Bioorganic & Medicinal Chemistry Letters xxx (xxxx) xxx-xxx

Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Discovery of BR102375, a new class of non-TZD PPAR γ full agonist for the treatment of type 2 diabetes

Wonken Choung^a, Deokmo Yang^a, Hakdo Kim^a, Hyukjoon Choi^a, Bo Ram Lee^a, Min Park^a, Su Min Jang^a, Jae Soo Lim^a, Woo Sik Kim^a, Kyung-Hee Kim^b, Jungwook Chin^b, Kyungjin Jung^b, Geumwoo Lee^b, Eunmi Hong^b, Tae-ho Jang^b, Jeongmin Joo^b, Hayoung Hwang^b, Jayhyuk Myung^a, Seong Heon Kim^{a,*}

^a Central Research Center, Boryung Pharmaceuticals Co. Ltd., Republic of Korea ^b Naw Drug Davelopment Center, Desgy Greenstyk Medical Inpovetion Foundation (DCMIR), Republic of

^b New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Republic of Korea

ARTICLE IN	F (Э
------------	-----	---

Keywords: Drug discovery Antidiabetics PPARγ agonist Non-TZD full agonist

ABSTRACT

As a potential treatment of type 2 diabetes, a novel PPAR_γ non-TZD full agonist, compound 18 (BR102375) was identified from the original lead BR101549 by the SAR efforts of the labile metabolite control through bioisosteres approach. In vitro assessments of BR102375 demonstrated its activating potential of PPAR_γ comparable to Pioglitazone as well as the induction of related gene expressions. Further in vivo evaluation of BR102375 in diabetic rodent models successfully proved its glucose lowering effect as a potential antidiabetic agent, but the anticipated suppression of weight gain was not evident. The X-ray co-crystal analysis of BR102375-PPAR_γ LBD unexpectedly revealed binding modes totally different from those of BR101549, which was found, instead, closely resembled to those of TZD full agonists.

Since aging population has grown rapidly, the adequate control of chronic diseases has become major concern for the entire society not only to meet the needs of the aging population, but also to keep the potential economic burden from the medical expense as low as affordable. As a major culprit to threat the normal life style of, in particular, the senior population, the prevalence of diabetes has risen rapidly and it is reported to be the seventh leading cause of death in 2030.¹ Type 2 diabetes is a chronic disease of impaired blood glucose control either by insufficient secretion of insulin from the pancreatic beta-cells or decreased insulin sensitivity.² More seriously, type 2 diabetes also enables onset of scores of devastating complications including cardiovascular disease,³ chronic kidney disease, stroke and blindness.⁴ Besides the tremendous efforts to promote the life style to prevent the disease, the relentless efforts to expand the treatment options of type 2 diabetes still have been listed high priority in drug discovery research.

Among the many biological targets for the treatment of type 2 diabetes explored hitherto, a nuclear receptor peroxisome proliferatoractivated receptory (PPAR_γ) could be listed as one of the most successful targets for which various effective modulators have been developed. Despite the target relevant adverse effects, some of them such as Rosiglitazone and Pioglitazone could reach the market.⁵ All of the known PPAR γ full agonists to this date are based on common scaffold called thiazolidinedione (TZD) which was deemed to contribute to the characteristic binding modes critical to draw the full effect of the protein.⁶ However, the concerns from the toxicities unleashed in clinical application limited their therapeutic use by the Black Box Warning label or market withdrawal. To avoid the side effects suspected to be ascribed to the transcriptions caused by full agonism of TZD scaffold, studies to identify non-TZD PPAR γ agonists produced a few promising candidates with partial agonism. Despite their weaker transcriptional activation, the selective PPAR γ modulators (SPPARMs) indeed showed efficacy in animal models with even less adverse effects culminating in progress into clinical trials. However, partial agonism of PPAR γ agonists has achieved FDA approval.⁷

In our previous studies^{8,9} to find additional therapeutic indications as part of the "Value Expansion" efforts of our original anti-hypertensive ARB (angiotensin receptor blocker) Fimasartan (brand name: Kanarb) which has been approved by Korean FDA in 2010, a potent PPAR γ agonist (BR101549) has been identified (Fig. 1). Due to its ester moiety, BR101549 proved itself metabolically unstable releasing the corresponding carboxylic acid which was suspected to be further

* Corresponding author.

E-mail address: rose1998@boryung.co.kr (S.H. Kim).

https://doi.org/10.1016/j.bmcl.2019.06.027

Received 12 February 2019; Received in revised form 14 June 2019; Accepted 19 June 2019 0960-894X/ © 2019 Elsevier Ltd. All rights reserved.

*PPARγ % activation relative to Pioglitazone.
*Microsomal stability measured by the % remaining concentration after incubation for 30 min.

Fig. 1. Major metabolites of BR101549 and the bioisosteres approach.

metabolized toward potentially toxic reactive acyl glucuronide. A series of Met ID studies indeed demonstrated the formation of acyl glucuronide from the carboxylic acid metabolite. To overcome the liability, SAR efforts were first focused on modification of ester alkyls hoping to suppress the degradation by sterically bulkier alkyl groups. Though there appeared some improved results, the intrinsic tendency prone to hydrolysis to the carboxylic acid seemed inevitable and subsequently the concern of toxic acyl glucuronide formation prohibited further exploration of the ester series. As an alternative and perhaps more reliable option to avoid the reactive acyl glucuronide formation, while maintaining the encouraging PPAR γ activity of the ester derivatives, application of bioisosteres for ester functionality was explored.

5-Ring heteroaromatics have been used in a wide range of applications in medicinal chemistry to provide solutions of the issues faced in various discovery programs.¹⁰ Among those applications, they have often proved themselves successful as bioisosteres of ester moiety mainly to avoid rapid hydrolysis, which attracted us to explore 5-ring heteroaromatics as a surrogate of ester functionality of BR101549. As shown in Fig. 1, a total of six 5-ring heteroaromatics containing three heteroatoms have been selected and assessed for the transcriptional activation of PPAR γ relative to the partial agonist Telmisartan.^{11,12} For the comparison of relative transcriptional effects, a few derivatives with representative alkyl substitutions were prepared for each series of 5ring heteroaromatics.

As summarized in Table 1, 1,2,4-thiadiazoles, A (compounds 4–5), 1,3,4-triazoles, B (compounds 6–7), 1,3,4-oxadiazoles, C (compounds 8–9), and 1,3,4-thiadiazoles, D (compounds 10–11) demonstrated relatively weak activation versus Telmisartan regardless of substituents on R^1 (methyl, isopropyl) and R^2 (methyl, 4-fluorophenyl, 4-methoxyphenyl) with the exception of compound 12 (R^2 = t-Bu). Since compound 12 containing sterically demanding t-butyl group on R^2 unleashed exceptional activity, bulkier groups such as t-butyl and isopropyl have been applied to the next heteoaromatic motif, 1,2,4-

Table 1 Comparison of $\ensuremath{\text{PPAR}}_\gamma$ activation of 5-ring heteroaromatics.

Ar	Comp. No	R ¹	R ²	A_{max} of PPAR γ vs. Telmisartan (%)^{\dagger}
∕~N	4	isopropyl	methyl	79
	5	methyl	methyl	93
S-N A				
, Η	6	methyl	methyl	61
∑ N	7	methyl	4-fluorophenyl	71
N~N B				
<u>\</u> 0	8	isopropyl	methyl	80
	9	isopropyl	4-methoxyphenyl	73
^{N∼} N C				
∕_s	10	isopropyl	methyl	79
	11	methyl	methyl	71
^{N∼} Ń D	12	isopropyl	t-butyl	180
N	13	methyl	t-butyl	258
	14	methyl	isopropyl	233
N∼Ó F	15	methyl	2-fluorophenyl	150
N	16	isopropyl	methyl	207
[~	17	methyl	methyl	136
⁰ ~Ń F	18	methyl	t-butyl	331

[†] The A_{max} value is a percentage value calculated relative to Telmisartan.

Table 2

Activation of PPARy with 1,2,4-oxadiazole derivatives.

Comp. No	R^1	R ²	EC ₅₀ (μΜ)†	A_{max} of PPAR γ vs. Pioglitazone (%) $^{\uparrow,\ddagger}$
16	isopropyl	methyl	1.05	93
18	methyl	t-butyl	0.28	98
19	isopropyl	t-butyl	0.59	123
20	methyl	cyclopropyl	4.25	89
21	isopropyl	cyclopropyl	2.55	102
22	methyl	benzyl	1.75	105
23	isopropyl	benzyl	1.14	92
24	methyl	4-fluorobenzyl	2.41	81
25	isopropyl	4-fluorobenzyl	1.48	80
26	methyl	isopropyl	1.32	101
27	methyl	3-fluorobenzyl	1.39	82
28	methyl	3,5-di-fluorobenzyl	1.38	72
29	methyl	methoxyethyl	4.21	68
30	methyl	methoxymethyl	3.39	60

 † EC_{50} and A_{max} were obtained through reporter gene analysis by measuring concentration dependent luciferase induction in cell lines (Indigo USA) transfected with PPRE and luciferase genes.

^{*} The A_{max} value is a percentage value calculated relative to Pioglitazone.

oxadiazole, E (Fig. 1). As expected, compounds 13 and 14 disclosed excellent activation effects measured as Amax ratios of 258% and 233%, respectively. Even aromatic substitution on R² with 2-fluorophenyl revealed Amax ratio of 150% which is definitely superior to the similar analogs of other heteroaromatic series (compounds 7 and 9). The encouraging results of 1,2,4-oxadiazole (E) spontaneously led us to exploit the reversed 1,2,4-oxadiazole (F) relative to the substitution pattern of R^1 and R^2 . Indeed, even the subtle variation explicitly revealed the superior effects of reversed 1,2,4-oxadiazole (F) motif on PPARy activation. Comparison of compound 16 ($R^2 = Me$, A_{max} ratio = 207%) and compound 18 (R^2 = t-butyl, A_{max} ratio = 331%) to the derivatives with same substituents on R^1 and R^2 in other heteroaromatic series clearly demonstrated the enhanced effect of the reversed 1,2,4-oxadiazole (F) motif. As such, the comparison of PPARy activation among various 5-ring heteroaromatics apparently revealed superior activity of 1,2,4-oxadiazoles over the others. In particular, the series of 1,2,4-oxadiazole isomer F which seemed more potent than isomer E was chosen for further SAR evaluation. The potency improvement caused by the subtle configurational change derived by mutual exchange of hetero atoms (N and O) in isomer F was intrigued but found inexplicable via docking analysis.

Based on the results in Table 1 and our previous report,⁹ the R¹

Bioorganic & Medicinal Chemistry Letters xxx (xxxx) xxx-xxx

Table 4Oral rodent PK of compounds 18 and 19.

Comp. No.	Species (10 mpk)	t _{1/2} (h)	T _{max} (h)	C _{max} (ng/mL)	AUC _{last} (ng·h/mL)
18	Rat	1.78	0.30	1318	889
	Mouse	1.18	0.33	949	584
19	Mouse	0.82	0.33	547	581

group was fixed to methyl and isopropyl and the agonist potential was measured as a ratio of activation versus Pioglitazone, a TZD full agonist (Table 2). As expected from the results shown in Table 1, compounds 16 and 18 indeed enabled to activate PPARy to the level of Pioglitazone (93% and 98%, respectively). However, they disclosed more than 3-fold difference of potency, EC_{50} , as compound 18 revealed excellent EC_{50} value of $0.28 \,\mu\text{M}$ versus $1.05 \,\mu\text{M}$ of compound 16. Subsequent R¹ replacement of methyl in compound 18 by isopropyl improved A_{max} in ca. 30% but with compromised EC50 of 0.59 µM (2-fold decrease) (compound 19). On the contrary to the t-butyl (R²) series (compounds 18 vs 19), the other examples including the compounds 20-25 containing cyclopropyl, benzyl, and 4-fluorobenzyl groups on R² clearly demonstrated the positive effects of bulkier R^1 (isopropyl) on EC₅₀s, though the effects were found overall weaker than the t-butyl analogs. Regarding PPAR γ activation, unlike the EC₅₀s, the series of compounds were unable to disclose clear SAR tendency with the exception of 4fluorobenzyl derivatives which showed relatively weaker activation potential (compounds 24-25). Continued tendency of weaker activation of 4-fluorobenzyl derivatives was also observed in the other electron deficient fluorobenzyl derivatives such as 3-fluorobenzyl and 3,5difluorobenzyl compounds, 27 and 28, respectively. Despite the cross substitutions of R¹ and R² relative to compound 16, compound 26 remained its decent EC_{50} and $A_{max}\xspace$ values similar to compound 16. Additional hydrogen bonding acceptor represented by the ether functionalities of compounds 29 and 30 was not found beneficial to EC₅₀s as well as activation potentials. Overall, the potency (EC₅₀) seemed improved when R¹ is isopropyl versus methyl while no such tendency was observed on the efficacy (A_{max}). In terms of R^2 variations, alkyls, particularly branched ones proved their beneficial effects not only to the Amax but to the EC50 as well. Largely based on the submicromolar potencies as well as high activation potentials, compounds 18 (EC_{50} = 0.28\,\mu\text{M},~A_{max} ratio = 98%) and 19 (EC_{50} = 0.59\,\mu\text{M},~A_{max} ratio = 123%) were selected to proceed for further evaluation.

Further in vitro profiling (Table 3) and in vivo PK (Table 4) evaluation of compounds 18 and 19 revealed their similar properties in terms of CYP inhibitions, liver microsomal stabilities, and mouse PK, which were predictable from the similarity of the molecular structures. Compound 18 could maintain its edge to the compound 19 in the field of hERG inhibition. The fact that both compounds had unexpectedly low liver microsomal stabilities, particularly in rodent models, at least, seemed to have plausible correlation with the modest plasma exposure levels (Table 4) suggesting a tip helping to improve the poor exposure in later SAR attempts. Mostly due to the advantage in hERG profile (8.3% inhibition at $10 \,\mu$ M) versus compound 19 (16% inhibition at $10 \,\mu$ M), compound 18 was selected to proceed for further in vivo efficacy studies to complete proof-of-concept (POC) evaluation. Although

Table 3	•						
In vitro	profiling	of	com	pounds	18	and	19.

Comp. No	hERG (%) [†]	Microsomal stability (% remaining @30 min)			CYP inhibition (% remain activity @10uM)					
		М	R	D	Н	1A2	2C9	2C19	2D6	3A4
18 19	8.3 16	11 24	12 13	11 13	17 12	88 92	57 33	84 78	93 89	64 50

[†] % inhibition at 10 µM.

m-1.1. 0

Bioorganic & Medicinal Chemistry Letters xxx (xxxx) xxx-xxx

Fig. 2. Effects of compound 18 (BR102375) on mRNA expressions, glucose uptake, and adipocyte differentiation. (for experimental details, see Supporting Information)

the poor microsomal stability profiles and relatively low plasma concentrations were among concerns, the experiment was supported by the reasoning that higher dosage would enable to provide exposure coverage enough to show efficacious effect in comparison to the reference agent, Pioglitazone, for the purpose of POC.

Prior to the in vivo experiments, compound 18 (BR102375) was also evaluated in cell-based studies¹³ with Pioglitazone as a reference compound. The gene expression levels relevant to PPAR γ activation including AP2 and CD36 were indeed found significantly increased compared to the control, almost reaching to the level of full agonist, Pioglitazone (Fig. 2A).¹⁴ In the study of insulin sensitizing potential of BR102375, the cell (3T3 L1 adipocyte) treated with BR102375 ($10 \mu M$) revealed enhanced glucose uptake comparable to Pioglitazone when stimulated by insulin (Fig. 2B).¹⁵ Furthermore, the evaluation of PPAR γ adipogenic capacity inducible by BR102375 has proved its concentration-dependent, insulin-sensitive effects on adipogenesis, which was found similar to the effect of Pioglitazone as evidenced in Fig. 2C.¹⁶ In light of the cell based assessments carried out, it was inferred that BR102375 would be possibly a full agonist of PPARy with comparable activation potential as Pioglitazone (A_{max} ratio = 98% of Pioglitazone, Table 2).

The anti-diabetic efficacy of compound 18 (BR102375) was assessed in genetically induced db/db mouse diabetes models.¹⁷ In the 14-day BID study,¹⁸ compound **18** (BR102375) (75 mpk, p.o., bid) has revealed significant suppressive effect on random blood glucose increase comparable to the effect of Pioglitazone (30 mpk, p.o., qd)

W. Choung, et al.

Fig. 3. In vivo efficacy study of compound **18** (BR102375) in db/db mouse model (75 mpk, bid, n = 9): A) Blood glucose lowering effect, B) Body weight increase, C) Oral glucose tolerance test (measured on day 14), D) Food intake (measured on day 7), (PGZ = Pioglitazone).

(Fig. 3A). In addition to the effect on glucose, compound **18** (BR102375) also disclosed similar findings in body weight gain with Pioglitazone on day 14 (Fig. 3B). Oral glucose tolerance test (OGTT) on day 14 also revealed decent effect of compound **18** (BR102375) on insulin resistance almost identical to Pioglitazone (Fig. 3C). On the other hand, the amount of food intake was found slightly diminished, however, which was not deemed significant enough to unleash a concern of potential toxic signal (Fig. 3D). The 2-week study indeed demonstrated the decent efficacy of BR102375 on mouse diabetes models, however the failure to suppress the body weight gain was disappointing in light of our proposed rational to leverage it as a distinguishable point from TZD drugs to overcome their clinical unmet need, as was discussed in our previous study.⁹ The original lead BR101549 (Fig. 1) exhibited enhanced activation of PPAR_Y and animal efficacy with decent suppression of weight gain versus Pioglitazone.

In order to further interrogate the mechanism behind the enhanced activation potential of PPAR γ , BR102375 has been subjected to cocrystal formation with PPAR γ ligand binding domain (LBD) and the Xray crystallography analysis. The study revealed, to our surprise, a totally different pattern of binding mode of BR102375 in the LBD stabilization from that of the precursor BR101549 (Fig. 4). On the contrary to BR101549, BR102375 in PPAR γ LBD explicitly showed the strong interaction of its oxadiazoledione motif with the Tyr473 on helix 12 which has been widely recognized as a characteristic of full agonists enabling enhanced PPAR γ activation.¹⁹ The binding of BR102375 seems to be forked three-way with the pyrimidineone as a pivot aligned along the helix 3 (Fig. 4A). Most prominently, the oxadiazoledione motif is, through the biphenyl linker, projected toward the helix 12

enabling interactions with Tyr473 and His449, the key H-bonding interactions of TZD motif of TZD full agonists stabilizing AF2 residues. The t-butyl 1,2,4-oxadiazole motif is seemed to occupy the opposite site, where the oxadiazoledione of BR101549 was known to bind, perching on the helix-5 by hydrophobic interactions with Ile330, Ile326, and Met329 residues. No additional H-bonding interactions of the heteroatoms in the 1,2,4-oxadiazole ring were identified. Although it doesn't seem to be significant, the butyl branch of pyrimidinone ring seems approaching helix-6 to generate another hydrophobic interaction with M364 residue. Indeed, it was unexpected that the oxadiazoledione motifs in BR102375 and BR101549 were observed stabilizing completely different parts of the LBD and induced their discrete characteristic modes of binding (Fig. 4B). Although it's not verifiable yet, it might be inferred that the sterically bulkier t-butyl moiety on 1,2,4oxadiazole of BR102375 versus relatively small ethyl ester of BR101549, was unable to fit into the pocket formed by helix-6 and helix-3. Instead, the t-butyl-1,2,4-oxadiazole could participate in the other side hydrophobic stabilization process which might be further facilitated by the interactions between the oxadiazoledione and Tyr473 and His449 of helix 12.

All the compounds enlisted in Tables 1 and 2 have been prepared according to the routes summarized in Scheme 1. Compounds containing heterocyclic motifs, **B,C,D** and **F** were prepared in 2–3 steps from the carboxylic acids **35** obtained by hydrolysis of the corresponding esters **34** whose syntheses have been reported in our previous publication⁸. The acids **35** were converted to the desired 1,2,4-ox-adiazole system **F** derivatives by refluxing with SOCl₂ in pyridine in the presence of hydroxylamidines **33** with varied R^2 , which were prepared

Bioorganic & Medicinal Chemistry Letters xxx (xxxx) xxx-xxx

Fig. 4. A) Crystal structure of PPAR_γ ligand binding domain (LBD, in sky blue cartoon) with BR102375 (sticks colored orange) in the presence of SRC-1 coactivator peptide, and its zoomed in view showing interacting residues. B) Overall structure of BR102375 (in orange) in the PPAR_γ LBD (in white cartoon). BR101549 (in yellow) and Rosiglitazone (in magenta) are superimposed on the structure. (PDB ID 6ICJ, Diffraction resolution: 2.48 Å).

from the corresponding nitriles 31. Conversion of nitriles 31 into the amidines 32 was achieved by the treatment of trimethylaluminum and NH₄Cl in toluene at room temperature. Coupling of resulting amidines 32 with the acids 35 using DIPEA and HBTU in DMF followed by cyclization with hydrazine gave the desired triazole compounds 6 and 7. The acid intermediates 35 were also reacted with the acylhydrazines with varied R² to provide the corresponding acylhydrazide derivatives 36 which were cyclized with Lawesson's reagent in THF when heated to 70 °C resulting in the 1,3,4-thiadiazole derivatives **10–12**. The oxygen analogs, 1,3,4-oxadiazoles 8 and 9 could be obtained by the reaction of the acylhydrazides **36** with POCl₃ in refluxing toluene. For the synthesis of 1,2,4-thiadiazole derivatives 4 and 5, the thioamide intermediates 38 prepared from the esters 34 by the sequence of amide formation and thiolation reacted with DMF-DMA in MeOH affording the thioacylamidine derivatives 39, which were next cyclized in the presence of hydroxylamine and acetic acid in dioxane at 90 °C.²⁰ Another 1,2,4oxadiazole isomer ring system E including compounds 13-15 was installed by the cyclization of the acyloxyamidine intermediate 41 prepared from the ester 34 in 4 steps. Amination of 34 by treatment with ammonia water, followed by POCl₃ induced dehydration gave the desired nitriles 40, which were converted to acyloxylamidines in two steps via hydroxylamines including aqueous hydroxylamine refluxing and coupling with the R²-carboxylic acids under EDCI-HOBt condition. The final cyclization by refluxing with K_2CO_3 in toluene provided the derivatives containing 1,2,4-oxadiazole isomer E.²¹

In summary, a new class of non-TZD PPARy full agonist, BR102375 (compound 18), has been identified through the efforts to overcome potential reactive metabolites formation by successfully replacing the metabolically labile ester moiety of BR101549 with its bioisostere, 1,2,4-oxadiazole motif. BR102375 has exhibited excellent potency in terms of EC_{50} and $A_{\text{max}},$ in particular, the activation potential of the protein was found comparable to the full agonist, Pioglitazone, which was further evidenced by the mRNA expression patterns and the characteristic binding interactions uncovered by the X-ray co-crystal analysis. Despite its relatively undesired mouse PK exposure, BR102375 was found efficacious in preclinical diabetic mouse models when assessed in high-dose oral settings. However the beneficial effect of efficacy was compromised by absence of the anticipated effect of suppressing body weight gain, which could be ascribed to the indifferent profiles observed in cell based assessments and the key binding interactions of BR102375 in PPARy LBD, compared to those of the TZD full agonists. Also noteworthy is the finding of substantial change in binding modes induced by the replacement of ethyl ester of BR101549 with t-butyl-1,2,4-oxadiazole motif of BR102375.

Scheme 1. General synthetic scheme, a) trimethylaluminum, NH₄Cl, toluene, 25 °C, b) NH₂OH in H₂O, EtOH, reflux, c) 2.5 M NaOH in H₂O, EtOH, 25 °C, d) EDCI, HOBt, TEA, acylhydrazide, CHCl₃, 25 °C, e) **33**, SOCl₂, pyridine, reflux, f) **32**, DIPEA, HBTU, DMF, 25 °C, g) hydrazine, AcOH, reflux, h) POCl₃, toluene, reflux, i) Lawesson's reagent, THF, reflux, j) 1 M ammonia in MeOH, 50 °C, k) DMFDMA, MeOH, 25 °C, l) NH₂OH, 1,4-dioxane, 90 °C, then AcOH, m) 28% ammonia in H₂O, 25 °C, n) POCl₃, acetonitrile, reflux, o) HOBt, EDCI, TEA, carboxylic acid, CH₂Cl₂, 25 °C, p) K₂CO₃, toluene, reflux.

Acknowledgments

This research was supported by the Bio & Medical Technology Development Program (2014M3A9D9033717 & 2014M3A9D9070788) and the Pioneer Research Center Program (NRF-2014M3C1A3051476) from the National Research Foundation (NRF), Republic of Korea funded by the Ministry of Science, ICT & Future Planning of Republic of Korea.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.bmcl.2019.06.027.

References

- 1. Mathers CD, Loncar D. PLoS Med. 2006;3(e442):2011.
- 2. https://www.niddk.nih.gov/health-information/diabetes.
- 3. Sarwar N, Gao P, Kondapally Seshasai SR, et al. Lancet. 2010;375:2215.
- Bourne RR, Stevens GA, White RA, et al. Lancet Global Health. 2013;1:e339.
 Soccio RE, Chen ER, Lazar MA. Cell Metab. 2014;20:573.
- Bruning JB, Chalmers MJ, Prasad S, et al. *Structure*. 2007;15:1258.
- Motani A, Wang Z, Weiszmann J, et al. J Mol Biol. 2009;386:1301.

- Bioorganic & Medicinal Chemistry Letters xxx (xxxx) xxx-xxx
- 8. Choung W, Jung HJ, Nam EH, et al. *Bioorg Med Chem Lett.* 2018;28:3155. 9. Choung W, Jung HJ, Yang D, et al. *Bioorg Med Chem Lett.* 2019;29:631
- Choung W, Jung HJ, Yang D, et al. *Bioorg Med Chem Lett.* 2019;29:631.
 Meanwell NA. J Med Chem. 2011;54:2529.
- Meanweit NA. 5 Med Chen. 2011;34:2525.
 Benson SC, Pershadsingh HA, Ho CI, et al. Hypertension. 2004;43:993.
- Denson DG, Fersindashigh Hill, Ho GI, et al. Typerenator. 2004, 10:550.
 Omote Y, Deguchi K, Kurata T, et al. Curr Neurovascular Res. 2015;12:91.
- 13. For experimental details, see "Supporting Information".
- 14. Takazawa T, Yamauchi T, Tsuchida A, et al. J Biol Chem. 2009;284(44):30049.
- 15. Kudoh A, Satoh H, Hirai H, Watanabe T. Life Sci. 2011;88:1055.
- 16. Kletzien RF, Clarke SD, Ulrich RG. Mol Pharmacol. 1992;41(2):393
- 17. Schwartz MW, Baskin DG. J Clin Investig. 2013;123:2344.
- 18. Seven-week-old male db/db mice were obtained from Central Lab Animal Co. (Seoul, Korea) and were acclimated to the laboratory condition for 1 week. To investigate the anti-diabetic effect so BR102375K (potassium salt), the mice were assigned into three groups (n = 9/group) by blood glucose level and weight Mice were treated once or twice daily by gavage with BR102357K (75 mg/kg/day), poiglitazone (30 mg/kg/day) or vehicle (0.5 CMC in 1% Tween 80) for 2 weeks. Blood samples were collected from tail vein and blood glucose levels were measured by Accu-Check (Roche) once each week. Body weight and food intake were also measured once each week. To confirm anti-diabetic effects of BR102357, oral glucose tolerance test was carried out after 12h fasting. A glucose solution (1 g/kg of body weight) was administered by orally gavage. At the time points indicated, blood glucose levels were measured with an Accu-Check (Roche) before (0 min) and after (30, 60, 90, and 120 min) the glucose gavage.
- 19. Nolte RT, Wisely GB, Westin S, et al. Nature. 1998;395:137.
- 20. Lin Y, Lang Jr SA, Petty SR. J Org Chem. 1980;45:3750.
- Burns AR, Kerr JH, Kerr WJ, Passmore J, Paterson LC, Watson AJB. Org Mol Chem. 2010;8:2777.