3. Results and Discussion

3.1 Catalytic allylic C–H bonds oxidation
(Kharasch - Sosnovsky reaction)

The synthesis of allylic esters 4-9 performed in mod-

erate to excellent yields from the allylic C-H bond

oxidation of alkenes with tert-butyl iodo
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benzoperoxoate 3a-c in the presence of copper

salts.9,22–24 In order to prepare the desired peresters, the

required acid chlorides 2a-c was first produced by

treating iodo benzoic acids 1a-c with oxalyl chloride in
the presence of a catalytic amount of DMF. Then, by

treating of 2a-c with tert-butyl-hydroperoxide in the

presence of pyridine in dry dichloromethane at –20 �C,
the peresters 3a-c were obtained (Scheme 1).9,22–24

In continuation, the allylic oxidation conditions

were optimized by using cyclohexene as substrate and

tert-butyl o-iodo benzoperoxoate 3a as an oxidant in

the presence of various copper salt, solvents and

phenyl hydrazine at different temperature. As outlined

in Table 1, in the initial step the effect of several

copper salts such as copper (II) sulfate, copper (II)

nitrate, copper (II) acetate, copper (II) chloride, copper

(II) oxide, copper (I) oxide, copper (I) iodide, copper

(I) chloride, copper (I) bromide and copper (I) iodide

was investigated. The results represented that when

Cu (I) salts were used, the rate of oxidation of

cyclohexene to cyclohex-2-en-1-yl 2-iodobenzoate

was faster than Cu (II) salts (Table 1).4–6 It could be

due to the oxidation state of Cu (II) salts that are less

efficient in the O-O cleavage step of perester during

the initial step in the mechanism of the reaction. Based

on the results, phenyl hydrazine which acts as reducing

agents to regenerate Cu(I) in the catalytic cycle that

increased the reaction rate and chemical yields (com-

pared entries 9 with 10, Table 1).7,29 The effect of

temperature on the reaction was also evaluated and as

expected, with raising the temperature, the yield and

rate of reaction were increased (entries 10-15). In

order to evaluate the effect of solvent on the efficiency

of the reaction, some different solvents such as ace-

tonitrile, acetone, dichloromethane, chloroform, ben-

zene and n-hexane were used which acetonitrile was

selected as the best (entries 15-20, Table 1). Thus, the

optimal condition was obtained using cyclohexene and

Table 1.

Effect of copper salts, temperature, solvent and the loading of copper (I) iodide on allylic C-H
bond oxidation of cyclohexene.

Entry Cu salts (mol%) Solvent (3 mL) Temperature (�C) Time (h) Yield (%)

1 Cu(OAc)2 (5) Acetonitrile 25 135 55
2 CuSO4 (5) Acetonitrile 25 [160 40
3 Cu(NO3)2 (5) Acetonitrile 25 90 55
4 CuCl2 (5) Acetonitrile 25 82 56
5 CuO (5) Acetonitrile 25 [180 52
6 Cu2O (5) Acetonitrile 25 70 60
7 CuCl (5) Acetonitrile 25 66 66
8 CuBr (5) Acetonitrile 25 60 70
9 CuI (5) Acetonitrile 25 50 78
10a CuI (5) Acetonitrile 25 64 70
11 CuI (5) Acetonitrile 10 75 62
12 CuI (5) Acetonitrile 40 42 82
13 CuI (5) Acetonitrile 50 40 80
14 CuI (5) Acetonitrile 60 35 86
15 CuI (5) Acetonitrile Reflux 32 92
16 CuI (5) Acetone Reflux 36 70
17 CuI (5) Dichloromethane Reflux 75 64
18 CuI (5) Chloroform Reflux 80 55
19 CuI (5) n-Hexane Reflux 115 21
20 CuI (5) Benzene Reflux 90 28
21 CuI (1) Acetonitrile Reflux 50 60
22 CuI (2.5) Acetonitrile Reflux 43 70
23 CuI (7.5) Acetonitrile Reflux 34 84

Bold values indicate the best result

A: Absence of PhNHNH2
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tert-butyl-o-iodo-benzoperoxoate 3a in the presence of
copper (I) iodide in refluxing acetonitrile which

afforded cyclohex-2-en-1-yl 2-iodobenzoate 5a with

92% yield during 32 h (entry 15).22–24,30 The

investigation of the effect of the loading of copper

(I) iodide, was shown that the reaction with 5 mol %

of copper (I) iodide offered the best result (compared

entries 21-23 with 15, Table 1).9,21–24

Table 2. Synthesis of allylic esters using perester in the presence of copper (I) iodide and phenyl hydrazine in refluxing
acetonitrile

Entry Alkene Perester Allylic ester Time (h) Yield (%) 

1 40 85

2 32 92

3 42 76

4 37 90

5 40 85

6 34 87

7 48 73

8 34 90

9 160 <20

10 120 <10
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We extended the obtained optimized condition

using other alkenes and peresters. According to the

results, cylopentene, cycloheptene and 1,5-cycloocta-

diene were also converted to the corresponding allylic

esters 4a-7a in good yields and less reaction time

(Table 2).9,21–24 On the other hand, acyclic olefins

such as 1-hexene and 1-octene under optimized con-

dition proceeded with low yields in a long time of

reaction (entries 9, 10). By altering the iodide position

on peresters (tert-butyl-m-iodo-benzoperoxoate 3b and

tert-butyl-p-iodo-benzoperoxoate 3c), the allylic esters
5b-c, 6c, 7c were obtained with similar results in

comparison 4a-7a. It should be mentioned, under

optimized condition the dehalogenated side-product

such as cyclohex-2-en-1-yl benzoate (10) was

observed in low yield up to 15% (Scheme 2).

3.2 Proposed reaction mechanism

A proposed mechanistic rationalization for allylic C-H

bond oxidation of cyclohexene30–38 in the presence of

copper (I) iodide5,22 have been shown in Scheme 2.

The cleavage of oxygen-oxygen bond in the tert-butyl
2-iodo benzoperoxoate 3a by copper (I) iodide results

in Cu (II) o-iodobenzoate A and tert-butoxy radical.

This radical removes hydrogen from allylic position of

cyclohexene to obtain cylohexenyl radical which adds

to Cu (II) o-iodo benzoate A to produce Cu(III) o-
iodobenzoate B.37–40 The intermediate B can rearrange

via a seven-membered cyclic transition state to pro-

duce cyclohex-2-en-1-yl-2-iodobenzoate 5a copper

(I) iodide30,37,41,42 (Scheme 2). If tert-butoxy radical

abstracts the iodide radical from the intermediate A,
intermediate C is produced that removes the allylic

hydrogen from cyclohexene and the side product 10a
is afforded throughout pericyclic rearrangement of

intermediate D.

4. Conclusions

In summary, the catalytic allylic oxidation of alkenes

by using tert-butyl iodo benzoperoxoate was devel-

oped in the presence of copper salts under different

conditions and new alkenyl iodobenzoate derivatives

were synthesized in moderate to good yields up to

92% within reasonable reaction times. Examination of

the generality of this protocol proved the type of

alkenes, the size of the cyclic substrate and the posi-

tion of iodide on perester could affect the yield and the

rate of the reaction. Further investigation on asym-

metric allylic oxidation and the potential applications

of alkenyl iodobenzoate as a precursor for Heck and

 

Scheme 2. Proposed mechanism for synthesis of cyclohex-2-en-1-yl-2-iodobenzoate 5a and cyclohex-2-en-1-yl benzoate
10.
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other Pd-catalyzed reaction is underway in our

laboratory.

Supplementary Information (SI)

Supplementary information (including materials and char-

acterization methods, 1H and 13C spectra for synthesized

compounds) associated with this article can be found at

www.ias.ac.in/chemsci.
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