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Abstract: ¢t-Keto-13-aminoacids Sa-c can be reductively aminated with the peptide sequence H2N-Leu-Val- 
Phe-Phe on a solid support to afford N-carboxy alkyl peptides la-c. The N-carboxy alkyl lysine derivative 7 
was subsequently extended from the N-terminus with ghtamine and histidine residues. 
© 1998 Elsevier Science Ltd. All rights reserved. 

During attempts to prepare putative inhibitors of 'a-secret, am,' the as yet unidentified enzyme thought to 

be responsible for the cleavage of the amyloid precursor protein (APP) associated with the onset of Alzheimer's 

disease, 1 we have synthesised N-carboxy alkyl peptides of the type shown in Figure 1 using solid phase 

techniques. These peptides were designed as putative inhibitors to mimic the amino acid sequence at the Lys- 

Leu bond in APP, the proposed cleavage site. 2 

Reductive amination using peptides on solid supports and the preparation of N-earboxy alkyl peptides 

by reductive amination in solution are both documented. 3 However, we believe that the work described here 
represents the first attempt, using solid phase methods, to (a) apply reduetive amination to a-keto-~amino acid 

derivatives of N-protected amino acids and (b) extend such N-carboxy alkyl peptides from the N-terminus. 

Figure 1: 

N]-I 2 

R ~  NH-Leu-VaI-Phe-Phe-NH 2 

COOH 

I a R = H  
I b R= NHCbz 
I c R= NHFmoc 
I d R= Ac-His-Gln 

Initially, we used N-Boc-6-aminohexanoic acid (Scheme 1, R=H) as the substrate but later showed that 

the method could be extended to the formation of the N-protected (L)-Iysines derivatives lb and le. 
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The direct conversion of carboxylic acids into keto ylides was carried out using the conditions described 

by Wasserman et al.. 4 The  coupling reaction between carboxylic acids 2 a-c and the (cyanomethylene)- 

triphenylphosphorane 5 in the presence of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride 

(EDCI) gave the cyanoketoylides 3 a-c in excellent yields (67, 86, and 77%, respectively). The oxidation of 3 

a-c was achieved with ozone or dimethyldioxirane (DMD) at -78°C in dichloromethane giving similar yields. 

The unstable diketoniwiles 6 4 a-e thus produced were trapped hydrolytically with water leading to o~-ketoacids 

5a-c. 7 

To facilitate the preparation of the pentapeptides la-c, a reductive amination of the ketone function in 5 

was attempted using a solid phase method. The ct-keto-13-aminoacids 5 a-c (3 eq) were each added to a 

suspension of the Rink Amide MBHA resin (loading level= 0.55 mmol/g), containing the peptide sequence 

Leu-Val-Phe-Phe 6, in DMF and acetic acid (0.5M overall concentration) 8 and the intermediate Schiff bases 

were reduced to the desired N-carboxyalkyl derivative I a-c by the addition of NaCNBH3. 

Scheme 1 

NHBoc 
PPh3 NI-IBoc 

~ 3 
CH2C!2, rt 

R ~ -COOH R ~ y -CN 

2a, R = H  O 
2b, R= NHCbz 
2c, R= NHFmoc 

3 a (67%) 
3 b (86%) 
3 c (77%) 

03, CH2C!2, THF 

or 
DMD, CH2C1z, THF 

NHBoc 

O 

4 a-c 

H ~  

NHBoc 

R ~  1) H2N-Leu-Val-Phe-Phe ~ (6) 
AcOH, DMF, NaCNBH 3 ~ 1 a-c  

COOH 2) TFA (95%) 

O 
5 a (50%, DMD) 
5 b (50%, 03) 
5 c (37%, 03) 

The progress of the reaction, which required the cleavage of small amounts of peptides from the support by 

treatment with TFA (95%), was monitored by HPLC (Bio-Rad RP318 reverse phase HPLC column, 5-70% 

MeCN/0.1% TFA over 20 rain at lmL/min). A significant difference in rate of the reductive amination was 

observed depending on the R group in 5a-c. Whereas the product la  was obtained in quantitative yield after 

12h, for lh  only around 60% conversion was observed after 12h reaction time. In the case of Sc, the reaction 

time had to be increased to 24h by which time HPLC shown a single peak corresponding to lc,  with no 

evidence of 5c remaining. Although no isomer separation was seen in HPLC analysis, we presume that lb  and 

lc  are a diastereoisomeric mixture, because, in the case of la  a 1:1 mixture of diastereoisomers was observed 
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by carbon-13 NMR spectra. The differential shifts were significant for the carboxylic carbon (163.19 and 

162.92 ppm) and the carbon in the new chiral center (55.14 and 54.95 ppm). 

Following Frn~ deprotection in 20% piperidine/DMF, the AcHis(Trt)-Gln(Trt) sequence was attached 

to the N-carboxy alkyl peptide 7 on the Rink Amide support (loading level = 0.55 retool/g) using FIBTU (1 ecl)/ 

HOBT (1 eq) and DIPEA (3 eCl) to activate the N-terminus. Detritylafion of the glutarnine and histidine moieties, 
Boc deprotection of the lysine residue and cleavage from the resin by exposure to TFA (94%), H20 (5%) and 

triisopropylsilane (1%) gave the crude peptide ld  which was purified by chromatography on a Waters 
ixBondpak C18 HPLC column (20-40% MeCN/0.1% TFA over 30 rain at 1.5 mL/min) and characterized by 

electrospray mass spectroscopy. Further details of these peptide sequences, including the stereochemistry 

outcome, are currently being investigated. 

Scheme 2 

NHBoc 

COOH 

NHBoc 

O f N H . T  n COOH 

1) 20% piperidineJ DlVIF 
2) Fmoc.-Gln(Trt)-OH, I-IBTU, 

HOBT, DIPEA, rt, lh. 
3) 20% piperidineJ DMF 

1) Ac-His(Trt)-OH, HBTU, 
HOBT, DIPEA, rt, lh 

2) TFA (94%), H20 (5%), 
Triisopropylsilane (1%). 

l d  

In summary, we have shown that ~-keto-~-aminoacid derivatives can be reductively aminated and solid 

phase methods can be applied to the synthesis of N-carboxy alkyl peptides. 
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