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ABSTRACT 

The two donor modules of an annellated pyridyl–mesoionic carbene ligand (aPmic) have 

different – and –bonding characteristics leading to its electronic asymmetry. A Pd(II) complex 

1 featuring aPmic catalyzes the oxidation of a wide range of terminal olefins to the 

corresponding methyl ketones in good to excellent yields in acetonitrile. The catalytic reaction is 

proposed to proceed via syn–peroxypalladation and subsequent rate limiting 1,2–hydride shift, 

which is supported by kinetic studies. The electronic asymmetry of aPmic renders a well–defined 

coordination sphere at Pd. The favored arrangement of reactants on the metal center features an 

olefin trans to the pyridyl module and a tbutylperoxide trans to the carbene. This arrangement 

gains added stability by the ‒delocalization paved by the compatible orbitals on Pd, the pyridyl 

module and the olefin that is perpendicular to the Pd(aPmic) plane. The ‒interactions are absent 

in an alternate arrangement wherein the olefin is trans to the carbene. DFT studies reveal the 
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matching orbital overlaps responsible for the preferred arrangement over the other. This work 

provides an orbital description for the electronic asymmetry of aPmic. 

KEYWORDS: Electronically asymmetric ligands, annellated carbenes, mesoionic carbenes, 

Wacker–type oxidation, Catalysis.

INTRODUCTION

Electronically asymmetric ligands wherein the donor modules differ in their electronic 

characteristics have received significant attention in recent years.1 The difference in electronic 

characteristics of the donor modules results in significant variation in the nature and strength of 

metal–ligand interactions. Electronic asymmetry of the pyridine–oxazoline ligand (Pyrox–A) 

(Scheme 1a) has been implicated in stabilizing low–valent Co(I) intermediates.2 The electronic 

disparity also plays a key role in many transformations catalyzed by transition metal compounds 

by controlling the catalyst coordination sphere. For example, Pyrox–B (Scheme 1a) imparts site–

selectivity in palladium–catalyzed 1,4–difunctionalization of isoprene by controlling the 

migratory insertion of alkene into the Pd–alkenyl bond.3 Mechanistic studies suggested that the 

directed insertion is the result of the unique electronic asymmetry and steric properties of the 

ligand. Electronic asymmetry has also been found to influence the chiral induction in 

enantioselective transformations.4 Based on density functional theory (DFT) calculations, Stahl 

and coworkers suggested that the electronic asymmetry of Pyrox–C (Scheme 1b) complements 

the steric asymmetry and thereby controls the stereochemical outcome of the amidopalladation 

step in the Pd(II)–catalyzed enantioselective oxidative amidation of alkenes.4a

Scheme 1. Electronic asymmetric ligands.
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Catalytic transformations that involve two electronically different reactants are best suited to 

evaluate the effects of electronic asymmetry of a ligand. In such transformations, the 

electronically asymmetric ligand directs the binding of the reactants (inner–sphere) in a specific 

arrangement. The most well–studied example is the catalyst–controlled Wacker–type oxidation, 

which involves the coordination of an olefin and a tbutylperoxide to a Pd center. The Wacker 

oxidation is a synthetically important process for converting a terminal olefin to a methyl 

ketone.5,6,7 Under Tsuji–Wacker conditions, this reaction is substrate controlled, which can result 

in a mixture of aldehyde and ketone products, especially when the alkene bears a proximal 

heteroatom.1,8 Sigman and coworkers reported a Pd(II) compound featuring quinoline–2–

oxazoline (Quinox) (Scheme 1c) for catalyzing the efficient and selective oxidation of difficult 

substrates such as allylic alcohols,9a internal olefins,9b protected allylic amines,9c and homoallylic 

alcohols9d employing tbutylhydroperoxide (TBHP) as the oxidant. The excellent activity and 

selectivity of this catalyst were credited to the electronic disparity of the two coordinating 

modules of Quinox, featuring electron–rich oxazoline and electron–deficient quinoline rings.10 

Sigman hypothesized that tbutylperoxide preferentially binds trans to oxazoline ring whereas 

alkene binds trans to quinoline ring (Scheme 2a). Hammett analysis of a series of substituted 

Quinox ligands revealed that the substitution by electron–withdrawing groups on quinoline ring 

enhanced the rate of the catalytic reactions.10a Similar inferences were also drawn by Hammett 

analysis of electronically diverse substrates. Muldoon group later examined 2–(2–

pyridyl)benzoxazole (Pyrbox) (Scheme 1d) for the Pd catalyzed oxidation of terminal olefins to 

methyl ketones.11 Notably, electronically symmetric ligand 2,2–bipyridine was ineffective in the 

catalytic oxidation of allylic acetate9a,10a and related catalytic reactions.12,13,14

One class of ligands which are particularly suitable to endure harsh conditions in oxidation 

chemistry is mesoionic carbenes (MICs).15 Moreover, annellated carbenes exhibit unique 

stereoelectronic properties which can result in improved catalytic activity and selectivity of their 

metal complexes.16 An annellated pyridyl–MIC (aPmic) ligand (Scheme 1e) was reported from 

our group for Ru(II) catalyzed selective C=C bond scission of olefins to aldehydes using NaIO4 

as oxidant at room temperature.17 We now unravel the electronic asymmetric nature of aPmic in 

Pd–catalyzed Wacker–type oxidations. The two coordinating modules of this ligand differ in 

their relative ability for σ–donation/π–bonding. Whereas a carbene moiety is a strong σ–donor,15 

pyridyl unit exhibits π–bonding character besides acting as a σ–donor.18 We reasoned that aPmic 
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would impose a preferential binding of olefin and peroxide anion to Pd with respect to its 

electronically differentiated donor components (Scheme 2b). To validate this hypothesis, the 

catalytic activity of the Pd(II) complex 1 (Scheme 3) in Wacker‒type oxidation of olefins to 

methyl ketones using TBHP as oxidant was examined. Very good efficiency and selectivity were 

observed for a wide range of olefins under optimized conditions. The catalytic reaction is 

proposed to proceed via syn–peroxypalladation and subsequent rate limiting 1,2–hydride shift, 

which is supported by kinetic studies. DFT calculations reveal that the key catalytically active 

species has a well–defined coordination of olefin and peroxide at Pd governed by the electronic 

asymmetry of aPmic. A delocalized π–bonding interaction is identified for the preferred 

orientation of olefin and peroxide anion with respect to the aPmic.

Scheme 2. Possible coordination models of Pd compounds featuring Quinox (a) and aPmic (b).
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RESULT AND DISCUSSION

Synthesis of 1. Compound [Pd(aPmic)(CH3CN)2][BF4]2 (1) was obtained via the oxidative 

cleavage of the Pd–Pd bond in [Pd2(CH3CN)6][BF4]2 with precursor salt in a 

dichloromethane/acetonitrile mixture at room temperature (Scheme 3).19

Scheme 3. Synthesis of compound 1.

Catalytic Studies

Reaction Optimization. Initial experiment using styrene (1 mmol), TBHP(decane) (5 mmol) and 

catalyst 1 (0.05 mmol) in acetonitrile at 45 °C afforded a full conversion (100%) to acetophenone 

(entry 1, Table 1). The reduction of the catalyst loading and the amount of TBHP(decane) to 0.02 

mmol and 3 mmol, respectively, did not alter the product amount and the selectivity for the 

model reaction (entry 2, Table 1). Further decrease in the amount of catalyst or oxidant, or 

lowering the temperature diminished the conversion as well as the selectivity. Screening of 

solvents and oxidants was carried out with the model reaction. Oxidants H2O2, NaIO4 and O2 

were less efficient in terms of conversion and selectivity. Dichloromethane, tetrahydrofuran, 

dimethyl sulfoxide, toluene and methanol were ineffective.20

A control reaction was carried out (styrene/1/TBHP(decane) = 1 mmol/0.02 mmol/3 mmol; 45 

°C, CH3CN = 4 mL) using 5 mmol of H2O18. GC–MS analysis revealed no 18O incorporation in 

the product acetophenone confirming that the source of the oxygen atom is TBHP. Initial rates of 

the model reaction (styrene/1/TBHP(decane) = 1 mmol/0.05 mmol/5 mmol; 45 °C) were studied 

by adding 2 to 50 mmol of H2O externally. It was observed that the rate of the reaction decreases 

with the increase in H2O amount. The model reaction was also performed in the presence of 

TBHP(aqueous) instead of TBHP(decane). For TBHP(aqueous), the reaction practically ceased 
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after 12 h with 80% conversion and a black solid, presumably that of metallic Pd, was observed 

in the reaction vessel.

Substrate Scope. The substrate scope for catalyst 1 was explored under the following optimized 

reaction conditions: alkene/TBHP(decane)/1 = 1 mmol/3 mmol/0.02 mmol; acetonitrile (4 mL); 

45 °C (Table 2). Styrene, 4–methylstyrene, 3–methylstyrene and 2,4–dimethylstyrene afforded 

quantitative conversions to the corresponding methyl ketones (1–4). The presence of electron–

donating groups –OMe/–SMe on the phenyl ring (4–methoxystyrene, 3,4–dimethoxystyrene and 

4–methylthiostyrene) increased the reaction rate and full conversions to the corresponding 

products (5–7) were obtained within 4 h. The presence of electron–withdrawing groups, for 

examples, 4–fluorostyrene (72%, 30 h), 2–fluorostyrene (70%, 30 h) and 4–chlorostyrene (68%, 

30 h) gave lower conversions to the corresponding methyl ketones (8–10). 2–vinylpyridine gave 

no product (11) presumably due to catalyst deactivation by coordination of the pyridine nitrogen 

to the metal center. Other heteroaromatic alkenes 1‒methyl‒2‒vinyl‒1H‒pyrrole, 2‒vinylfuran 

and 2,5‒dimethyl‒3‒vinylthiophene gave the corresponding methyl ketones (12–14) in good 

yields. The oxidation of substrates having C=C bond attached to different polycyclic aromatic 

rings, such as, 2–vinylnaphthalene, 9–vinylanthracene and 1–vinylpyrene, afforded the 

Table 1. Reaction optimization.

Solvent (3 mL), 45 °C, 12 h
1 (5 mol%), Oxidant (5 equiv.)

O

O
O

+ +

A B C(1 mmol)

Entry Oxidant Solvent Conv. (%)a A:B:C
1 TBHP(decane) CH3CN 100 99.99:0.01:0
2 TBHP(decane)b CH3CN 98 99.99:0.01:0
3 H2O2(aq.) CH3CN 90 75:25:0

4 NaIO4
CH3CN/H2O
(2/1) 50 70:30:0

5 O2
c CH3CN 30 0:100:0

6 TBHP(decane) CH2Cl2 10 71:29:0
7 TBHP(decane) THF 13 74:26:0
8 TBHP(decane) DMSO 37 49:34:17
9 TBHP(decane) Toluene 65 56:44:0
10 TBHP(decane) MeOH 100 76:24:0

aDetermined by GC–MS analysis using n–dodecane as an internal standard; b0.02 mmol of 1 and 3 
mmol of oxidant used. cSchlenk vial was connected to a balloon containing molecular oxygen.
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corresponding methyl ketones (15–17) with 90–96% yields after 12 h. Vinylferrocene gave 

acetylferrocene (18) in 95% yield after 12 h.

Due to lower reactivity of the aliphatic alkenes in comparison to the aromatic congeners, the 

reactions of aliphatic alkenes were carried out with higher catalyst loading (5 mol%) and 5 equiv. 

of TBHP(decane) at 45 °C. The oxidation of aliphatic terminal alkenes afforded ~55% 

conversion after 36 h. However, increasing the temperature to 70°C led to considerably higher 

yields. Excellent yields of the corresponding products 19–22 were obtained for 2–

allylisoindoline–1,3–dione (80%), vinylcyclohexane (90%), 4,4–dimethoxybut–1–ene (95%) and 

ethyl acrylate (85%) within 24 h.

Internal alkenes trans–stilbene and cis–stilbene afforded the product 23 in 50% and 56% 

conversions, respectively, after 36 h with ~5–10% benzaldehyde as the side product. At elevated 

temperature (70°C), trans/cis–stilbenes result in 82% and 85% conversions, respectively, after 

24 h without any trace of benzaldehyde. Oxidation of trans–β–methylstyrene gave a mixture of 

products propiophenone (24) and phenylacetone (25) (70:30 ratio) after 24 h. Indene afforded 2–

indanone (26) with 52% conversion after 36 h. Internal aliphatic alkene, cis–cyclooctene, also 

yielded 50% of cyclooctenone (27) after 36 h. Indene and cis–cyclooctene afforded 95% and 

90% conversions, respectively, after 24 h at 70 °C.
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Table 2. Substrate Scope.a

(1 mmol)

R'

R

1 (2 mol%), tBuOOH (3 equiv.)

CH3CN (3 mL), 45 °C R
R'

O

+ tBuOH
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An important advantage of this catalyst is that it does not require Ag salt to be active.11 The 

bidentate aPmic ligand provides access to incoming oxidant and olefin in cis orientation by the 

removal of two acetonitriles. To investigate the fate of the catalyst, a stoichiometric reaction was 

performed with equimolar (0.1 mmol) amount of catalyst 1, styrene and TBHP(decane) in 

acetonitrile. After 4 h, the solvent was evaporated, and the solid residue was washed with (3 × 10 

mL) diethyl ether. It was then dissolved in acetonitrile and diethyl ether was layered to obtain 

crystals, which were collected, weighed (yield 72%) and identified to be the catalyst 1 by X‒ray 

crystallography and ESI‒MS. Recovery of the catalyst suggests that its molecular integrity is 

retained during the oxidation.

Ligand Asymmetry

For the oxidation reaction to proceed, one molecule each of olefin and tBuOO‒ needs to bind 

the metal. An electronic asymmetric ligand enables the metal to bind the precursors in a specific 

arrangement. Thus, the binding of two olefins or two tBuOO‒ to Pd center, which result in a 

catalytically inactive species, is averted. In Sigman’s catalyst, the disparity in the binding of two 

reactants is caused by the presence of electron–poor quinoline ring and electron–rich oxazoline. 
tBuOO‒ preferably binds trans to oxazoline and olefin binds the electrophilic site trans to 

quinoline. We argued that aPmic ligand may display electronic disparity due to the difference in 

the  – and π–characteristics of its two donor modules (vide infra). Therefore, one could assume 

an arrangement where π‒acid ligand olefin binds trans to the pyridyl unit and the  –donor 

tBuOO‒ binds trans to the carbene carbon which is also a  –donor (Scheme 4). This matching 

aYield was determined by GC–MS analysis using n–dodecane as an internal standard; bTraces of C=C 
cleaved product also detected; ccatalyst 1 (0.05 mmol) and 5 mmol of TBHP(decane) used; dReaction 
temperature: 70 C; eBoth trans and cis–stilbene gave the same product 1,2 diphenylethanone; fUsing 
trans–Stilbene; g~5–10% benzaldehyde obtained; hUsing cis–stilbene; i~2–3% epoxide.
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10

arrangement is defined as ‘σσ/ππ’ whereas the reverse arrangement, where tBuOO‒ and olefin 

bind metal trans to the pyridyl and the carbene, respectively, is identified as ‘σπ/σπ’.21

Scheme 4. Two possible arrangements for binding of tBuOO‒ and olefin.

Reaction Mechanism

A plausible mechanism for this TBHP–mediated Wacker oxidation, similar to the one proposed 

by Sigman10 and Mimoun,22 is depicted in Scheme 5. Initially, 1 reacts with olefin and tBuOOH 

to form species A with  arrangement. This is followed by syn–peroxypalladation involving 

nucleophilic attack of the coordinated oxygen atom of tBuOO‒ to the olefin, providing an 

intermediate B. To release the strain in the four–membered ring, intermediate B undergoes a 

rapid rearrangement affording the five‒membered pseudo-palladacyclic species C. Heterolytic 

cleavage of the O–O bond with a concomitant 1,2–hydride shift gives intermediate D. Finally, 

the methyl ketone and tBuOH are released to complete the cycle. 
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11

Scheme 5. Proposed mechanism for olefin oxidation by 1 (σσ/ππ).

Kinetic Studies

Kinetic studies are carried out to validate the proposed mechanism. The initial rate of the 

reaction was monitored (up to <10–15% conversion) to determine the reaction order with respect 

to the catalyst 1, the alkene (styrene) and TBHP(decane). The initial rate varied linearly with [1] 

and [styrene] (Figures 1(a) and 1(b)). Increasing [TBHP(decane)] results in a faster rate, until a 

certain point. After that, increasing [TBHP] leads to no further acceleration of the reaction 

(Figure 1(c)). The saturation kinetics for [TBHP(decane)] and the first order dependency with 

respect to [styrene] indicates the coordination of TBHP before styrene.10a

The initial rates of the reactions of electronically varied para–substituted styrenes (p–

YC6H4CH=CH2; Y= OMe, Me, H, F, Cl) with ‘1 + TBHP(decane)’ were measured. The 

Hammett plot of log[initial rate] vs σ+ (Hammett constant) gave a straight line with a + value of 

–2.99 (see, SI). A negative + value suggests the development of positive charge at the α–carbon 

atom of styrene implying that the rate of the reaction should be accelerated by electron–donating 

substituents. This is in agreement with the results discussed under substrate scope.
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The proposed mechanism involves two key steps‒ syn‒peroxypalladation and 1,2–hydride 

shift. A Lewis-acid/Lewis-base interaction between the cationic palladium and alkene in the 

formation for species A would be favored by an electron-donating group, which is in line with 

the experimental results.10a Further, palladation results in the development of positive charge at 

olefin and should be slowed by electron–withdrawing substituents.23 For 1,2–hydride shift as 

well, an electron–withdrawing substituent would result in a slower rate due to decrease in 

electron density at the α-C atom. This is consistent with the Hammett studies. 

The effect of temperature on the rate of the reaction of 1 with styrene was also examined. The 

activation parameters were determined from the plot of ln(k/T) versus 1/T, which was linear over 

the temperature range studied (308–333 K). The estimated entropy of activation (ΔS‡) is –22.39 

± 0.48 cal mol–1 K−1 and the enthalpy of activation (ΔH‡) is 11.76 ± 0.09 kcal mol−1.24 A negative 

ΔS# value is indicative of an organized transition state in the rate‒limiting step.

(a) (b) (c)

Figure 1. Initial rates vs (a) [1], (b) [alkene]; (c) [TBHP(decane)].

DFT Calculations

DFT calculations were carried out to distinguish between the catalytic cycles starting with 

species having σσ/ππ and σπ/σπ arrangements. The optimized structures of all intermediates and 

transition states along the match (σσ/ππ) and mismatch (σπ/σπ) pathways are provided in Figure 

2 (σσ/ππ) and Figure S8 (σπ/σπ), respectively. The intermediates and transition states for σσ/ππ 

path are denoted by alphabets whereas the corresponding structures for σπ/σπ path are 
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13

represented by the same alphabets with a prime symbol (′). A comparative energy profile is given 

in Figure 3. The calculations were carried at the M06 level of theory.25 The basis set of Hay and 

Wadt (LanL2DZ) with effective core potential (ECP) was used for Pd.26 Other atoms were 

described using the 6‒31+G(d,p) basis set.27 The technical details of the calculations are given in 

the SI.

A BTSAB TSBC

TSCDD

Pd

C2C3

C1N1

H1

C4 Pd

C2C3

C1N1

H1
C4

Pd
C2

C3

C1N1

H1
C4

Pd C2

C3

C1N1

H1

C4

Pd C2

C3

C1

N1

H1

C4

Pd
C2

C3

C1N1

H1

C4

C

Pd

C2C3

C1
N1

C4

Figure 2. DFT optimized structures of all intermediates and transition states for olefin oxidation 
by 1 (σσ/ππ). Ph substituent on the ligand, H atoms (except on C2, C3) and Me groups of tBu are 
removed for clarity.

Figure 3. Free energy profiles of σσ/ππ (blue) and σπ/σπ (red) pathways are shown.

Page 13 of 28

ACS Paragon Plus Environment

ACS Catalysis

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



14

A careful comparison of the bond parameters of the computed structures reveal interesting 

features. The most notable difference in A and A′ is the orientation of the olefin. The olefin is 

perpendicular to the Pd(aPmic) plane in A (Figure 4, the interplanar angle  = 70o), whereas it 

lies in the Pd(aPmic) plane in A′ ( = 8o). The structure of A is akin to well–known Zeise’s salt 

K[PtCl3(C2H4)] where the olefin is disposed perpendicular to the PtCl3 plane.28 There are 

significant differences in the metrical parameters of A and A′. The olefin trans to pyridyl unit is 

more strongly bound to Pd (Pd–C2/C3 = 2.204/2.267 Å) in A than to the carbene (Pd–C2/C3 = 

2.364/2.540 Å) in A′. The corresponding Pd–C2/C3 bond orders are 0.336/0.285 and 

0.207/0.146, respectively. The C2–C3 distance is longer in A (1.380 Å) as compared to A′ 

(1.355 Å). Accordingly, the C2–C3 bond order in A (1.567) is lesser than in A′ (1.730). 

Interestingly, Pd–N1 distance (2.187 Å) is significantly shorter in A than in A′ (2.255 Å), 

tallying with the calculated bond orders (0.299, 0.270). Pd–O1 distances in A (2.028 Å) and A′ 

(2.011 Å) are similar. Pd–C1 distance in A (2.062 Å) differs slightly as compared to A′ (2.013 

Å). The favorable bonding situation in A aids to its stability by 5.5 kcal mol-1 than A′ (vide 

infra).
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Figure 4. Structures of A and A′ with selected bond distances (Å) and interplanar angle  () 
given below. Ph, hydrogens (except on C2 and C3) and Me groups of tBu are removed for 
clarity. Interplanar angle is the angle between Pd‒C2‒C3 and N1‒Pd‒C1 planes.

Metal-bound olefin is susceptible to the nucleophilic attack.29 The syn–peroxypalladation step 

involves the nucleophilic attack of the coordinated oxygen atom of tBuOO‒ to the olefin 

providing B. The free energy barrier for the formation of B (10.9 kcal mol-1) is slightly less as 

compared to B′ (12.2 kcal mol-1). The Pd–C1(carbene) and Pd–C2(olefin) distances are shorter 

in B (1.994 and 2.036 Å) as compared to the same in B′ (2.156 and 2.060 Å). B′ is destabilized 

compared to B by 11.5 kcal mol-1. A near barrier–less (0.7 kcal mol-1) conversion of B to C 

releases the ring strain. The energy difference between C and C′ was found practically identical 

(11.6 kcal mol-1) to that of B and B′. The structural parameters of C and C′ reflect the same 

pattern as that in B and B′. The next step involves heterolytic O–O bond cleavage with a 

concomitant 1,2–hydride shift that affords the product. The activation energy for this step is 

higher (20.6 kcal mol-1) for σσ/ππ pathway compared to the alternate σπ/σπ pathway (8.7 kcal 

mol-1).

The free energy difference between A and A′ is reflective of the different ligand arrangements 

around the metal. Since A is stable than A′, the σσ/ππ pathway appears to be operational here. 

Furthermore, the free energy barriers show that 1,2–hydride shift (C→D) should be the rate–

limiting step for the σσ/ππ pathway. Along the σπ/σπ pathway, the transition state corresponding 
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to the peroxypalladation (TSA′B′) is located at the highest point in the energy landscape which 

contradicts with 1,2–hydride shift being the rate limiting step. Thus, the σπ/σπ cycle can be ruled 

out. 

The preferential binding of reactants could be understood from a schematic orbital interaction 

diagram given in Figure 5.30 The pyridine module guides the orientation of the olefin in A. A 

perpendicular arrangement of olefin to the Pd–pyridyl (aPmic) plane allows the overlap of p 

orbital of N1, d of Pd and * of olefin establishing a –corridor (Figure 5a). The Pd→C2–C3 

* (pz–pz) back–donation is enhanced by the filled-filled interaction of N1(py) with Pd (d. 

Although pyridine is a weak –donor, annellation with an electron–rich aromatic system likely 

improves the –donicity of pyridyl module in aPmic. The enhanced Pd→*(C2‒C3) back–

donation in A than A′ is revealed by the natural bond orbital (NBO) analysis.31 The second–order 

perturbation energy (E(2)) corresponding to Pd→*(C2‒C3) is significantly higher in A (25.6 

kcal mol-1) than A′ (8.7 kcal mol-1).

A higher Pd→olefin back–bonding can augment σ–donation from N1(sp2)→Pd(dz2) which is 

responsible for shorter Pd–N1 distance. This is also reflected in E(2) corresponding to N1→Pd 

interaction which is higher in A (43.3 kcal mol-1) than A′ (27.4 kcal mol-1). The –donation from 

C2‒C3→Pd is also stronger in A than A′ as revealed by the corresponding E(2) values (46.9 and 

9.7 kcal mol-1, respectively). Clearly, a –corridor cannot be established if the C2–C3 axis lies in 

the Pd(aPmic) plane as N1(py) and C2–C3 * would be mutually orthogonal. The efforts to 

optimize a related structure where C2–C3 axis resides in the Pd(aPmic) plane failed, instead, the 

structure of A was invariably obtained.

The aPmic ligand imposes a preference for olefin to bind the metal trans to pyridyl module 

and perpendicular to the Pd(aPmic) plane to pave the way for the –corridor. The mutually trans 
tbutylperoxide and carbene constitute a σ–framework (Figure 5b). The Pd‒O1 distances are 

similar irrespective of its trans partners in A and A′ indicating similar interactions of 

tbutylperoxide with the metal. 

Overall, the matching arrangement (A) has significant –type interactions between p of N1, 

d of Pd and * of olefin. In contrast, the pyridyl and olefin are not mutually trans and the –
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type interactions are absent in A′. Hence a perpendicular disposition of olefin is not warranted in 

A′. The cis Pd–N1 and Pd–C2/C3 interactions are thus weaker in comparison. The additional –

interactions in A incentivize the preference of the olefin and tbutylperoxide anion to bind in a 

particular arrangement.

Figure 5. Schematic representations of the π‒ and σ‒interactions involving N1(py), Pd(dyz) and 
(C2‒C3)(pz–pz)* orbitals (a) and O1(sp2), Pd(dx

2‒y
2) and C1(sp2) orbitals (b), respectively, in 

matching arrangement A.

CONCLUSION

Herein we revealed the electronic asymmetry of bidentate annellated pyridyl–mesoionic 

carbene ligand (aPmic). The electronic asymmetry of aPmic originates from the difference in the 

σ– and π–bonding characteristics of its two donor modules. The aPmic ligand guides olefin to 

bind the metal trans to pyridyl module and perpendicular to the Pd(aPmic) plane to allow –

delocalization involving compatible orbitals on pyridyl module and olefin. The added stability 

associated with the –delocalization imposes a preference for olefin, and thereby tbutylperoxide, 

to bind the metal center in a particular arrangement. The rational based on the σ– and π–bonding 

properties of the donor modules outlined here provides an orbital perspective to Sigman’s 

approach to electronic asymmetry. The aPmic was applied in the Pd(II) catalyzed Wacker type 

oxidation of terminal olefins as a proof of concept of its electronic asymmetry. This ligand may 

have wider utility in catalytic reactions involving electronically disparate substrates. We are 

currently working in this direction.
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