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Figure 1. AVPI and peptide mimic activators of caspase-9.
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A set of azapeptides was designed based on the Ala-Val-Pro-Ile peptide (derived from Smac protein) to
activate caspase-9 and induce apoptosis in breast cancer cells. The diversity-oriented synthesis of the
aza-peptides 5–9 was accomplished by alkylation of the aza-residue of aza-Gly-Pro dipeptide 15 using
potassium tert-butoxide and a range of different alkyl halides. The resulting protected aza-dipeptide
building blocks were then introduced into mimics 5–9 using standard coupling conditions. Biological
evaluation of 5–9 was performed in MDA-MB-231 breast cancer cells, and indicated that the aza-Gly
and aza-Phe analogs 5 and 7 were most efficient in inducing cell death by a caspase-9 mediated apoptotic
pathway. Revealing a relationship between azabicycloalkanone and aza peptide mimics, novel AVPI mim-
ics were synthesized which exhibit utility for studying structure–activity relationships to develop leads
for activating apoptosis in cancer cells.

� 2014 Elsevier Ltd. All rights reserved.
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Apoptosis is a controlled sequence by which cells signal their
own termination. Programmed cell death is crucial for normal tis-
sue development and homeostasis,1,2 because it permits elimina-
tion of aging and abnormal cells to maintain organism integrity.
In contrast to normal cells, cancer cells ‘switch off’ apoptosis,
develop and divide indefinitely.3,4

Programmed cell death is a multistep process highly regulated
and primarily under the control of two type of proteins: the cas-
pase enzyme family and their modulators, so-called IAPs (inhibi-
tors of apoptosis proteins).5 Among the latter, X-linked IAPs
(XIAPs) are key regulators of death-receptor- and mitochondria-
mediated apoptosis pathways. They also constitute attractive
targets because of their roles in the resistance of cancer cells to
apoptosis.6,7 The XIAP contains three baculoviral IAP repeat
(BIR1–3) domains, which bind and inhibit the activity of caspas-
es-3, -7 and -9.

Smac (second mitochondria-derived activator of caspase) is a
potent pro-apoptotic protein released from mitochondria in
response to apoptotic stimuli.8,9 Smac promotes apoptosis in cells
by binding to the BIR3 domain of XIAP primarily via its N-terminal
four residues Ala-Val-Pro-Ile,10,11 and liberating consequently cas-
pase-9. Mimics based on a constrained version of the Smac AVPI
tetra-peptide have thus been targeted to inhibit the XIAP-BIR3
interaction and induce apoptosis.12–16 Among the constrained ana-
logs, those containing fused 6,5-, 7,5- and 8,5- bicyclic turn surro-
gates as replacements of the Val-Pro dipeptide have exhibited
notable potency (e.g., 2–4, Fig. 1) and have demonstrated that a
b-turn is preferable for affinity and activity (Fig. 1).12–16 Although
such azabicyclo[X.Y.0]alkan-2-one amino acid analogs represent
an important class of Smac mimics, their synthesis demands multi-
ple steps restricting analog development.

Semicarbazides are aza-amino acids. In peptides, aza-amino
acid residues can exert conformational constraints due to the urea
and hydrazine, which induce turn conformations. Moreover, the
introduction of an aza-residue into a peptide can improve
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metabolic stability, because the urea is more resistant to chemical
and enzymatic degradation than its amide counterpart.17 Recently,
we have demonstrated the relationship between the azabicy-
clo[4.3.0]alkan-2-one amino acid (indolizidinone amino acid,
I2aa) and aza-amino acyl proline residues as turn mimics.18,19 For
example, replacement of the Gly33-Pro34 moiety in [D31, P34, F35-

]calcitonin gene-related peptide27–37 by AzaGly33-Pro34 and
I2aa33–34 gave respectively 10- and 7-fold increases in antagonist
potency.18 Subsequently, in our efforts to develop molecules,
which can inhibit uterine contractions and delay preterm labor,
we have recently reported that replacing the central I2aa residue
of the prostaglandin F2a modulator PDC113.824 by the azaGly-
Pro dipeptide can maintain activity and efficacy.19 Considering
the potential to explore the importance of valine for binding and
activity by the preparation of aza-analogs of AVPI, we report the
design and synthesis of a new series Smac mimics and their biolog-
ical evaluation as caspase-9 activators that induce apoptosis in
breast cancer cell lines (e.g., 5–9, Fig. 1).

The synthesis of azaGly-Pro dipeptide 11 and its use for the syn-
thesis of Smac mimic 5 were previously reported (Scheme 1).20

Acylation of proline with the activated benzhydrylidine carbazate
generated from benzophenone hydrazone and p-nitrophenyl chlo-
roformate gave azaGly-Pro dipeptide 11, which was coupled to
diphenyl methyl amine. Synthesis of azaGly-Pro Smac mimic 5
was then completed by removal of the benzophenone protection,
acylation with Boc-Ala, and Boc group removal. Aza-peptide 5
was thus obtained in five steps and 35% overall yield.20

Diversification of the aza-glycine residue was accomplished by a
route featuring alkylation of benzophenone-protected azaGly-
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Pro-Ot-Bu dipeptide 15 (Scheme 2).21 Treatment of aza-dipeptide
15 with tert-butoxide and alkylation with different alkyl halides
(propargyl bromide, benzyl bromide, allyl bromide and methyl
iodide) afforded the corresponding aza-amino acyl proline dipep-
tides 16a–d in 56–84% yields.21 The benzhydrylidene protection
was then removed by treatment with hydroxylamine hydrochloride
in pyridine and Fmoc-Ala was coupled to the resulting semicarbaz-
ides using iso-butyl chloroformate and N-methyl morpholine to give
the aza-tripeptides 17a–d in 45–77% yields. Cleavage of the tert-
butyl ester with trifluoroacetic acid in dichloromethane, coupling
to diphenyl methyl amine with the same coupling conditions, and
Fmoc group removal with a solution of 20% piperidine in DMF
yielded Smac mimics 6–9 in 40–65% overall yields from 18a–d
(Scheme 2). In addition, Ala-Val-Pro-Ile-NH2 was prepared as a posi-
tive control by standard Fmoc-based solid-phase peptide synthesis
on Rink resin in 25% overall yield (see Experimental section).22

The pro-apoptotic potential of Smac mimics 6–9 was examined
in MDA-MB-231 breast cancer cells at two different concentra-
tions: 50 lM and 100 lM (Fig. 2). At 100 lM, AVPI-NH2 and Smac
mimics 5–9, all induced cell death at levels (�50%) similar to the
topoisomerase II inhibitor Etoposide, which blocks DNA replica-
tion.23 At 50 lM, the relative activities of Smac mimics 5–9 became
apparent. Relative to vehicle (DMSO), the parent peptide AVPI-NH2

weakly induced cell death (11.5%) at 50 lM. Aza-propargyl and
aza-allylglycine analogs 6 and 8 exhibited no activity, and aza-ala-
nine analog 9 was only slightly more active relative to vehicle. In
contrast, aza-glycine and aza-phenylalanine analogs 5 and 7 pro-
moted cell death more effectively than the parent peptide at the
same concentration.
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Figure 2. Smac mimic induced cell death in MDA-MB-231 cell line. (A) Cells were
serum starved for 6 h and then treated with DMSO, etoposide (50 lM), AVPI-NH2

(50 lM) or indicated Smac mimetic compounds for 16 h using a final concentration
of 50 lM. After incubation, cells were trypsinized, stained with Trypan blue and
counted. (B) MDA-MB-231 cells were treated as in A and incubated with all
compounds at a final concentration of 100 lM. Data are expressed as percentage of
cell death (%). These results are the mean ± SEM of three independent experiments.
⁄⁄⁄P < 0.001, ⁄P < 0.05 are values compared to the paired control DMSO condition
and ���P < 0.001 are values compared to the paired AVPI-NH2 condition.
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Moreover, aza-phenylalanine analog 7 enhanced cell mortality
with similar efficacy as Etoposide. In summary, although all Smac
A
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Figure 3. Smac mimic promoted activation of caspase-3 and caspase-9 in MDA-MB-231
AVPI-NH2 (50 lM) and related synthetic compounds at a final concentration of 50 lM, ha
Quantifications are the mean ± SEM of three independent experiments. (B) Cells were tr
Quantification is the mean ± SEM of three independent experiments.
mimics induced cell death at the higher concentration, the two
aza-analogs 5 and 7 proved to be more effective than AVPI-NH2

at 50 lM.
The activation of caspase-9 and caspase-3 via proteolytic cleav-

age is crucial for the regulation of the apoptotic program. There-
fore, we examined conversion of their pro-forms into active
proteins by Western blotting (Fig. 3). High binding affinity between
Smac protein and XIAP is contingent on the interaction of its AVPI
peptide with the BIR3 domain of XIAP, which induces caspase-9
activity. Thus, we expected Smac mimicry would increase levels
of caspase-9 in the Western blot (Fig. 3). Moreover, caspase-3
activation is induced by caspase-9, thus intensity of the band for
caspase-3 should correlate with caspase-9 and Smac mimic
activity.

At 100 lM concentration, Smac mimics 5–9 as well as AVPI-NH2

and Etoposide, all enhanced formation of active caspases-3 and -9
(Fig. 3B). However, relative effectiveness of the AVPI analogs was
better indicated at 50 lM. At this concentration, only aza-phenyl-
alanine analog 7 produced detectable amounts of caspases-3 and -
9. In addition, Etoposide resulted only in caspase-3 activation at
this concentration, likely due to the short exposure to the drug.
In fact, previous publications reported that a 48 h treatment was
required to activate caspase-3 in MDA-MB-231 cells.24

Dose–response experiments were subsequently performed to
determine EC50 values (Fig. 4). The EC50 values of AVPI-NH2, and
aza-glycine and aza-phenylalanine analogs 5 and 7 were respec-
tively, 72.66 lM, 73.37 lM and 50.18 lM. In sum, at high concen-
tration, AVPI-NH2 and azapeptides 5–9, all exhibited a pro-
apoptotic potential through the activation of caspases-3 and -9.
Among the aza-analogs, aza-phenylalanine derivative 7 exhibited
the highest efficacy in activating caspases-3 and -9.

In conclusion, we developed a new strategy for making Smac
mimics that promote cell death based on the synthesis of azapep-
tides. In particular, aza-glycine and aza-phenylalanine analogs 5
and 7 promoted caspase-3 and -9 activation and caused ultimately
cell death. Aza-phenylalanine 7 was 25% more potent than AVPI-
NH2 in the MDA-MB-231 breast cancer cell assays. The enhanced
activity of 7 may be a combination of its potential to mimic the
active turn conformation of the native peptide as well as better
ability to interact at the binding site in which valine is normally
accommodated.
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Considering the utility of diversity-oriented methods for gener-
ating aza-peptides, they represent a promising new class of Smac
mimics for probing the structure–activity relationships at the AVPI
binding site towards the development of improved therapy for
treating cancer.
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