pubs.acs.org/joc

Regioselective Sulfonylation/Acylation of Carbohydrates Catalyzed by FeCl₃ Combined with Benzoyltrifluoroacetone and Its Mechanism Study

Jian Lv,[#] Jia-Jia Zhu,[#] Yu Liu, and Hai Dong*

Cite This: http	s://dx.doi.org/10.1021/acs.joc.9b	03128	Read Online	
ACCESS	III Metrics & More		Article Recommendations	Supporting Information

ABSTRACT: A catalytic amount of $FeCl_3$ combined with benzoyl trifluoroacetone (Hbtfa) ($FeCl_3$ /Hbtfa = 1/2) was used to catalyze sulfonylation/ acylation of diols and polyols using diisopropylethylamine (DIPEA) or potassium carbonate (K_2CO_3) as a base. The catalytic system exhibited high catalytic activity, leading to excellent isolated yields of sulfonylation/acylation products with high regioselectivities. Mechanism studies indicated that $FeCl_3$ initially formed [$Fe(btfa)_3$] (btfa = benzoyl trifluoroacetonate) with twice the amount of Hbtfa under basic conditions in the solvent acetonitrile at room temperature.

Then, $Fe(btfa)_3$ and two hydroxyl groups of the substrates formed a five- or six-membered ring intermediate in the presence of the base. The subsequent reaction between the cyclic intermediate and a sulfonylation reagent led to the selective sulfonylation of the substrate. All key intermediates were captured in the high-resolution mass spectrometry assay, therefore demonstrating this mechanism for the first time.

INTRODUCTION

Regioselective protection strategies are as important as glycosylation strategies in carbohydrate chemistry due to the requirements of both the preparation of glycosyl donors and acceptors¹ and the modification of carbohydrates² to obtain valuable intermediates. One-pot selective protection strategies are particularly beneficial for the highly efficient synthesis of glycosyl donors and acceptors.³ Many chiral or achiral catalysts with complex structures were developed to control siteselectivity, where researchers are less concerned about whether the catalysts are readily available and inexpensive.⁴ Few catalysts with a simple structure⁵ were developed to substitute toxic organotin reagents,⁶ where researchers, such as our group, ' are more concerned about the commercial availability, the low price, and the environmental friendliness of the used reagents. Our group has therefore recently developed green Fe(III) catalysts, $[Fe(dibm)_3]$ (dibm = diisobutyrylmethane) for regioselective alkylation and $[Fe(acac)_3]$ (acac = acetylacetonate) for regioselective acylation.⁸ $[Fe(dipm)_3]$ (dipm = dipivaloylmethane) can play the same role as $[Fe(dibm)_3]$, and it is less expesenve.⁹ These methods have the advantages of green, convenient manipulation, high efficiency, high selectivity, good yield, and broad substrate scope. However, the mechanism has never been demonstrated.

Regioselective sulfonylation strategies are also important because selective sulfonated products are widely used as precursors for the synthesis of various biologically significant compounds and novel functional materials.¹⁰ Organotin reagents were used in the earliest reports,¹¹ and organoboron catalysts¹² were later developed to avoid the use of toxic organotin reagents (Figure 1a). We have attempted to use $[Fe(dibm)_3]$, $[Fe(dipm)_3]$, or $[Fe(acac)_3]$ to catalyze selective

Figure 1. Regioselective sulfonylation of carbohydrate *cis*-diols. (a) Previously reported methods. (b) This method.

Received: November 20, 2019

sulfonylation but failed. It is difficult to investigate such catalysts in which various metals coordinate acylacetone ligands due to availability, although we assumed that certain catalysts should be good catalysts for selective sulfonylation. Recently, we found that FeCl₂ combined with acetylacetone could be directly used as a catalyst to catalyze selective benzoylation with diisopropylethylamine (DIPEA) as a base.¹³ Based on this, we investigated the effects of acylacetone ligands and various metal salts on the regioselective sulfonylation to find an optimal catalytic system. The challenge is addressed in this study (Figure 1b). We found that the combination of $FeCl_2$ and benzovl trifluoroacetone (Hbtfa) (FeCl_2/Hbtfa = 1/ 2) was a good catalytic system for regioselective sulfonylation of substrates containing a cis-vicinal diol, a 1,2-diol, or a 1,3diol. The method is superior to the reported methods, which uses only inorganic bases (K_2CO_3) instead of organic bases. The isolated yields and selectivities were similar or better than previous methods in most cases (Table S1 in the Supporting Information). This system also exhibited a higher catalytic activity for selective acylation than the use of FeCl₃ and acetylacetone. FeCl₃ is readily available in the laboratory. Benzoyl trifluoroacetone is also an inexpensive (\$1-2/g) and nontoxic reagent (Table S2 in the Supporting Information). Furthermore, the catalytic mechanism was studied using highresolution mass spectrometry (HRMS) to capture all key intermediates in the HRMS assay, therefore demonstrating the mechanism for the first time.

RESULTS AND DISCUSSION

Based on our studies on FeCl₃-catalyzed selective benzoylation with acetylacetone as a ligand, we started to explore the optimal catalytic system for selective sulfonylation of methyl-6-O-(*tert*-butyldimethylsilyl)- α -D-mannopyranoside 1 (Table 1). Therefore, 0.1 equiv of FeCl₃ was first tested with 0.3 equiv of various acylacetone-type ligands (L_1-L_7) in the presence of 1.5 equiv of para-toluenesulfonyl chloride (TsCl) and 1.9 equiv of diisopropylethylamine (DIPEA) in acetonitrile (entries 1 and 2 in Table 1). After 6 h at room temperature, the sulfonylation products and the recovered 1 were isolated. The experimental results showed that FeCl₃ with the assistance of L1-L6 could not exhibit any catalytic activity on the sulfonylation since 80-86% yields of recovered 1 were isolated (entry 1). To our delight, FeCl₃ with the assistance of L_7 , benzoyl trifluoroacetone (Hbtfa), exhibited high catalytic activity for the selective sulfonylation (entry 2). Most of the starting material 1 was consumed, and 86% yield of 3sulfonylated product 2a was isolated. No or trace byproducts were observed, indicating a high site-selectivity. The absence of L_7 (entries 3 and 4) or the absence of FeCl₃ resulted in low or no reaction conversion. We assumed that 0.1 equiv of FeCl₃ and 0.3 equiv of L7 initially form approximately 0.1 equiv of $Fe(btfa)_3$ in the presence of a base, which subsequently catalyzes the sulfonylation. As expected, Fe(btfa)₃ showed high catalytic activity in the sulfonylation, and only 1.5 equiv of DIPEA was used, thus leading to 92% isolated yield of 2a (entry 5). FeBr₃, Fe(OTf)₃, and FeCl₂ exhibited lower catalytic activity than $FeCl_3$ (entries 6–8). Next, various metal salts in lieu of iron salts were tested in the sulfonylation. It was observed that AlCl₃, NiCl₂, CrCl₃, SnCl₄, Ce(SO₄)₂, or $Ce(NO_3)_4$ did not exhibit any catalytic activity; $CuCl_2$ and BiCl₃ also exhibited high catalytic activity (entries 9 and 10); and MnCl₂, ZnCl₂, and CoCl₂ exhibited moderate catalytic activity for this reaction (entries 11-13). We also used other

Table 1. Comparison of Sulfonylation/Acylation of 1 under

pubs.acs.org/joc

Valence Can little

various Conditions								
TE H	OH HO OME OME Cat., L MeCN	TBS <u>1-7, RCI</u> HO I, r.t., 6h. R0	OH OH OMe 2a 2b	: R = Ts : R = Bz				
o								
L ₁ Hacac L ₂ Hdibm / L ₃ Hdipm L ₄								
\bigcirc		OO CF ₃	C ₇ Hbtfa	CF ₃				
entry	catalytic system (0.1 equiv)	base (1.9 equiv)	isolated yield (%)	recovered 1 (%)				
1	$FeCl_3/L_{1-6}$ (1/3)	DIPEA	<u>_</u> b	80-86				
2	$FeCl_3/L_7$ (1/3)	DIPEA	2a : 86	<u>_</u> b				
3	$FeCl_{3}(0.1)$	DIPEA	_ b	84				
4	L_7 (0.3)	DIPEA	_ b	85				
5	Fe(btfa) ₃ (0.1)	DIPEA ^c	2a : 92	_b				
6	$FeBr_{3}/L_{7}$ (1/3)	DIPEA	2a : 27	62				
7	$Fe(OTf)_3/L_7 (1/3)$	DIPEA	2a : 35	56				
8	$FeCl_2/L_7 (1/2)$	DIPEA	2a : 34	56				
9	$CuCl_2/L_7$ (1/2)	DIPEA	2a : 90	<u>_</u> b				
10	$BiCl_3/L_7 (1/3)$	DIPEA	2a : 85	<u>_</u> b				
11	$MnCl_2/L_7 (1/2)$	DIPEA	2a : 63	30				
12	$ZnCl_2/L_7$ (1/2)	DIPEA	2a : 51	40				
13	$CoCl_2/L_7$ (1/2)	DIPEA	2a : 60	32				
14	$FeCl_3/L_7$ (1/3)	TEA	2a : 83	_b				
15	$FeCl_3/L_7$ (1/3)	K ₂ CO ₃	2a : 91	_b				
16	$FeCl_{3}/L_{7}$ (1/3)	Ag ₂ O	2a : 80	_b				
17	$FeCl_{3}/L_{7}$ (1/2)	DIPEA	2a: 89; 2b: 90	_b				
18	$FeCl_3/L_7 (1/1)$	DIPEA	2a : 67	27				
19	$FeCl_3/L_7 (1/2)^d$	DIPEA	2a : 85 ^e , 93 ^f	_b				
20	FeCl_3/L_7 (1/2)	K_2CO_3	2a: 91; 2b: 92	<u>_</u> b				
ac 1	- (1) -)] ()] ())				

^aSubstrate 1 (0.1 mmol), RCl (1.5 equiv), MeCN (0.5 mL), room temperature (rt), 6 h. ^bObservation of no or trace compound. ^c1.5 equiv. ^d0.05 equiv. ^e12 h. ^fLarge scale: substrate 1 (4 mmol, 1.232 g), TsCl (1.5 equiv), MeCN (20 mL), rt, 8 h.

bases (TEA, K2CO3, and Ag2O) instead of DIPEA (entries 14–16). Good results were observed, especially when K_2CO_3 was used as the base (entry 15). An unexpected result is that $FeCl_3$ combined with 2 equiv of L₇ exhibited the same catalytic activity as with 3 equiv of L₇ (entry 17). However, FeCl₃ combined with 1 equiv of L7 exhibited lower catalytic activity (entry 18). We initially assumed that Fe(btfa)₂Cl is formed from FeCl₃ and 2 equiv of L₇ and Fe(btfa)Cl₂ is formed from $FeCl_3$ and 1 equiv of L₇. $Fe(btfa)_2Cl$ exhibits the same catalytic activity as $Fe(btfa)_3$, but $Fe(btfa)Cl_2$ does not. Therefore, the optimum ratio of FeCl₃ to L_7 is 1/2 for this catalytic system. The amount of the catalyst could be decreased to 0.05 equiv (entry 19). In this case, the 3-sulfonylated product 2a was isolated in 85% yield when the reaction time was prolonged to 12 h. For a large scale (gram scale), 2a was isolated in 93% yield within 8 h. All the reactions exhibited high site-selectivity since no or trace byproducts were observed. Selective acylation could also be catalyzed by this catalytic system, leading to 3benzoylated product 2b in 90% yield (entry 17). Similar results were obtained when K₂CO₃ was used as the base where 2a and **2b** were isolated in 91 and 92% yield, respectively (entry 20).

pubs.acs.org/joc

Figure 2. Regioselective sulfonylation and acylation of substrates containing *cis*-,1,2-, or 1,3-diol.^a Reaction conditions: ${}^{a}K_{2}CO_{3}$ (1.9 equiv), L_{7} (0.2 equiv), FeCl₃ (0.1 equiv), RCl (1.5 equiv), MeCN (0.5 mL), rt, 1–12 h. ^bDIPEA (1.9 equiv). ^cDIPEA (1.6 equiv), AcCl (1.2 equiv), 2–4 h. ^dDIPEA (1.9 equiv), 50 °C, 5 h. ${}^{c}K_{2}CO_{3}$ (4.0 equiv), RCl (3.0 equiv), 4–12 h. ^fDIPEA (4.0 equiv), RCl (3.0 equiv), 3 h. ^gSubstrate (8 mmol, 1.104 g), DIPEA (1.9 equiv), L_{7} (0.02 equiv), FeCl₃ (0.01 equiv), TsCl (1.5 equiv), MeCN (20 mL), 3 h.

Acetylation showed much poorer selectivity than benzoylation likely due to relative ease of acetyl migration.^{8,14}

We further evaluated the substrate scope of this method (Figure 2). Thus, L_7 (0.2 equiv), FeCl₃ (0.1 equiv), $K_2CO_3/$ DIPEA (1.9 equiv), and the substrates containing a *cis*-diol moiety, a 1,2-diol moiety, or a 1,3-diol moiety were mixed in the solvent. Subsequently, a sulfonylation or acylation reagent (1.2–1.5 equiv) was added, and these reactions were proceeding at room temperature for 1–12 h. Methyl 4,6-benzylidine α -mannoside 3 was first chosen to be tested with TsCl and various acylation reagents, such as BzCl, AcCl, PivCl, PMBzCl, and $C_{15}H_{31}COCl$. The 3-protected products 4a–f were isolated in 62–97% yields, indicating the generality of the method.

All glycosides containing a *cis*-diol were selectively sulfonylated, benzoylated, or acetylated at the equatorial hydroxyl groups, leading to 76–97% yields of products **5– 13**. However, the catalytic system could not exhibit any catalytic activity to glycoside *trans*-diols. The catalytic system also exhibited high catalytic activity to substrates containing 1,2-diol or 1,3-diol. Thus, the 6-protected products **14–16** were isolated in 83–93% yields starting from glycoside substrates where 4- and 6-positions are free, and the products **22–28** were isolated in 71–95% yields starting from noncarbohydrate substrates. For glycoside substrates containing both cis-diol and 1,3-diol, such as free methyl galactosides and mannosides, there is no or poor selectivity between the equatorial hydroxyl group and the primary hydroxyl group in the reaction. Therefore, with 4 equiv of base and 3 equiv of TsCl/BzCl for these substrates, leading to isolated 91-96% yields of products 17-19 where both 3- and 6-positions reacted. For free methyl glucosides, 2 equiv of base and 1.9 equiv of TsCl were used, leading to isolated 61-65% yields of 6-position protected products 20 and 21 since no cis-diol competed with 1,3-diol in the sulfonylation. The relative low yields of 20 and 21 are likely due to the poor solubility of the substrates in acetonitrile. The sulfonylation of phenylene glycol was also tested in a large scale. The catalytic system exhibited very high catalytic activity to this substrate. Thus, FeCl₃ (0.01 equiv) and L_7 (0.02 equiv) were used in this reaction, and the primary group sulfonylated product 24a was isolated in 92% yield within only 3 h of reaction.

The catalytic system does not catalyze or accelerate the sulfonylation of glycoside *trans*-diols, monohydroxy substrates, and diols as shown with glycoside *trans*-diols **29** and **30**, alcohol **31**, and 1,4-butanediol **32** with this method (Figure 3). The competitive sulfonylation of a mixture of diol **33** and its corresponding monohydric alcohol **31** only led to **24a**, the sulfonylation product of **33**. The sulfonylation of a mixture of ethylene glycol **35** and1,4-butanediol **32** in a competitive

reaction only led to 22, the sulfonylation product of 35. These experiments may support the formation of cyclic intermediates with five- and six-membered rings by the iron catalyst and diols. The sulfonylation of a mixture of a 1,2-diol (35/38) and a 1,3-diol (37/39) in a competitive reaction led mainly to sulfonylation of the 1,2-diol. The ratios of the sulfonylated products of 1,2-diol and 1,3-diol are 7.44/1 (22/23) and 6.25/1 (25a/28). These results support the formation of five-membered ring intermediates more easily than the formation of six-membered ring chelates between diols and the iron catalyst.

By comparing the structures of L_5 , L_6 , and L_7 , it seems that a ligand having an electron-withdrawing group at one end and an electron-donating group at the other side plays a key role for the good sulfonylation activity of the catalytic system. Therefore, L_8 (the trifluoromethyl group of L_7 being substituted by the methyl group), L_9 (the trifluoromethyl group of L_7 being substituted by the ethoxide group), L_{10} (the phenyl group of L_7 being substituted by the methyl group), L_{11} (the phenyl group of L_7 being substituted by the perhormethyl group of L_7 being substituted by the methyl group), L_{11} (the phenyl group of L_7 being substituted by the perhormethyl phenyl group), and L_{12} (the phenyl group of L_7 being substituted by the thienyl group) were further tested in the sulfonylation of 1 (Figure 4). It was observed that FeCl₃ combined with L_8 or L_{10} exhibited no or low catalytic activity, FeCl₃ combined with L_9 or L_{11} exhibited moderate catalytic activity, and FeCl₃ combined with L_{12} exhibited as high catalytic activity as FeCl₃ combined with L_{7} . FeCl₃ combined with L_{11} exhibited lower catalytic activity than FeCl₃ combined with L_{7} , which is likely due to the weaker electron-donating ability of the *p*-chloride phenyl group than the phenyl group.

In order to confirm whether Fe(btfa)₂Cl is formed by the reaction of FeCl₃ and 2 equiv of L₇, we crystallized a product from the reaction of FeCl₃ with 2.0 equiv of L₇ and crystallized the other product of $FeCl_3$ with 3.0 equiv of L_7 , respectively. However, these two products are identical by comparison with their X-ray diffraction (XRD) spectrum (Figure S1 in the Supporting Information). The mixture of FeCl₂ with 2.0 equiv of L_7 in the presence of DIPEA in acetonitrile was tested by HRMS. The strong signals of 740.0030 and 724.0272 were observed, indicating a Fe(btfa)₃ molecule with a K⁺ and a Na⁺ (calculated values: 739.9941 and 724.0201), respectively. A weak signal of 486.0015 was found, which likely represents $^{+}$ Fe(btfa)₂ (the calculated value: 485.9984). These results indicated that Fe(btfa)₃ instead of Fe(btfa)₂Cl is formed from the reaction of FeCl₃ and 2 equiv of L_7 . Supposed that L_7 is completely consumed during the reaction, 0.067 and 0.1 equiv of $Fe(btfa)_3$ would be formed from the reaction of 0.1 equiv of $FeCl_3$ with 0.2 and 0.3 equiv of L_7 , respectively. One question is why the identical catalytic activity was observed under these two conditions. Based on these facts, a catalytic mechanism was proposed in Figure 5. In the first step, the key iron catalyst FeX_3 is formed by $FeCl_3$ and ligand X in the presence of a base. FeX_3 then forms a cyclic intermediate (a or b) with a diol substrate in the presence of the base while releasing an X molecule. The cyclic intermediate will further react with the sulfonylation/acylation reagent to produce a regioselective sulfonylated/acylated product going through the intermediate c. This explains why the catalytic system (FeCl₃/L₇ = 1/2) exhibits the same catalytic activity as the catalytic system $(\text{FeCl}_3/\text{L}_7 = 1/3)$ since the ratio of Fe to X is 1/2 in the cyclic intermediate. We could not crystallize intermediate a nor study the mechanism by NMR due to the existence of the iron(III).

We envisioned whether the intermediate a, b, or c could be captured by HRMS detection. If this was the case, the mechanism shown in Figure 5 would be confirmed. We first

Figure 4. Comparing the catalytic activity of $FeCl_3$ combined with L_5-L_{12} .

pubs.acs.org/joc RCI

Figure 5. Proposed mechanism for FeCl3-catalyzed sulfonylation and acylation in the presence of L7-

Figure 6. HRMS detection for (a) mannoside 1 with 1.0 equiv of $Fe(btfa)_3$ in the presence of 2.0 equiv of DIPEA in acetonitrile, and b) 0.5 equiv of TsCl was added in the abovementioned mixture.

mixed mannoside 1 with 1.0 equiv of $Fe(btfa)_3$ in the presence of 2.0 equiv of DIPEA in acetonitrile. The mixture was subjected to HRMS analysis after stirring at room temperature for 5 h. To our delight, two strong signals of 331.1599 (raw material 1, the calculated value with Na⁺: 331.1547) and 724.0226 (Fe(btfa)₃) and two weak signals of 816.1404(intermediate a, the calculated value with Na⁺: 816.1458) and 838.1291 (intermediate b, the calculated value with 2Na⁺: 838.1278) were observed (Figure 6a). After 0.5 equiv of TsCl was added at rt for 5 h, this mixture was subjected to HRMS detection. The strong signals of 331.1546 (raw material 1), 485.1628 (sulfonylation product 2a, the calculated value with Na⁺: 485.1636), and 724.0198 (Fe(btfa)₃) and a weak signal of 970.1531 (intermediate c, the calculated value with Na⁺: 970.1547) were observed (Figure 6b). However, the signal around 816.1458-838.1278 (intermediate a or b) could not be observed in this case, which might indicate that intermediate a or b is extremely active and difficult to survive in the presence of an acylation reagent. Consequently, the capture of the intermediates a, b, and c by HRMS demonstrated the proposed mechanism in Figure 5.

Based on this mechanism, the formation rate of products is approximately proportional to the amount of the cyclic intermediate in light of a kinetic analysis (Figure S4 in the Supporting Information). Furthermore, the formation rate of products is approximately proportional to the ligand when the ratio of ligand is less than twice the amount of FeCl₃, whereas the formation rate of products remained unchanged when the amount of the ligand is larger than or equal to twice the amount of FeCl₃. Under low conversion conditions, the ratio of product yields should be approximately equal to the ratio of the corresponding ligand amounts when two reactions proceed for the same reaction time. To further validate this conjecture, we explored the catalytic effects at various ratios of $FeCl_3/L_7$ $(FeCl_3/L_7 = 1/3, 1/2, 1/1.5, 1/1.2, and 1/1)$ where the ¹H NMR yield for sulfonylation of 1 was detected after 1 h of reaction (Figure 7). As expected, the yields of 2a were 86 and 84%, respectively, with the ratios of $FeCl_3/L_7$ being 1/3 and 1/ 2. The yields of 2a decreased to 77, 67, and 56%, respectively, with the ratios of $FeCl_3/L_7$ being 1/1.5, 1/1.2, and 1/1. Comparing the two reactions in which the ratio of their ligand amounts equal to 1.2, we found that the ratio of their

Article

CÍ

pubs.acs.org/joc

Figure 7. Yields of 2a with various ratios of $FeCl_3/L_7$.

corresponding yields (67%/56%) just equal to 1.2, supporting our assumptions.

CONCLUSIONS

It was demonstrated that FeCl₃ could catalyze the regioselective sulfonylation/acylation with the help of acylacetone ligands having an electron-withdrawing group at one end and an electron-donating group on the other side. High isolated yields and selectivities for sulfonylation/acylation were achieved, where the scope of substrates and acylation reagents are wide. FeCl₃ initially forms [FeL₃] with an acylacetone ligand in the presence of a base and then $[FeL_3]$ catalyzed the sulfonylation/acylation. The optimized ratio of $FeCl_3$ to the ligand is 1/2. Mechanism studies have demonstrated that [Fe(btfa)₃] was formed from FeCl₃ with 2 equiv of benzoyl trifluoroacetone under basic conditions in the solvent acetonitrile at room temperature. $[Fe(btfa)_2]$ further reacted with two hydroxyl groups of a substrate in the presence of the base to form a five- or six-membered ring intermediate while releasing a benzoyl trifluoroacetonate molecule. The cyclic intermediate subsequently reacted with a sulfonylation/ acylation reagent, leading to regioselective sulfonylation/ acylation of the substrate. The released benzoyl trifluoroacetonate could react with excess FeCl₃ to form [Fe(btfa)₃] again until FeCl₃ is completely consumed in this cycle. All key intermediates have been observed by HRMS detection, therefore confirming the mechanism for the first time. In comparison with the reaction using the catalyst, $Fe(acac)_{3}$, similar or higher isolated yields and selectivities were achieved for benzoylation in most cases. Either FeCl₃ or benzoyl trifluoroacetonate is a common, cheap, and nontoxic reagent in the laboratory. In particular, K₂CO₃ can be used instead of DIPEA as a base in this catalytic system, thereby making the process much greener.

EXPERIMENTAL SECTION

General Methods. All chemicals were purchased as reagent grade and used without further purification. The solvents were purified before use. CH₃CN was distilled over CaH₂. Chemical reactions were monitored by thin-layer chromatography using precoated silica gel 60 (0.25 mm in thickness) plates. Flash column chromatography was performed on silica gel 60 (SDS 0.040–0.063 mm). Spots were visualized by UV light (254 nm) and charred with a solution of H₂SO₄ in ethanol. ¹H NMR and ¹³C NMR spectra were recorded at 298 K in CDCl₃ or CD₃OD using the residual signals from CDCl₃ (¹H: δ = 7.26 ppm) or CD₃OD (¹H: δ = 3.31 ppm) as an internal standard. Peak assignments of ¹H were determined by analysis of coupling constants and assisted by 2D ¹H COSY. General Method for Regioselective Sulfonylation/Acylation of Diols and Polyols. Substrates were allowed to react with TsCl or acyl chloride (1.2–3.0 equiv) in the presence of FeCl₃ (0.01–0.1 equiv), benzoyl trifluoroacetone (0.02–0.2 equiv), and *N*,*N*diisopropylethylamine or K₂CO₃ (1.6–4.0 equiv) in dry acetonitrile at room temperature for 1–12 h. The concentrated reaction mixture was directly purified by flash column chromatography, affording the pure sulfonylation/acylation products.

Methyl-3-O-(4-toluenesulfonyl)-6-O-(tert-butyldimethylsilyl)- α -*p-mannopyranoside (2a).*^{12b} Methyl-6-*O-(tert-butyldimethylsilyl)-* α -*p-mannopyranoside (2a).*^{12b} Methyl-6-*O-(tert-butyldimethylsilyl)-* α -*p-mannopyranoside (2a).* mmol, 30.8 mg) was allowed to react with K₂CO₃ (26.3 mg, 1.9 equiv) and *p*-toluenesulfonyl chloride (28.6 mg, 1.5 equiv) in dry acetonitrile (0.5 mL) at room temperature for 6 h in the presence of FeCl₃ (1.6 mg, 0.1 equiv) and phenyltrifluoroacetone (4.4 mg, 0.2 equiv). The reaction mixture was directly purified by flash column chromatography (ethyl acetate/petroleum ether = 1/3), affording compound **2a** as a viscous pale yellow oil (42.0 mg, 91%). ¹H NMR (400 MHz, CD₃OD): δ 7.84 (d, *J* = 8.0 Hz, 2H), 7.41 (d, *J* = 8.4 Hz, 2H), 4.56 (d, *J* = 1.2 Hz, 1H), 4.48 (dd, *J* = 9.2 and 3.2 Hz, 1H), 3.91–3.85 (m, 2H), 3.78–3.72 (m, 2H), 3.48–3.43 (m, 1H), 3.33 (s, 3H), 2.44 (s, 3H), 0.90 (s, 9H), 0.07 (s, 6H).

Methyl-3-O-benzoyl-6-O-(tert-butyldimethylsilyl)-α-D-mannopyranoside (**2b**).^{5a} Methyl-6-O-(tert-butyldimethylsilyl)-α-D-mannopyranoside (0.1 mmol, 30.8 mg) was allowed to react with K₂CO₃ (26.3 mg, 1.9 equiv) and benzoyl chloride (18 µL, 1.5 equiv) in dry acetonitrile (0.5 mL) at room temperature for 4 h in the presence of FeCl₃ (1.6 mg, 0.1 equiv) and phenyltrifluoroacetone (4.4 mg, 0.2 equiv). The reaction mixture was directly purified by flash column chromatography (ethyl acetate/petroleum ether = 1/3), affording compound **2b** as a yellow oil (37.9 mg, 92%). ¹H NMR (400 MHz, CD₃OD): δ 8.13–8.11 (m, 2H), 7.62–7.59 (m, 1H), 7.50–7.46 (m, 2H), 5.20 (dd, *J* = 9.6 and 3.2 Hz, 1H), 4.67 (d, *J* = 0.8 Hz, 1H), 4.09 (dd, *J* = 2.8 and 1.2 Hz, 1H), 4.02 (dd, *J* = 11.2 and 1.6 Hz, 1H), 3.96 (t, *J* = 10.0 Hz, 1H), 3.86 (dd, *J* = 10.8 and 6.4 Hz, 1H), 3.69–3.64 (m, 1H), 3.43 (s, 3H), 0.94 (s, 9H), 0.13 (s, 3H), 0.13 (s, 3H).

Methyl-3-O-(4-toluenesulfonyl)-4,6-O-benzylidene- α -*D-manno-pyranoside* (4a).¹⁵ Methyl-4,6-O-benzylidene- α -D-mannopyranoside (0.1 mmol, 28.2 mg) was allowed to react with K₂CO₃ (26.3 mg, 1.9 equiv) and *p*-toluenesulfonyl chloride (28.6 mg, 1.5 equiv) in dry acetonitrile (0.5 mL) at room temperature for 6 h in the presence of FeCl₃ (1.6 mg, 0.1 equiv) and phenyltrifluoroacetone (4.4 mg, 0.2 equiv). The reaction mixture was directly purified by flash column chromatography (ethyl acetate/petroleum ether = 1/2), affording compound 4a as a light yellow oil (42.3 mg, 97%). ¹H NMR (400 MHz, CDCl₃): δ 7.72 (d, *J* = 8.0 Hz, 2H), 7.38–7.30 (m, 3H), 7.20 (d, *J* = 7.2 Hz, 2H), 7.04 (d, *J* = 7.6 Hz, 2H), 5.40 (s, 1H), 4.78–4.76 (m, 2H), 4.33 (s, 1H), 4.25–4.18 (m, 1H), 4.09 (t, *J* = 8.8 Hz, 1H), 3.83–3.74 (m, 2H), 3.38 (s, 3H), 2.31 (s, 3H).

Methyl-3-O-benzoyl-4,6-O-benzylidene- α -D-mannopyranoside (**4b**).¹³ Methyl-4,6-O-benzylidene- α -D-mannopyranoside (0.1 mmol, 28.2 mg) was allowed to react with K₂CO₃ (26.3 mg, 1.9 equiv) and benzoyl chloride (18 μ L, 1.5 equiv) in dry acetonitrile (0.5 mL) at room temperature for 2.5 h in the presence of FeCl₃ (1.6 mg, 0.1 equiv) and phenyltrifluoroacetone (4.4 mg, 0.2 equiv). The reaction mixture was directly purified by flash column chromatography (ethyl acetate/petroleum ether = 1/2), affording compound **4b** as a white solid (34.4 mg, 89%). ¹H NMR (400 MHz, CDCl₃): δ 8.07–8.05 (m, 2H), 7.58–7.53 (m, 1H), 7.45–7.41 (m, 4H), 7.33–7.30 (m, 3H), 5.60 (s, 1H), 5.55 (dd, *J* = 10.4 and 3.2 Hz, 1H), 4.78 (d, *J* = 1.6 Hz,1H), 4.34–4.25 (m, 3H), 4.03–3.97 (m, 1H), 3.93–3.88 (m, 1H), 3.43 (s, 3H).

Methyl-3-O-acetyl-4,6-O-benzylidene- α -D-mannopyranoside (4c).¹⁶ Methyl-4,6-O-benzylidene- α -D-mannopyranoside (0.1 mmol, 28.2 mg) was allowed to react with *N*,*N*-diisopropylethylamine (28 μ L, 1.6 equiv) and acetyl chloride (9 μ L, 1.2 equiv) in dry acetonitrile (0.5 mL) at room temperature for 2 h in the presence of FeCl₃ (1.6 mg, 0.1 equiv) and phenyltrifluoroacetone (4.4 mg, 0.2 equiv). The reaction mixture was directly purified by flash column chromatography (ethyl acetate/petroleum ether = 1/2), affording compound 4c as a colorless syrup (20.0 mg, 62%). ¹H NMR (400 MHz, CDCl₃): δ

7.46–7.44 (m, 2H), 7.39–7.35 (m, 3H), 5.55 (s, 1H), 5.33 (dd, J = 3.2 and 10.4 Hz, 1H), 4.75 (d, J = 0.8 Hz, 1H), 4.29 (dd, J = 4.0 and 9.6 Hz, 1H), 4.15 (s, 1H), 4.09 (t, J = 9.6 Hz, 1H), 3.96–3.90 (m, 1H), 3.88–3.83 (m, 1H), 3.41 (s, 3H), 2.13 (s, 3H).

Methyl-3-O-pivaloyl-4,6-O-benzylidene- α -D-mannopyranoside (4d).¹⁷ Methyl-4,6-O-benzylidene- α -D-mannopyranoside (0.1 mmol, 28.2 mg) was allowed to react with *N*,*N*-diisopropylethylamine (34 μ L, 1.9 equiv) and pivaloyl chloride (19 μ L, 1.5 equiv) in dry acetonitrile (0.5 mL) at 50 °C for 5 h in the presence of FeCl₃ (1.6 mg, 0.1 equiv) and phenyltrifluoroacetone (4.4 mg, 0.2 equiv). The reaction mixture was directly purified by flash column chromatog-raphy (ethyl acetate/petroleum ether = 1/2), affording compound 4d as a white powder (30.0 mg, 82%). ¹H NMR (400 MHz, CDCl₃): δ 7.43–7.42 (m, 2H), 7.35–7.33 (m, 3H), 5.57 (s, 1H), 5.32 (dd, *J* = 10.0 and 2.4 Hz, 1H), 4.75 (s, 1H), 4.30 (dd, *J* = 9.2 and 3.2 Hz, 1H), 4.13–4.08 (m, 2H), 3.95–3.84 (m, 2H), 3.40 (s, 3H), 2.15 (br s, 1H), 1.23 (s, 9H).

 $Methyl-3-O-(4-methoxybenzovl)-4.6-O-benzylidene-\alpha-D-manno$ pyranoside (4e). Methyl-4,6-O-benzylidene- α -D-mannopyranoside (0.1 mmol, 28.2 mg) was allowed to react with N,N-diisopropylethylamine (34 µL, 1.9 equiv) and p-methoxybenzoyl chloride (25.6 mg, 1.5 equiv) in dry acetonitrile (0.5 mL) at room temperature for 5 h in the presence of FeCl₃ (1.6 mg, 0.1 equiv) and phenyltrifluoroacetone (4.4 mg, 0.2 equiv). The reaction mixture was directly purified by flash column chromatography (ethyl acetate/petroleum ether = 1/1), affording compound 4e as a colorless oil (36.6 mg, 88%). ¹H NMR (400 MHz, CDCl₃): δ 8.03-8.00 (m, 2H, ArH), 7.44-7.42 (m, 2H, ArH), 7.33-7.30 (m, 3H, ArH), 6.92-6.88 (m, 2H, ArH), 5.60 (s, 1H, PhCH), 5.52 (dd, J = 10.4 and 3.6 Hz, 1H, H-3), 4.79 (d, J = 1.6 Hz, 1H, H-1), 4.34-4.23 (m, 3H, H-2, H-4, H-6a), 4.03-3.88 (m, 2H, H-5, H-6b), 3.84 (s, 3H, PhOCH₃), 3.44 (s, 3H, OCH₃). ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 165.4, 163.7, 137.4, 132.4, 132.0, 129.1, 128.3, 126.3, 122.2, 113.8, 102.0, 101.6, 77.3, 76.3, 71.3, 70.0, 69.0, 63.9, 55.6, 55.3 ppm. Rr. 0.75 (ethyl acetate/petroleum ether = 1/1). HRMS (ESI-TOF) m/z calcd. for $C_{22}H_{24}O_8Na$ [M + Na]⁺: 439.1363; found: 439.1361.

Methyl-3-O-palmitoyl-4,6-O-benzylidene- α -D-mannopyranoside (4f). Methyl-4,6-O-benzylidene- α -D-mannopyranoside (0.1 mmol, 28.2 mg) was allowed to react with N,N-diisopropylethylamine (34 μ L, 1.9 equiv) and palmitoyl chloride (41.2 mg, 1.5 equiv) in dry acetonitrile (0.5 mL) at room temperature for 2 h in the presence of FeCl₃ (1.6 mg, 0.1 equiv) and phenyltrifluoroacetone (4.4 mg, 0.2 equiv). The reaction mixture was directly purified by flash column chromatography (ethyl acetate/petroleum ether = 1/2), affording compound 4f as a colorless oil (48.4 mg, 93%). ¹H NMR (400 MHz, CDCl₃): δ 7.45–7.43 (m, 2H, ArH), 7.36–7.33 (m, 3H, ArH), 5.55 (s, 1H, PhCH), 5.35 (dd, J = 10 and 3.2 Hz, 1H, H-3), 4.74 (d, J = 1.2 Hz, 1H, H-1), 4.29 (dd, J = 9.6 and 4.4 Hz, 1H, H-6a), 4.14–4.13 (m, 1H, H-2), 4.09 (t, J = 9.6 Hz, 1H, H-4), 3.96-3.90 (m, 1H, H-6b), 3.88-3.83 (m, 1H, H-5), 3.41 (s, 3H, OCH₃), 2.39-2.35 (m, 2H, CH₃(CH₂)₁₄CO), 1.65-1.58 (m, 2H, CH₃(CH₂)₁₄CO), 1.32-1.21 (m, 24H, $CH_3(CH_2)_{14}CO$), 0.90–0.86 (m, 3H, $CH_3(CH_2)_{14}CO$). ¹³C{¹H} NMR (101 MHz, $CDCl_3$): δ 172.8, 137.3, 129.1, 128.3, 126.2, 101.9, 101.5, 76.3, 70.5, 70.0, 69.0, 63.8, 55.2, 34.5, 32.0, 29.8, 29.8, 29.8, 29.8, 29.7, 29.5, 29.5, 29.4, 29.1, 25.2, 22.8, 14.2 ppm. R_i : 0.8 (ethyl acetate/petroleum ether = 1/2). HRMS (ESI-TOF) m/z calcd. for C₃₀H₄₈O₇Na [M + Na]⁺: 543.3292; found: 543.3296.

Methyl-3-O-(4-toluenesulfonyl)-6-O-(tert-butyldimethylsilyl)- α -D-galactopyranoside (5a).^{12b} Methyl-6-O-(tert-butyldimethylsilyl)- α -D-galactopyranoside (0.1 mmol, 30.8 mg) was allowed to react with K₂CO₃ (26.3 mg, 1.9 equiv) and *p*-toluenesulfonyl chloride (28.6 mg, 1.5 equiv) in dry acetonitrile (0.5 mL) at room temperature for 5 h in the presence of FeCl₃ (1.6 mg, 0.1 equiv) and phenyltrifluoroacetone (4.4 mg, 0.2 equiv). The reaction mixture was directly purified by flash column chromatography (ethyl acetate/petroleum ether = 1/3), affording compound 5a as a white solid (42.0 mg, 91%). ¹H NMR (400 MHz, CDCl₃): δ 7.85 (d, *J* = 8.4 Hz, 2H), 7.32 (d, *J* = 8.4 Hz, 2H), 4.79 (d, *J* = 4.0 Hz, 1H), 4.63 (dd, *J* = 10.0 and 2.8 Hz, 1H), 4.20 (d, *J* = 2.4 Hz, 1H), 4.05 (dd, *J* = 9.6 and 3.6 Hz, 1H), 3.87–3.77 pubs.acs.org/joc

(m, 2H), 3.72 (t, J = 5.2 Hz, 1H), 3.38 (s, 3H), 2.42 (s, 3H), 0.87 (s, 9H), 0.06 (s, 6H).

Methyl-3-O-benzoyl-6-O-(tert-butyldimethylsilyl)- α -D-galactopyranoside (**5b**).^{5a} Methyl-6-O-(tert-butyldimethylsilyl)- α -D-galactopyranoside (0.1 mmol, 30.8 mg) was allowed to react with K₂CO₃ (26.3 mg, 1.9 equiv) and benzoyl chloride (18 μ L, 1.5 equiv) in dry acetonitrile (0.5 mL) at room temperature for 2 h in the presence of FeCl₃ (1.6 mg, 0.1 equiv) and phenyltrifluoroacetone (4.4 mg, 0.2 equiv). The reaction mixture was directly purified by flash column chromatography (ethyl acetate/petroleum ether = 1/2), affording compound **5b** as a pale yellow solid (40.0 mg, 97%). ¹H NMR (400 MHz, CDCl₃): δ 8.11–8.09 (m, 2H), 7.57–7.54 (m, 1H), 7.45–7.41 (m, 2H), 5.26 (dd, *J* = 10.0 and 2.0 Hz, 1H), 4.89 (d, *J* = 3.6 Hz, 1H), 4.31 (s, 1H), 4.24 (dd, *J* = 10 and 3.2 Hz, 1H), 3.95–3.84 (m, 3H), 3.45 (s, 3H), 0.89 (s, 9H), 0.09 (s, 6H).

Methyl-3-O-(4-toluenesulfonyl)-6-O-(tert-butyldimethylsilyl)- β -D-galactopyranoside (**6a**).^{12b} Methyl-6-O-(tert-butyldimethylsilyl)- β -D-galactopyranoside (0.1 mmol, 30.8 mg) was allowed to react with K₂CO₃ (26.3 mg, 1.9 equiv) and *p*-toluenesulfonyl chloride (28.6 mg, 1.5 equiv) in dry acetonitrile (0.5 mL) at room temperature for 12 h in the presence of FeCl₃ (1.6 mg, 0.1 equiv) and phenyl-trifluoroacetone (4.4 mg, 0.2 equiv). The reaction mixture was directly purified by flash column chromatography (ethyl acetate/ petroleum ether = 1/2), affording compound **6a** as a white solid (38.8 mg, 84%). ¹H NMR (400 MHz, CDCl₃): δ 7.85 (d, *J* = 8.4 Hz, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 4.44 (dd, *J* = 9.6 and 3.2 Hz, 1H), 4.16 (d, *J* = 7.6 Hz, 1H), 4.14 (d, *J* = 3.2 Hz, 1H), 3.89–3.79 (m, 3H), 3.50 (s, 3H), 3.46–3.43 (m, 1H), 2.42 (s, 3H), 0.86 (s, 9H), 0.05 (s, 6H).

Methyl-3-O-benzoyl-6-O-(tert-butyldimethylsilyl)-β-D-galactopyranoside (**6b**).¹³ Methyl-6-*O-(tert-*butyldimethylsilyl)-*β-D-galactopyranoside* (0.1 mmol, 30.8 mg) was allowed to react with K₂CO₃ (26.3 mg, 1.9 equiv) and benzoyl chloride (18 μ L, 1.5 equiv) in dry acetonitrile (0.5 mL) at room temperature for 2.5 h in the presence of FeCl₃ (1.6 mg, 0.1 equiv) and phenyltrifluoroacetone (4.4 mg, 0.2 equiv). The reaction mixture was directly purified by flash column chromatography (ethyl acetate/petroleum ether = 1/3), affording compound **6b** as a colorless oil (37.9 mg, 92%). ¹H NMR (400 MHz, CDCl₃): δ 8.11–8.09 (m, 2H), 7.58–7.54 (m, 1H), 7.45–7.41 (m, 2H), 5.07 (dd, *J* = 10.0 and 3.2 Hz, 1H), 4.32–4.28 (m, 2H), 4.04 (dd, *J* = 10.0 and 7.6 Hz, 1H), 3.96 (dd, *J* = 10.4 and 5.6 Hz, 1H), 3.90 (dd, *J* = 10.8 and 4.8 Hz, 1H), 3.61–3.57 (m, 4H), 0.89 (s, 9H), 0.08 (s, 6H).

Methyl-3-O-(4-toluenesulfonyl)-α-L-fucopyranoside (**7a**).^{12b} Methyl-*α*-L-fucopyranoside (0.1 mmol, 17.8 mg) was allowed to react with K₂CO₃ (26.3 mg, 1.9 equiv) and *p*-toluenesulfonyl chloride (28.6 mg, 1.5 equiv) in dry acetonitrile (0.5 mL) at room temperature for 2.5 h in the presence of FeCl₃ (1.6 mg, 0.1 equiv) and phenyltrifluoroacetone (4.4 mg, 0.2 equiv). The reaction mixture was directly purified by flash column chromatography (ethyl acetate/ petroleum ether = 1/1), affording compound **7a** as a viscous pale yellow oil (30.2 mg, 91%). ¹H NMR (400 MHz, CDCl₃): *δ* 7.84 (d, *J* = 8.0 Hz, 2H), 7.33 (d, *J* = 7.6 Hz, 2H), 4.74 (d, *J* = 3.6 Hz, 1H), 4.63 (dd, *J* = 10.0 and 2.8 Hz, 1H), 4.00–3.90 (m, 3H), 3.38 (s, 3H), 2.43 (s, 3H), 1.27 (d, *J* = 6.4 Hz, 3H).

Methyl-3-O-benzoyl- α -*t*-*fucopyranoside* (**7b**).^{5a} Methyl- α -*t*-fucopyranoside (0.1 mmol, 17.8 mg) was allowed to react with K₂CO₃ (26.3 mg, 1.9 equiv) and benzoyl chloride (17.5 μ L, 1.5 equiv) in dry acetonitrile (0.5 mL) at room temperature for 2 h in the presence of FeCl₃ (1.6 mg, 0.1 equiv) and phenyltrifluoroacetone (4.4 mg, 0.2 equiv). The reaction mixture was directly purified by flash column chromatography (ethyl acetate/petroleum ether = 1/2), affording compound 7b as a pale yellow solid (26.2 mg, 93%). ¹H NMR (400 MHz, CD₃OD): δ 8.12 (d, *J* = 7.6 Hz, 2H), 7.62–7.59 (m, 1H), 7.50–7.46 (m, 2H), 5.23 (dd, *J* = 10.4 and 2.8 Hz, 1H), 4.75 (d, *J* = 3.6 Hz, 1H), 4.15 (dd, *J* = 10.4 and 3.6 Hz, 1H), 4.06 (dd, *J* = 12.8 and 6.4 Hz, 1H), 3.96 (d, *J* = 2.0 Hz, 1H), 3.44 (s, 3H), 1.25 (d, *J* = 6.4 Hz, 3H).

Methyl-3-O-(4-toluenesulfonyl)- α - ι -rhamnopyranoside (8a).^{12b} Methyl- α - ι -rhamnopyranoside (0.1 mmol, 17.8 mg) was allowed to react with K₂CO₃ (26.3 mg, 1.9 equiv) and *p*-toluenesulfonyl chloride Methyl-3-O-benzoyl- α -L-rhamnopyranoside (8b).^{5a} Methyl- α -L-rhamnopyranoside (0.1 mmol, 17.8 mg) was allowed to react with K₂CO₃ (26.3 mg, 1.9 equiv) and benzoyl chloride (18 μ L, 1.5 equiv) in dry acetonitrile (0.5 mL) at room temperature for 2 h in the presence of FeCl₃ (1.6 mg, 0.1 equiv) and phenyltrifluoroacetone (4.4 mg, 0.2 equiv). The reaction mixture was directly purified by flash column chromatography (ethyl acetate/petroleum ether = 1/2), affording compound **8b** as a yellow oil (26.8 mg, 95%). ¹H NMR (400 MHz, CDCl₃): δ 8.04 (d, J = 7.6 Hz, 2H), 7.57–7.53 (m, 1H), 7.43–7.39 (m, 2H), 5.23 (d, J = 6.0 Hz, 1H), 4.66 (s, 1H), 4.12 (s, 1H), 3.80–3.75 (m, 2H), 3.37 (s, 3H), 1.35 (d, J = 5.2 Hz, 3H).

Phenyl-3-O-(4-toluenesulfonyl)-4,6-O-benzylidene-1-thio- α -Dmannopyranoside (**9a**). Phenyl-4,6-O-benzylidene-1-thio- α -D-mannopyranoside (0.1 mmol, 36.0 mg) was allowed to react with K₂CO₃ (26.3 mg, 1.9 equiv) and p-toluenesulfonyl chloride (28.6 mg, 1.5 equiv) in dry acetonitrile (0.5 mL) at room temperature for 4 h in the presence of FeCl₃ (1.6 mg, 0.1 equiv) and phenyltrifluoroacetone (4.4 mg, 0.2 equiv). The reaction mixture was directly purified by flash column chromatography (ethyl acetate/petroleum ether = 1/3), affording compound **9a** as a light yellow oil (42.1 mg, 82%). ¹H NMR (400 MHz, CDCl₂): δ 7.76 (d, I = 8.0 Hz, 2H, ArH), 7.47–7.45 (m, 2H, ArH), 7.39-7.29 (m, 6H, ArH), 7.23-7.21 (m, 2H, ArH), 7.09 (d, J = 8.0 Hz, 2H, ArH), 5.57 (d, J = 0.8 Hz, 1H, H-1), 5.41 (s, 1H, 1H)PhCH), 4.82 (dd, J = 10.0 and 3.2 Hz, 1H, H-3), 4.58 (s, 1H, H-2), 4.33-4.27 (m, 1H, H-5), 4.18-4.13 (m, 2H, H-4, H-6a), 3.80 (t, J = 10.0 Hz, 1H, H-6b), 3.13 (br s, 1H, OH), 2.34 (s, 3H, ArCH₃). $^{13}C{^{1}H}$ NMR (101 MHz, CDCl₃): δ 145.0, 137.0, 132.9, 132.8, 132.1, 129.8, 129.4, 129.2, 128.3, 128.2, 126.3, 101.9, 88.3, 78.6, 75.7, 72.1, 68.4, 65.4, 21.9 ppm. R_f: 0.6 (ethyl acetate/petroleum ether = 1/ 3). HRMS (ESI-TOF) m/z calcd. for $C_{26}H_{26}O_7S_2Na$ [M + Na]⁺: 537.1012; found: 537.1001.

Phenyl-3-O-benzoyl-4,6-O-benzylidene-1-thio-α-D-mannopyranoside (9b).⁸ Phenyl-4,6-O-benzylidene-1-thio-*α*-D-mannopyranoside (0.1 mmol, 36.0 mg) was allowed to react with K₂CO₃ (26.3 mg, 1.9 equiv) and benzoyl chloride (18 μ L, 1.5 equiv) in dry acetonitrile (0.5 mL) at room temperature for 2 h in the presence of FeCl₃ (1.6 mg, 0.1 equiv) and phenyltrifluoroacetone (4.4 mg, 0.2 equiv). The reaction mixture was directly purified by flash column chromatography (ethyl acetate/petroleum ether = 1/3), affording compound 9b as a white solid (37.6 mg, 81%). ¹H NMR (400 MHz, CDCl₃): δ 8.08 (d, *J* = 8.0 Hz, 2H), 7.60–7.57 (m, 1H), 7.52–7.44 (m, 6H), 7.34–7.30 (m, 6H), 5.62–5.58 (m, 3H), 4.59–4.51 (m, 2H), 4.37 (t, *J* = 9.6 Hz), 4.27 (dd, *J* = 10.4 and 4.8 Hz, 1H), 3.92 (t, *J* = 10.0 Hz, 1H).

p-Tolyl-3-O-(4-toluenesulfonyl)-6-O-(tert-butyldimethylsilyl)-1thio-B-D-galactopyranoside (10a). p-Tolyl-6-O-(tert-butyldimethylsilyl)-1-thio- β -D-galactopyranoside (0.1 mmol, 40.1 mg) was allowed to react with K₂CO₃ (26.3 mg, 1.9 equiv) and p-toluenesulfonyl chloride (28.6 mg, 1.5 equiv) in dry acetonitrile (0.5 mL) at room temperature for 5 h in the presence of $FeCl_3$ (1.6 mg, 0.1 equiv) and phenyltrifluoroacetone (4.4 mg, 0.2 equiv). The reaction mixture was directly purified by flash column chromatography (ethyl acetate/ petroleum ether = 1/3), affording compound 10a as a colorless oil (50.5 mg, 91%). ¹H NMR (600 MHz, $CDCl_3$): δ 7.83 (d, J = 8.4 Hz, 2H, ArH), 7.41 (d, J = 7.8 Hz, 2H, ArH), 7.30 (d, J = 7.8 Hz, 2H, ArH), 7.06 (d, J = 7.8 Hz, ArH), 4.49 (dd, J = 9.6 and 3.0 Hz, 1H, H-3), 4.45 (d, J = 9.6 Hz, 1H, H-1), 4.20 (s, 1H, H-4), 3.90–3.83 (m, 3H, H-2, H-6a, H-6b), 3.48 (t, J = 4.8 Hz, 1H, H-5), 2.40 (s, 3H, ArCH₃), 2.30 (s, 3H, ArCH₃), 0.88 (s, 9H, Si(C(CH₃)₃)(CH₃)₂), 0.08 (s, 3H, $Si(C(CH_3)_3)(CH_3)_2)$, 0.07 (s, 3H, $Si(C(CH_3)_3)$ - $(CH_3)_2$). ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 145.1, 138.3, 133.6, 133.3, 129.8, 129.8, 128.0, 127.9, 88.6, 84.3, 77.6, 68.8, 66.7, 62.9,

25.9, 21.7, 21.2, 18.2, -5.4 ppm. R_f : 0.4 (ethyl acetate/petroleum ether = 1/3). HRMS (ESI-TOF) m/z calcd. for $C_{26}H_{38}O_7S_2SiNa$ [M + Na]⁺: 577.1720; found: 577.1712.

p-Tolyl-3-O-benzoyl-6-O-(tert-butyldimethylsilyl)-1-thio-β-D-galactopyranoside (**10b**).¹³ *p*-Tolyl-6-O-(tert-butyldimethylsilyl)-1-thioβ-D-galactopyranoside (0.1 mmol, 40.1 mg) was allowed to react with K₂CO₃ (26.3 mg, 1.9 equiv) and benzoyl chloride (18 μ L, 1.5 equiv) in dry acetonitrile (0.5 mL) at room temperature for 2 h in the presence of FeCl₃ (1.6 mg, 0.1 equiv) and phenyltrifluoroacetone (4.4 mg, 0.2 equiv). The reaction mixture was directly purified by flash column chromatography (ethyl acetate/petroleum ether = 1/3), affording compound 10b as a viscous pale yellow oil (42.4 mg, 84%). ¹H NMR (400 MHz, CDCl₃): δ 8.08 (d, *J* = 8.0 Hz, 2H), 7.57–7.40 (m, 5H), 7.13 (d, *J* = 7.6 Hz, 2H), 5.10 (dd, *J* = 9.6 and 2.4 Hz, 1H), 4.58 (d, *J* = 9.6 Hz, 1H), 4.35 (s, 1H), 4.07–3.91 (m, 3H), 3.63–3.60 (m, 1H), 2.35 (s, 3H), 0.91 (s, 9H), 0.12 (s, 3H), 0.10 (s, 3H).

p-Tolyl-3-O-acetyl-6-O-(tert-butyldimethylsilyl)-1-thio- β -D-galactopyranoside (**10c**).⁸ *p*-Tolyl-6-O-(tert-butyldimethylsilyl)-1-thio- β -D-galactopyranoside (0.1 mmol, 40.1 mg) was allowed to react with *N*,*N*-diisopropylethylamine (28 μ L, 1.6 equiv) and acetyl chloride (9 μ L, 1.2 equiv) in dry acetonitrile (0.5 mL) at room temperature for 3 h in the presence of FeCl₃ (1.6 mg, 0.1 equiv) and phenyltrifluoroacetone (4.4 mg, 0.2 equiv). The reaction mixture was directly purified by flash column chromatography (ethyl acetate/ petroleum ether = 1/2), affording compound **10c** as a viscous pale yellow oil (34.6 mg, 78%). ¹H NMR (400 MHz, CDCl₃): δ 7.47 (d, *J* = 8.0 Hz, 2H), 7.10 (d, *J* = 8.0 Hz, 2H), 4.85 (dd, *J* = 9.2 Hz and 2.4 Hz, 1H), 4.50 (d, *J* = 9.6 Hz, 1H), 4.22 (d, *J* = 2.0 Hz, 1H), 3.98 (dd, *J* = 10.8 and 4.8 Hz, 1H), 3.92–3.83 (m, 2H), 3.53 (t, *J* = 3.6 Hz, 1H), 2.33 (s, 3H), 2.14 (s, 3H), 0.90 (s, 9H), 0.12 (s, 3H), 0.10 (s, 3H).

Isopropylthio-3-O-(4-toluenesulfonyl)-6-O-(tert-butyldimethylsil-yl)-β-D-galactopyranoside (11a).^{12b} Isopropylthio-6-*O-(tert*-butyldimethylsilyl)-*β*-D-galactopyranoside (0.1 mmol, 35.2 mg) was allowed to react with K₂CO₃ (26.3 mg, 1.9 equiv) and *p*-toluenesulfonyl chloride (28.6 mg, 1.5 equiv) in dry acetonitrile (0.5 mL) at room temperature for 5 h in the presence of FeCl₃ (1.6 mg, 0.1 equiv) and phenyltrifluoroacetone (4.4 mg, 0.2 equiv). The reaction mixture was directly purified by flash column chromatography (ethyl acetate/ petroleum ether = 1/3), affording compound **11a** as a viscous yellow oil (47.1 mg, 93%). ¹H NMR (400 MHz, CDCl₃): δ 7.85 (d, *J* = 8.4 Hz, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 4.50 (dd, *J* = 9.2 and 2.8 Hz, 1H), 4.37 (d, *J* = 10.0 Hz, 1H), 4.21 (s, 1H), 3.89–3.78 (m, 3H), 3.48 (t, *J* = 5.2 Hz, 1H), 3.22–3.15 (m, 1H), 2.43 (s, 3H), 1.29 (d, *J* = 6.8 Hz, 6H), 0.86 (s, 9H), 0.05 (s, 6H).

Isopropylthio-3-O-benzoyl-6-O-(tert-butyldimethylsilyl)-β-D-galactopyranoside (11b).¹³ Isopropylthio-6-*O-(tert*-butyldimethylsilyl)β-D-galactopyranoside (0.1 mmol, 35.2 mg) was allowed to react with K₂CO₃ (26.3 mg, 1.9 equiv) and benzoyl chloride (18 μ L, 1.5 equiv) in dry acetonitrile (0.5 mL) at room temperature for 1 h in the presence of FeCl₃ (1.6 mg, 0.1 equiv) and phenyltrifluoroacetone (4.4 mg, 0.2 equiv). The reaction mixture was directly purified by flash column chromatography (ethyl acetate/petroleum ether = 1/3), affording compound 11b as a viscous yellow oil (43.0 mg, 94%). ¹H NMR (400 MHz, CDCl₃): δ 8.11 (d, *J* = 7.6 Hz, 2H), 7.57 (t, *J* = 7.2 Hz, 1H), 7.46–7.42 (m, 2H), 5.11 (dd, *J* = 9.6 and 2.0 Hz, 1H), 4.51 (d, *J* = 9.6 Hz, 1H), 3.62 (t, *J* = 4.4 Hz, 1H), 3.29–3.23 (m, 1H), 1.37 (s, 3H), 1.35 (s, 3H), 0.88 (s, 9H), 0.08 (s, 6H).

Isopropylthio-3-O-acetyl-6-O-(tert-butyldimethylsilyl)-β-D-galac-topyranoside (11c).⁸ Isopropylthio-6-*O-(tert-butyldimethylsilyl)-β-D-galactopyranoside* (0.1 mmol, 35.2 mg) was allowed to react with *N*,*N*-diisopropylethylamine (28 μ L, 1.6 equiv) and acetyl chloride (9 μ L, 1.2 equiv) in dry acetonitrile (0.5 mL) at room temperature for 3.5 h in the presence of FeCl₃ (1.62 mg, 0.1 equiv) and phenyltrifluoroacetone (4.4 mg, 0.2 equiv). The reaction mixture was directly purified by flash column chromatography (ethyl acetate/ petroleum ether = 1/2), affording compound 11c as a viscous pale yellow oil (29.9 mg, 76%). ¹H NMR (400 MHz, CDCl₃): δ 4.85 (dd, J = 9.2 and 2.0 Hz, 1H), 4.44 (d, J = 10.0 Hz, 1H), 4.21 (d, J = 1.6

Hz, 1H), 3.92-3.83 (m, 3H), 3.53 (t, J = 4.4 Hz, 1H), 3.26-3.19 (m, 1H), 2.17 (s, 3H), 1.33 (d, J = 6.4 Hz, 6H), 0.87 (s, 9H), 0.07 (s, 3H), 0.07 (s, 3H).

Phenyl-3-O-(4-toluenesulfonyl)-6-O-(tert-butyldimethylsilyl)-1thio- β -*D*-galactopyranoside (12a). Phenyl-6-O-(tert-butyldimethylsilyl)-1-thio- β -D-galactopyranoside (0.1 mmol, 36.8 mg) was allowed to react with K₂CO₃ (26.3 mg, 1.9 equiv) and p-toluenesulfonyl chloride (28.6 mg, 1.5 equiv) in dry acetonitrile (0.5 mL) at room temperature for 2 h in the presence of FeCl₃ (1.6 mg, 0.1 equiv) and phenyltrifluoroacetone (4.4 mg, 0.2 equiv). The reaction mixture was directly purified by flash column chromatography (ethyl acetate/ petroleum ether = 1/3), affording compound 12a as a light yellow oil (49.1 mg, 91%). ¹H NMR (400 MHz, CDCl₃): δ 7.83 (d, J = 8.4 Hz, 2H, ArH), 7.55-7.50 (m, 2H, ArH), 7.33-7.26 (m, 5H, ArH), 4.51-4.48 (m, 2H, H-3, H-1), 4.23 (t, J = 2.8 Hz, 1H, H-4), 3.93-3.84 (m, 3H, H-2, H-6a, H-6b), 3.50 (t, J = 5.2 Hz, 1H, H-5), 2.43 (s, 3H, ArCH₃), 0.89 (s, 9H, Si(C(CH₃)₃)(CH₃)₂), 0.08 (s, 3H, Si(C- $(CH_3)_3(CH_3)_2)$, 0.07 (s, 3H, Si $(C(CH_3)_3)(CH_3)_2)$. ¹³C $\{^1H\}$ NMR (101 MHz, CDCl₃): δ 145.2, 133.7, 132.8, 131.8, 129.9, 129.1, 128.3, 128.1, 88.6, 84.2, 77.8, 68.9, 66.9, 63.0, 25.9, 21.8, 18.3, -5.3 ppm. R_c. 0.6 (ethyl acetate/petroleum ether = 1/3). HRMS (ESI-TOF) m/zcalcd. for C₂₅H₃₆O₇S₂SiNa [M + Na]⁺: 563.1564; found: 563.1569.

Phenyl-3-O-benzoyl-6-O-(tert-butyldimethylsilyl)-1-thio-β-D-galactopyranoside (12b).¹³ Phenyl-6-O-(tert-butyldimethylsilyl)-1-thioβ-D-galactopyranoside (0.1 mmol, 36.8 mg) was allowed to react with K_2CO_3 (26.3 mg, 1.9 equiv) and benzoyl chloride (18 µL, 1.5 equiv) in dry acetonitrile (0.5 mL) at room temperature for 2 h in the presence of FeCl₃ (1.6 mg, 0.1 equiv) and phenyltrifluoroacetone (4.4 mg, 0.2 equiv). The reaction mixture was directly purified by flash column chromatography (ethyl acetate/petroleum ether = 1/3), affording compound 12b as a viscous pale yellow oil (45.6 mg, 93%). ¹H NMR (400 MHz, CDCl₃): δ 8.10–8.08 (m, 2H), 7.62–7.54 (m, 3H), 7.45–7.41 (m, 2H), 7.33–7.30 (m, 3H), 5.11 (dd, J = 9.6 and 3.2 Hz, 1H), 4.65 (d, J = 9.6 Hz, 1H), 4.36 (d, J = 2.8 Hz, 1H), 4.09 (t, J = 9.6 Hz, 1H), 4.02–3.91 (m, 2H), 3.64 (t, J = 4.8 Hz, 1H), 0.91 (s, 9H), 0.12 (s, 3H), 0.10 (s, 3H).

Phenyl-3'-O-(4-toluenesulfonyl)-6,6'-di-O-(tert-butyldimethylsilyl)-1-S-*β*-*D*-lactoside (13a). Phenyl-6,6'-di-O-(tert-butyldimethylsilyl)-1-S- β -D-lactoside (0.1 mmol, 66.3 mg) was allowed to react with K₂CO₃ (26.3 mg, 1.9 equiv) and *p*-toluenesulfonyl chloride (28.6 mg, 1.5 equiv) in dry acetonitrile (0.5 mL) at room temperature for 6 h in the presence of $FeCl_3$ (1.6 mg, 0.1 equiv) and phenyltrifluoroacetone (4.4 mg, 0.2 equiv). The reaction mixture was directly purified by flash column chromatography (ethyl acetate/petroleum ether = 1/1), affording compound 13a as a light yellow oil (67.8 mg, 83%). ¹H NMR (600 MHz, $CDCl_3$): δ 7.82 (d, J = 7.8 Hz, 2H, ArH), 7.54– 7.53 (m, 2H, ArH), 7.30 (d, J = 8.4 Hz, 2H, ArH), 7.28–7.24 (m, 3H, ArH), 4.49 (d, J = 9.6 Hz, 1H, H-1), 4.34–4.32 (m, 2H, H-1', H-3'), 4.15 (br s, 1H, H-4'), 3.89-3.80 (m, 5H, H-2', H-6a, H-6b, H-6a', H-6b'), 3.63 (t, J = 9.0 Hz, 1H, H-3), 3.54–3.48 (m, 2H, H-4, H-5'), 3.35 (d, J = 9.6 Hz, 1H, H-5), 3.31 (t, J = 9.0 Hz, 1H, H-2), 2.42 (s, 3H, ArCH₃), 0.86 (s, 9H, Si(C(CH₃)₃)(CH₃)₂), 0.85 (s, 9H, Si(C(CH₃)₃)(CH₃)₂), 0.05 (s, 3H, Si(C(CH₃)₃)(CH₃)₂), 0.03 (s, 9H, Si(C(CH₃)₃)(CH₃)₂). 13 C{¹H} NMR (150 MHz, CDCl₃): δ 145.1, 133.3, 133.3, 129.9, 129.8, 128.9, 128.2, 128.1, 103.8, 87.3, 83.3, 80.3, 78.9, 76.2, 74.5, 71.7, 67.7, 62.7, 61.7, 26.0, 26.0, 25.9, 25.8, 21.8, 18.4, 18.3, -3.5, -5.1, -5.2, -5.4, -5.4 ppm. R_f: 0.7 (ethyl acetate/petroleum ether = 1/1). HRMS (ESI-TOF) m/z calcd. for $C_{37}H_{60}O_{12}S_{2}Si_{2}Na [M + Na]^{+}: 839.2957; found: 839.2975$

Phenyl-3'-O-benzoyl-6,6'-di-O-(tert-butyldimethylsilyl)-1-S-β-D-lactoside (13b).¹³ Phenyl-6,6'-di-*O-(tert-butyldimethylsilyl)-1-S-β-D-lactoside* (0.1 mmol, 66.3 mg) was allowed to react with K₂CO₃ (26.3 mg, 1.9 equiv) and benzoyl chloride (18 μ L, 1.5 equiv) in dry acetonitrile (0.5 mL) at room temperature for 1 h in the presence of FeCl₃ (1.6 mg, 0.1 equiv) and phenyltrifluoroacetone (4.4 mg, 0.2 equiv). The reaction mixture was directly purified by flash column chromatography (ethyl acetate/petroleum ether = 1/1), affording compound **13b** as a viscous colorless oil (65.2 mg, 85%). ¹H NMR (400 MHz, CDCl₃): δ 8.10 (d, *J* = 7.6 Hz, 2H), 7.59–7.55 (m, 3H), 7.46–7.42 (m, 2H), 7.29–7.26 (m, 3H), 5.02 (dd, *J* = 10.0 and 2.4

Hz, 1H), 4.52-4.48 (m, 2H), 4.29 (d, J = 2.0 Hz, 1H), 4.09-4.05 (m, 1H), 3.94-3.89 (m, 4H), 3.69-3.58 (m, 3H), 3.44-3.35 (m, 2H), 0.90 (s, 9H), 0.87 (s, 9H), 0.09 (s, 6H), 0.07 (s, 6H).

Methyl-2,3-di-O-benzyl-6-O-(4-toluenesulfonyl)- α -D-glucopyranoside (14a).¹⁸ Methyl-2,3-di-O-benzyl- α -D-glucopyranoside (0.1 mmol, 37.4 mg) was allowed to react with K₂CO₃ (26.3 mg, 1.9 equiv) and *p*-toluenesulfonyl chloride (28.6 mg, 1.5 equiv) in dry acetonitrile (0.5 mL) at room temperature for 12 h in the presence of FeCl₃ (1.6 mg, 0.1 equiv) and phenyltrifluoroacetone (4.4 mg, 0.2 equiv). The reaction mixture was directly purified by flash column chromatography (ethyl acetate/petroleum ether = 1/3), affording compound 14a as a gummy liquid (48.6 mg, 92%). ¹H NMR (400 MHz, CDCl₃): δ 7.77 (d, *J* = 8.4 Hz, 2H), 7.38–7.29 (m, 12H), 4.99 (d, *J* = 11.2 Hz, 1H), 4.77–4.62 (m, 3H), 4.55 (d, *J* = 3.6 Hz, 1H), 4.23–4.22 (m, 2H), 3.76–3.69 (m, 2H), 3.48–3.41 (m, 2H), 3.33 (s, 3H), 2.43 (s, 3H).

Methyl-2,3-di-O-benzyl-6-O-benzoyl-α-D-glucopyranoside (14b). ¹⁹ Methyl-2,3-di-O-benzyl-α-D-glucopyranoside (0.1 mmol, 37.4 mg) was allowed to react with *N*,*N*-diisopropylethylamine (34 μ L, 1.9 equiv) and benzoyl chloride (18 μ L, 1.5 equiv) in dry acetonitrile (0.5 mL) at room temperature for 2.5 h in the presence of FeCl₃ (1.6 mg, 0.1 equiv) and phenyltrifluoroacetone (4.4 mg, 0.2 equiv). The reaction mixture was directly purified by flash column chromatography (ethyl acetate/petroleum ether = 1/3), affording compound 14b as a colorless oil (44.5 mg, 93%). ¹H NMR (400 MHz, CDCl₃): δ 8.03 (d, *J* = 8.0 Hz, 2H), 7.58–7.54 (m, 1H), 7.45–7.32 (m, 12H), 5.02 (d, *J* = 11.2 Hz, 1H), 4.80–4.76 (m, 2H), 4.69–4.60 (m, 3H), 4.52 (d, *J* = 12 Hz, 1H), 3.89–3.82 (m, 2H), 3.56–3.52 (m, 2H), 3.45 (s, 3H).

*Methyl-2,3-di-O-benzyl-6-O-(4-toluenesulfonyl)-\alpha-D-galactopyranoside (15a).*²⁰ Methyl-2,3-di-O-benzyl- α -D-galactopyranoside (0.1 mmol, 37.4 mg) was allowed to react with K₂CO₃ (26.3 mg, 1.9 equiv) and *p*-toluenesulfonyl chloride (28.6 mg, 1.5 equiv) in dry acetonitrile (0.5 mL) at room temperature for 12 h in the presence of FeCl₃ (1.6 mg, 0.1 equiv) and phenyltrifluoroacetone (4.4 mg, 0.2 equiv). The reaction mixture was directly purified by flash column chromatography (ethyl acetate/petroleum ether = 1/3), affording compound **15a** as a colorless syrup (46.5 mg, 88%). ¹H NMR (400 MHz, CDCl₃): δ 7.78 (d, *J* = 8.4 Hz, 2H), 7.38–7.28 (m, 12H), 4.77 (d, *J* = 12.0 Hz, 2H), 4.68–4.61 (m, 2H), 4.59 (d, *J* = 3.6 Hz, 1H), 4.22–4.11 (m, 2H), 3.95–3.92 (m, 2H), 3.84 (dd, *J* = 9.6 and 3.2 Hz, 1H), 3.75 (dd, *J* = 9.6 and 3.6 Hz, 1H), 3.33 (s, 3H), 2.43 (s, 3H).

Methyl-2,3-di-O-benzyl-6-O-benzoyl- α -D-galactopyranoside (**15b**).¹⁹ Methyl-2,3-di-O-benzyl- α -D-galactopyranoside (0.1 mmol, 37.4 mg) was allowed to react with *N*,*N*-diisopropylethylamine (34 μ L, 1.9 equiv) and benzoyl chloride (18 μ L, 1.5 equiv) in dry acetonitrile (0.5 mL) at room temperature for 6 h in the presence of FeCl₃ (1.6 mg, 0.1 equiv) and phenyltrifluoroacetone (4.4 mg, 0.2 equiv). The reaction mixture was directly purified by flash column chromatography (ethyl acetate/petroleum ether = 1/3), affording compound **15b** as a white amorphous solid (40.1 mg, 84%). ¹H NMR (400 MHz, CDCl₃): δ 8.03 (d, *J* = 8.0 Hz, 2H), 7.57 (t, *J* = 7.2 Hz, 1H), 7.46–7.29 (m, 12H), 4.83 (d, *J* = 11.2 Hz, 2H), 4.73–4.66 (m, 3H), 4.58–4.48 (m, 2H), 4.07–4.04 (m, 2H), 3.93–3.85 (m, 2H), 3.37 (s, 3H).

Methyl-2,3-di-O-benzyl-6-O-(4-toluenesulfonyl)-\alpha-D-mannopyranoside (16a). Methyl-2,3-di-*O*-benzyl- α -D-mannopyranoside (0.1 mmol, 37.4 mg) was allowed to react with K₂CO₃ (26.3 mg, 1.9 equiv) and *p*-toluenesulfonyl chloride (28.6 mg, 1.5 equiv) in dry acetonitrile (0.5 mL) at room temperature for 2 h in the presence of FeCl₃ (1.6 mg, 0.1 equiv) and phenyltrifluoroacetone (4.4 mg, 0.2 equiv). The reaction mixture was directly purified by flash column chromatography (ethyl acetate/petroleum ether = 1/3), affording compound **16a** as a light yellow oil (46.5 mg, 88%). ¹H NMR (600 MHz, CDCl₃): δ 7.80 (d, *J* = 7.8 Hz, 2H, ArH), 7.36–7.27 (m, 12H, ArH), 4.71 (s, 1H, H-1), 4.65 (d, *J* = 12.0 Hz, 1H, CH₂Ph), 4.61 (d, *J* = 12.0 Hz, 1H, CH₂Ph), 4.39 (d, *J* = 10.8 Hz, 1H, H-6a), 4.24 (dd, *J* = 10.8 and 6.6 Hz, 1H, H-6b), 3.87 (t, *J* = 9.6 Hz, 1H, H-3), 3.30

(s, 3H, OCH₃), 2.42 (s, 3H, ArCH₃). ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 144.7, 138.0, 137.9, 133.1, 129.8, 128.6, 128.5, 128.1, 128.0, 127.9, 127.9, 99.1, 79.5, 73.7, 72.7, 71.7, 70.5, 69.6, 66.4, 55.1, 21.7 ppm. R_{f} : 0.4 (ethyl acetate/petroleum ether = 1/3). HRMS (ESI-TOF) m/z calcd. for C₂₈H₃₂O₈SNa [M + Na]⁺: 551.1710; found:551.1701.

Methyl-2,3-di-O-benzyl-6-O-benzoyl-α-D-mannopyranoside (**16b**).¹⁹ Methyl-2,3-di-O-benzyl-*α*-D-mannopyranoside (0.1 mmol, 37.4 mg) was allowed to react with *N*,*N*-diisopropylethylamine (34 μ L, 1.9 equiv) and benzoyl chloride (18 μ L, 1.5 equiv) in dry acetonitrile (0.5 mL) at room temperature for 2 h in the presence of FeCl₃ (1.6 mg, 0.1 equiv) and phenyltrifluoroacetone (4.4 mg, 0.2 equiv). The reaction mixture was directly purified by flash column chromatography (ethyl acetate/petroleum ether = 1/3), affording compound **16b** as a colorless oil (39.7 mg, 83%). ¹H NMR (400 MHz, CDCl₃): δ 8.06 (d, *J* = 7.6 Hz, 2H), 7.54 (t, *J* = 7.2 Hz, 1H), 7.40–7.28 (m, 12H), 4.82 (s, 1H), 4.70–4.61 (m, 5H), 4.52 (d, *J* = 11.6 Hz, 1H), 4.12 (t, *J* = 9.6 Hz, 1H), 3.87–3.82 (m, 2H), 3.75 (dd, *J* = 9.2 and 2.0 Hz, 1H), 3.38 (s, 3H).

Methyl-3,6-di-O-(4-toluenesulfonyl)- α -D-galactopyranoside (17a).¹¹² Methyl- α -D-galactopyranoside (0.1 mmol, 19.4 mg) was allowed to react with K₂CO₃ (55.3 mg, 4.0 equiv) and *p*-toluenesulfonyl chloride (57.2 mg, 3.0 equiv) in dry acetonitrile (0.5 mL) at room temperature for 4.5 h in the presence of FeCl₃ (1.6 mg, 0.1 equiv) and phenyltrifluoroacetone (4.4 mg, 0.2 equiv). The reaction mixture was directly purified by flash column chromatog-raphy (ethyl acetate/petroleum ether = 2/1), affording compound 17a as a light yellow oil (45.7 mg, 91%). ¹H NMR (400 MHz, CDCl₃): δ 7.82 (d, *J* = 7.6 Hz, 2H), 7.78 (d, *J* = 7.6 Hz, 2H), 7.34 (d, *J* = 7.6 Hz, 4H), 4.72 (d, *J* = 2.0 Hz, 1H), 4.55 (d, *J* = 8.8 Hz, 1H), 4.21–4.13 (m, 3H), 3.99–3.92 (m, 2H), 3.35 (s, 3H), 2.44 (s, 6H).

Methyl-3,6-di-O-benzyl-\alpha-D-galactopyranoside (17b).¹³ Methyl- α -D-galactopyranoside (0.1 mmol, 19.4 mg) was allowed to react with *N*,*N*-diisopropylethylamine (70 μ L, 4.0 equiv) and benzoyl chloride (35.0 μ L, 3.0 equiv) in dry acetonitrile (0.5 mL) at room temperature for 2.5 h in the presence of FeCl₃ (1.6 mg, 0.1 equiv) and phenyltrifluoroacetone (4.4 mg, 0.2 equiv). The reaction mixture was directly purified by flash column chromatography (ethyl acetate/petroleum ether = 1/1), affording compound 17b as a colorless oil (37.0 mg, 92%). ¹H NMR (400 MHz, CDCl₃): δ 8.10–8.00 (m, 4H), 7.58–7.53 (m, 2H), 7.45–7.41 (m, 4H), 5.34 (dd, *J* = 10.0 and 1.6 Hz, 1H), 4.93 (d, *J* = 2.4 Hz, 1H), 4.62–4.58 (m, 1H), 4.53–4.49 (m, 1H), 4.25–4.20 (m, 3H), 3.47 (s, 3H).

Methyl-3,6-di-O-(4-toluenesulfonyl)-β-D-galactopyranoside (18a).²¹ Methyl-β-D-galactopyranoside (0.1 mmol, 19.4 mg) was allowed to react with K₂CO₃ (55.3 mg, 4.0 equiv) and *p*-toluenesulfonyl chloride (57.2 mg, 3.0 equiv) in dry acetonitrile (0.5 mL) at room temperature for 4.5 h in the presence of FeCl₃ (1.6 mg, 0.1 equiv) and phenyltrifluoroacetone (4.4 mg, 0.2 equiv). The reaction mixture was directly purified by flash column chromatog-raphy (ethyl acetate/petroleum ether = 2/1), affording compound 18a as a light yellow oil (47.7 mg, 95%). ¹H NMR (400 MHz, CDCl₃): δ 7.83 (d, *J* = 8.0 Hz, 2H), 7.78 (d, *J* = 7.6 Hz, 2H), 7.34 (d, *J* = 7.2 Hz, 4H), 4.38 (dd, *J* = 9.6 and 1.6 Hz, 1H), 4.23–4.17 (m, 2H), 4.14–4.11 (m, 2H), 3.76–3.71 (m, 2H), 3.44 (s, 3H), 2.43 (s, 6H).

Methyl-3,6-di-O-benzyl-β-D-galactopyranoside (**18b**).¹³ Methyl*β*-D-galactopyranoside (0.1 mmol, 19.4 mg) was allowed to react with *N,N*-diisopropylethylamine (70 μ L, 4.0 equiv) and benzoyl chloride (35.0 μ L, 3.0 equiv) in dry acetonitrile (0.5 mL) at room temperature for 2.5 h in the presence of FeCl₃ (1.6 mg, 0.1 equiv) and phenyltrifluoroacetone (4.4 mg, 0.2 equiv). The reaction mixture was directly purified by flash column chromatography (ethyl acetate/ petroleum ether = 1/1), affording compound **18b** as a white solid (37.4 mg, 93%). ¹H NMR (400 MHz, CDCl₃): δ 8.07 (d, *J* = 7.6 Hz, 2H), 8.01 (d, *J* = 7.6 Hz, 2H), 7.58–7.51 (m, 2H), 7.44–7.37 (m, 4H), 5.13 (dd, *J* = 10.0 and 2.8 Hz, 1H), 4.65–4.54 (m, 2H), 4.35 (d, *J* = 7.6 Hz, 1H), 4.24 (d, *J* = 2.8 Hz, 1H), 4.09–4.05 (m, 1H), 3.97– 3.94 (m, 1H), 3.57 (s, 3H). Methyl-3,6-di-O-(4-toluenesulfonyl)-α-D-mannopyranoside (19a).^{11ε} Methyl-α-D-mannopyranoside (0.1 mmol, 19.4 mg) was allowed to react with K_2CO_3 (55.3 mg, 4.0 equiv) and *p*-toluenesulfonyl chloride (57.2 mg, 3.0 equiv) in dry acetonitrile (0.5 mL) at room temperature for 12 h in the presence of FeCl₃ (1.6 mg, 0.1 equiv) and phenyltrifluoroacetone (4.4 mg, 0.2 equiv). The reaction mixture was directly purified by flash column chromatog-raphy (methanol/dichloromethane = 1/20), affording compound 19a as a pale yellow oil (46.7 mg, 93%). ¹H NMR (400 MHz, CDCl₃): δ 7.84 (d, *J* = 8.0 Hz, 2H), 7.79 (d, *J* = 8.0 Hz, 2H), 7.34 (t, *J* = 9.6 Hz, 4H), 4.63–4.59 (m, 2H), 4.33–4.25 (m, 2H), 4.03–3.97 (m, 2H), 3.71 (d, *J* = 6.4 Hz, 1H), 3.29 (s, 3H), 2.44 (s, 3H), 2.43 (s, 3H).

Methyl-3,6-di-O-benzyl- α -D-mannopyranoside (19b).¹³ Methyl- α -D-mannopyranoside (0.1 mmol, 19.4 mg) was allowed to react with N,N-diisopropylethylamine (70 μ L, 4.0 equiv) and benzoyl chloride (35.0 μ L, 3.0 equiv) in dry acetonitrile (0.5 mL) at room temperature for 2.5 h in the presence of FeCl₃ (1.6 mg, 0.1 equiv) and phenyltrifluoroacetone (4.4 mg, 0.2 equiv). The reaction mixture was directly purified by flash column chromatography (ethyl acetate/petroleum ether = 1/1), affording compound 19b as a colorless oil (38.6 mg, 96%). ¹H NMR (400 MHz, CDCl₃): δ 8.07–8.04 (m, 4H), 7.57–7.52 (m, 2H), 7.44–7.38 (m, 4H), 5.35 (dd, *J* = 9.6 and 2.8 Hz, 1H), 4.77–4.70 (m, 2H, H-1), 4.60 (dd, *J* = 11.6 and 0.8 Hz, 1H), 4.17–4.10 (m, 2H), 4.01–3.97 (m, 1H), 3.41 (s, 3H).

Methyl-6-O-(4-toluenesulfonyl)-α-o-glucopyranoside (20).²² Methyl-*α*-D-glucopyranoside (0.2 mmol, 38.8 mg) was allowed to react with *N*,*N*-diisopropylethylamine (67 µL, 1.9 equiv) and *p*toluenesulfonyl chloride (57.2 mg, 1.5 equiv) in dry acetonitrile (1 mL) at room temperature for 8 h in the presence of FeCl₃ (3.2 mg, 0.1 equiv) and phenyltrifluoroacetone (8.8 mg, 0.2 equiv). The reaction mixture was directly purified by flash column chromatography (ethyl acetate), affording compound 20 as a colorless oil (42.4 mg, 61%). ¹H NMR (400 MHz, CDCl₃): δ 7.78 (d, *J* = 8.4 Hz, 2H), 7.33 (d, *J* = 8.4 Hz, 2H), 4.66 (d, *J* = 3.6 Hz, 1H), 4.32–4.22 (m, 2H), 3.74–3.68 (m, 2H), 3.50–3.41 (m, 2H), 3.32 (s, 3H), 2.42 (s, 3H).

Methyl-6-O-(4-toluenesulfonyl)- β -D-alucopyranoside (21). Methyl- β -D-glucopyranoside (0.2 mmol, 38.8 mg) was allowed to react with $N_{,N}$ -diisopropylethylamine (67 μ L, 1.9 equiv) and p-toluenesulfonyl chloride (57.2 mg, 1.5 equiv) in dry acetonitrile (1 mL) at room temperature for 4 h in the presence of FeCl₃ (3.2 mg, 0.1 equiv) and phenyltrifluoroacetone (8.8 mg, 0.2 equiv). The reaction mixture was directly purified by flash column chromatography (ethyl acetate), affording compound 21 as a colorless oil (45.2 mg, 65%). ¹H NMR (400 MHz, CDCl₃): δ 7.78 (d, J = 8.4 Hz, 2H, ArH), 7.31 (d, J = 8.0 Hz, 2H, ArH), 4.27 (d, J = 2.4 Hz, 2H, H-6a, H-6b), 4.18 (d, J = 7.6 Hz, 1H, H-1), 3.52-3.45 (m, 3H, H-3, H-4, H-5), 3.42 (s, 3H, OCH₃), 3.31 (t, J = 8.0 Hz, 1H, H-2), 2.41 (s, 3H, ArCH₃). ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 145.1, 132.8, 130.0, 128.1, 103.4, 76.3, 73.4, 73.3, 69.7, 69.3, 57.1, 21.8 ppm. Rf. 0.45 (ethyl acetate). HRMS (ESI-TOF) m/z calcd. for $C_{14}H_{20}O_8SNa [M + Na]^+$: 371.0771; found: 371.0772

2-Hydroxyethyl 4-toluenesulfonate (22). 1,2-Ethanediol (0.2 mmol, 12.4 mg) was allowed to react with *N*,*N*-diisopropylethylamine (67.0 μ L, 1.9 equiv) and *p*-toluenesulfonyl chloride (57.2 mg, 1.5 equiv) in dry acetonitrile (0.5 mL) at room temperature for 6 h in the presence of FeCl₃ (3.2 mg, 0.1 equiv) and phenyltrifluoroacetone (8.8 mg, 0.2 equiv). The reaction mixture was directly purified by flash column chromatography (ethyl acetate/petroleum ether = 1/2), affording compound 22 as a pale yellow oil (35.4 mg, 82%). ¹H NMR (400 MHz, CDCl₃): δ 7.77 (d, *J* = 8.4 Hz, 2H), 7.33 (d, *J* = 8.0 Hz, 2H), 4.09 (t, *J* = 4.4 Hz, 2H), 3.77 (t, *J* = 4.8 Hz, 2H), 2.42 (s, 3H). ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 145.2, 132.6, 130.0, 128.0, 71.8, 60.5, 21.7 ppm. *R*_f 0.3 (ethyl acetate/petroleum ether = 1/2). HRMS (ESI-TOF) *m*/*z* calcd. for C₉H₁₂O₄SNa [M + Na]⁺: 239.0349; found: 239.0350.

3-Hydroxypropyl 4-toluenesulfonate (23).²³ 1,3-Propanediol (0.2 mmol, 15.2 mg) was allowed to react with *N*,*N*-diisopropylethylamine (67.0 μ L, 1.9 equiv) and *p*-toluenesulfonyl chloride (57.2 mg, 1.5 equiv) in dry acetonitrile (0.5 mL) at room temperature for 6 h in the

presence of FeCl₃ (3.2 mg, 0.1 equiv) and phenyltrifluoroacetone (8.8 mg, 0.2 equiv). The reaction mixture was directly purified by flash column chromatography (ethyl acetate/petroleum ether = 1/2), affording compound **23** as a colorless oil (34.5 mg, 75%). ¹H NMR (400 MHz, CDCl₃): δ 7.77 (d, *J* = 8.4 Hz, 2H), 7.34 (d, *J* = 8.0 Hz, 2H), 4.16 (t, *J* = 6.4 Hz, 2H), 3.68 (t, *J* = 6.0 Hz, 2H), 2.43 (s, 3H), 1.89–1.83 (m, 2H).

2-Hydroxy-2-phenylethyl 4-toluenesulfonate (**24a**).^{12b} 1-Phenyl-1,2-ethanediol (0.2 mmol, 27.6 mg) was allowed to react with *N*,*N*diisopropylethylamine (67.0 μ L, 1.9 equiv) and *p*-toluenesulfonyl chloride (57.2 mg, 1.5 equiv) in dry acetonitrile (0.5 mL) at room temperature for 12 h in the presence of FeCl₃ (3.2 mg, 0.1 equiv) and phenyltrifluoroacetone (8.8 mg, 0.2 equiv). The reaction mixture was directly purified by flash column chromatography (ethyl acetate/ petroleum ether = 1/3), affording compound **24a** as a colorless oil (55.5 mg, 95%). ¹H NMR (400 MHz, CDCl₃): δ 7.76 (d, *J* = 8.0 Hz, 2H), 7.36–7.27 (m, 7H), 4.97 (dd, *J* = 8.0 and 2.4 Hz, 1H), 4.14 (dd, *J* = 10.4 and 2.8 Hz, 1H), 4.06–4.01 (m, 1H), 2.44 (s, 3H). 2-Hydroxy-2-phenylethyl Benzoate (**24b**).^{12b} 1-Phenyl-1,2-etha-

2-Hydroxy-2-phenylethyl Benzoate (24b).¹²⁰ 1-Phenyl-1,2-ethanediol (0.2 mmol, 27.6 mg) was allowed to react with *N*,*N*diisopropylethylamine (67.0 μ L, 1.9 equiv) and benzoyl chloride (35.0 μ L, 1.5 equiv) in dry acetonitrile (0.5 mL) at room temperature for 2 h in the presence of FeCl₃ (3.2 mg, 0.1 equiv) and phenyltrifluoroacetone (8.8 mg, 0.2 equiv). The reaction mixture was directly purified by flash column chromatography (ethyl acetate/ petroleum ether = 1/3), affording compound **24b** as a beige solid (44.0 mg, 91%). ¹H NMR (400 MHz, CDCl₃): δ 8.05 (dd, *J* = 7.6 Hz, 2H), 7.59–7.56 (m, 1H), 7.46–7.31 (m, 7H), 5.10 (dd, *J* = 8.0 and 2.8 Hz, 1H), 4.52 (dd, *J* = 11.2 and 3.2 Hz, 1H), 4.45–4.40 (m, 1H), 2.80 (br s, 1H).

1-O-(4-Toluenesulfonyl)-2-propanol (25a).^{12b} 1,2-Propanediol (0.2 mmol, 15.2 mg) was allowed to react with N,N-diisopropylethylamine (67.0 μ L, 1.9 equiv) and p-toluenesulfonyl chloride (57.2 mg, 1.5 equiv) in dry acetonitrile (0.5 mL) at room temperature for 12 h in the presence of FeCl₃ (3.2 mg, 0.1 equiv) and phenyl-trifluoroacetone (8.8 mg, 0.2 equiv). The reaction mixture was directly purified by flash column chromatography (ethyl acetate/ petroleum ether = 1/2), affording compound **25a** as a colorless oil (36.8 mg, 80%). ¹H NMR (400 MHz, CDCl₃): δ 7.79 (d, J = 7.6 Hz, 2H), 7.34 (d, J = 8.0 Hz, 2H), 4.02–3.96 (m, 2H), 3.86–3.82 (m, 1H), 2.44 (s, 3H), 2.38 (br s, 1H), 1.14 (d, J = 6.0 Hz, 3H). 1-O-Benzoyl-2-propanol (25b).¹³ 1,2-Propanediol (0.2 mmol,

1-O-Benzoyl-2-propanol (**25b**).¹⁵ 1,2-Propanediol (0.2 mmol, 15.2 mg) was allowed to react with *N*,*N*-diisopropylethylamine (67.0 μ L, 1.9 equiv) and benzoyl chloride (35.0 μ L, 1.5 equiv) in dry acetonitrile (0.5 mL) at room temperature for 2 h in the presence of FeCl₃ (3.2 mg, 0.1 equiv) and phenyltrifluoroacetone (8.8 mg, 0.2 equiv). The reaction mixture was directly purified by flash column chromatography (ethyl acetate/petroleum ether = 1/3), affording compound **25b** as a colorless oil (33.5 mg, 93%). ¹H NMR (400 MHz, CDCl₃): δ 8.05–8.03 (m, 2H), 7.58–7.54 (m, 1H), 7.45–7.41 (m, 2H), 4.35–4.30 (m, 1H), 4.22–4.15 (m, 2H), 2.50 (br s, 1H), 1.29–1.27 (m, 3H).

1-O-(4-Toluenesulfonyl)-3-phenoxy-2-propanol (**26a**).²⁴ 3-Phenoxy-1,2-propanediol (0.2 mmol, 33.6 mg) was allowed to react with *N*,*N*-diisopropylethylamine (67.0 μL, 1.9 equiv) and *p*-toluenesulfonyl chloride (57.2 mg, 1.5 equiv) in dry acetonitrile (0.5 mL) at room temperature for 12 h in the presence of FeCl₃ (3.2 mg, 0.1 equiv) and phenyltrifluoroacetone (8.8 mg, 0.2 equiv). The reaction mixture was directly purified by flash column chromatography (ethyl acetate/petroleum ether = 1/3), affording compound **26a** as a white crystal (56.0 mg, 87%). ¹H NMR (400 MHz, CDCl₃): δ 7.79 (d, *J* = 8.4 Hz, 2H), 7.31–7.25 (m, 4H), 6.97 (t, *J* = 7.2 Hz, 1H), 6.82 (d, *J* = 8.0 Hz, 2H), 4.25–4.17 (m, 3H), 3.97 (d, *J* = 3.6 Hz, 2H), 2.41 (s, 3H). 1-O-Benzoyl-3-phenoxy-2-propanol (**26b**).¹³ 3-Phenoxy-1,2-pro-

1-O-Benzoyl-3-phenoxy-2-propanol (**26b**).¹⁵ 3-Phenoxy-1,2-propanediol (0.2 mmol, 33.6 mg) was allowed to react with *N*,*N*diisopropylethylamine (67.0 μ L, 1.9 equiv) and benzoyl chloride (35.0 μ L, 1.5 equiv) in dry acetonitrile (0.5 mL) at room temperature for 3.5 h in the presence of FeCl₃ (3.2 mg, 0.1 equiv) and phenyltrifluoroacetone (8.8 mg, 0.2 equiv). The reaction mixture was directly purified by flash column chromatography (ethyl acetate/ petroleum ether = 1/3), affording compound **26b** as a colorless oil (44.6 mg, 82%). ¹H NMR (400 MHz, CDCl₃): δ 8.07 (d, *J* = 7.6 Hz, 2H), 7.60–7.56 (m, 1H), 7.47–7.43 (m, 2H), 7.32–7.28 (m, 2H), 7.01–6.93 (m, 3H), 4.59–4.51 (m, 2H), 4.42–4.36 (m, 1H), 4.16–4.08 (m, 2H), 2.73 (br s, 1H).

2-Hydroxy-3-allyloxypropyl 4-Toluenesulfonate (**27a**).²⁵ 3-Allyloxy-1,2-propanediol (0.2 mmol, 26.4 mg) was allowed to react with *N*,*N*-diisopropylethylamine (67.0 μ L, 1.9 equiv) and *p*-toluenesulfonyl chloride (57.2 mg, 1.5 equiv) in dry acetonitrile (0.5 mL) at room temperature for 12 h in the presence of FeCl₃ (3.2 mg, 0.1 equiv) and phenyltrifluoroacetone (8.8 mg, 0.2 equiv). The reaction mixture was directly purified by flash column chromatography (ethyl acetate/petroleum ether = 1/3), affording compound **27**a as a pale yellow oil (53.2 mg, 93%). ¹H NMR (400 MHz, CDCl₃): δ 7.79 (d, *J* = 8.0 Hz, 2H), 7.34 (d, *J* = 8.4 Hz, 2H), 5.87–5.77 (m, 1H), 5.24–5.16 (m, 2H), 4.11–3.94 (m, 5H), 3.50–3.42 (m, 2H), 2.44 (s, 3H), 2.32 (br s, 1H).

2-Hydroxy-3-allyloxypropyl Benzoate (27b).¹³ 3-Allyloxy-1,2propanediol (0.2 mmol, 26.4 mg) was allowed to react with *N*,*N*diisopropylethylamine (67.0 μ L, 1.9 equiv) and benzoyl chloride (35.0 μ L, 1.5 equiv) in dry acetonitrile (0.5 mL) at room temperature for 2 h in the presence of FeCl₃ (3.2 mg, 0.1 equiv) and phenyltrifluoroacetone (8.8 mg, 0.2 equiv). The reaction mixture was directly purified by flash column chromatography (ethyl acetate/ petroleum ether = 1/3), affording compound **27b** as a colorless oil (37.8 mg, 80%). ¹H NMR (400 MHz, CDCl₃): δ 8.06–8.04 (m, 2H), 7.58–7.55 (m, 1H), 7.46–7.42 (m, 2H), 5.95–5.85 (m, 1H), 5.31– 5.19 (m, 2H), 4.45–4.37 (m, 2H), 4.19–4.14 (m, 1H), 4.06–4.04 (m, 2H), 3.63–3.53 (m, 2H), 2.54 (br s, 1H). *3-Hydroxybutyl 4-toluenesulfonate* (28).^{12b} 1,3-Butanediol (0.2

3-Hydroxybutyl 4-toluenesulfonate (28).¹²⁰ 1,3-Butanediol (0.2 mmol, 18.0 mg) was allowed to react with *N*,*N*-diisopropylethylamine (67.0 μ L, 1.9 equiv) and *p*-toluenesulfonyl chloride (57.2 mg, 1.5 equiv) in dry acetonitrile (0.5 mL) at room temperature for 12 h in the presence of FeCl₃ (3.2 mg, 0.1 equiv) and phenyltrifluoroacetone (8.8 mg, 0.2 equiv). The reaction mixture was directly purified by flash column chromatography (ethyl acetate/petroleum ether = 1/2), affording compound **28** as a colorless oil (34.6 mg, 71%). ¹H NMR (400 MHz, CDCl₃): δ 7.77 (d, *J* = 8.0 Hz, 2H), 7.34 (d, *J* = 7.6 Hz, 2H), 4.24–4.18 (m, 1H), 4.12–4.07 (m, 1H), 3.94–3.89 (m, 1H), 2.43 (s, 3H), 2.00 (br s, 1H), 1.83–1.77 (m, 1H), 1.72–1.64 (m, 1H), 1.16 (d, *J* = 6.4 Hz, 3H).

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.joc.9b03128.

Copies of NMR spectra of products (PDF)

AUTHOR INFORMATION

Corresponding Author

Hai Dong – Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry & Chemical Engineering and Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science & Technology, Wuhan 430074, PR China; orcid.org/0000-0002-9794-1805; Email: hdong@ mail.hust.edu.cn

Authors

- Jian Lv Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, PR China
- Jia-Jia Zhu Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, PR China

Yu Liu – Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry & Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, PR China

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.joc.9b03128

Author Contributions

[#]J.L. and J.-J.Z. contributed equally to this work.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This study was supported by the National Nature Science Foundation of China (nos. 21772049 and 21708010). The authors are also grateful to the staffs in the Analytical and Test Center of School of Chemistry & Chemical Engineering at HUST for support with the NMR instruments.

REFERENCES

(1) (a) Blaszczyk, S. A.; Xiao, G.; Wen, P.; Hao, H.; Wu, J.; Wang, B.; Carattino, F.; Li, Z.; Glazier, D. A.; McCarty, B. J.; Liu, P.; Tang, W. S-Adamantyl Group Directed Site-Selective Acylation: Applications in Streamlined Assembly of Oligosaccharides. Angew. Chem., Int. Ed. 2019, 58, 9542-9546. (b) Zhang, Y.; Zhao, F.-L.; Luo, T.; Pei, Z.; Dong, H. Regio/Stereoselective Glycosylation of Diol and Polyol Acceptors in Efficient Synthesis of Neu5Ac- α -2,3-LacNPhth Trisaccharide. Chem. - Asian J. 2019, 14, 223-234. (c) Kulkarni, S. S.; Wang, C.-C.; Sabbavarapu, N. M.; Podilapu, A. R.; Liao, P.-H.; Hung, S.-C. "One-Pot" Protection, Glycosylation, and Protection-Glycosylation Strategies of Carbohydrates. Chem. Rev. 2018, 118, 8025-8104. (d) Dhakal, B.; Crich, D. Synthesis and Stereocontrolled Equatorially Selective Glycosylation Reactions of a Pseudaminic Acid Donor: Importance of the Side-Chain Conformation and Regioselective Reduction of Azide Protecting Groups. J. Am. Chem. Soc. 2018, 140, 15008-15015. (e) Hu, Y.; Yu, K.; Shi, L.-L.; Liu, L.; Sui, J.-J.; Liu, D.-Y.; Xiong, B.; Sun, J.-S. o-(p-Methoxyphenylethynyl)phenyl Glycosides: Versatile New Glycosylation Donors for the Highly Efficient Construction of Glycosidic Linkages. J. Am. Chem. Soc. 2017, 139, 12736-12744. (f) Danishefsky, S. J.; Shue, Y. K.; Chang, M. N.; Wong, C. H. Development of Globo-H cancer vaccine. Acc. Chem. Res. 2015, 48, 643-652. ((g)) Crich, D. Modern synthetic methods in carbohydrate chemistry: From monosaccharides to complex glycoconjugates, Wiley-VCH: 2013. ((h)) Handbook of Chemical Glycosylation: Advances in Stereoselectivity and Therapeutic Relevance, Demchenko, A. V., Ed.; Wiley-VCH: Weinheim, 2008.

(2) (a) Wu, J.; Li, X.; Qi, X.; Duan, X.; Cracraft, W. L.; Guzei, I. A.; Liu, P.; Tang, W. Site-Selective and StereoselectiveO-Alkylation of Glycosides by Rh(II)-Catalyzed Carbenoid Insertion. J. Am. Chem. Soc. 2019, 141, 19902-19910. (b) Ge, J.-T.; Zhou, L.; Luo, T.; Lv, J.; Dong, H. A One-Pot Method for Removal of Thioacetyl Group via Desulfurization under Ultraviolet Light to Synthesize Deoxyglycosides. Org. Lett. 2019, 21, 5903-5906. (c) Yanagi, M.; Ueda, Y.; Ninomiya, R.; Imayoshi, A.; Furuta, T.; Mishiro, K.; Kawabata, T. Synthesis of 4-Deoxy Pyranosides via Catalyst-Controlled Site-Selective Toluoylation of Abundant Sugars. Org. Lett. 2019, 21, 5006-5009. (d) Shang, W.; Mou, Z.-D.; Tang, H.; Zhang, X.; Liu, J.; Fu, Z.; Niu, D. Site-selective O-arylation of glycosides. Angew. Chem., Int. Ed. 2018, 57, 314-318. (e) Dong, H.; Rahm, M.; Brinck, T.; Ramström, O. Supramolecular Control in Carbohydrate Epimerization: Discovery of a New Anion Host-Guest System. J. Am. Chem. Soc. 2008, 130, 15270-15271.

(3) (a) Lv, J.; Luo, T.; Zou, D.; Dong, H. Using DMF as Both a Catalyst and Cosolvent for the Regioselective Silylation of Polyols and Diols. *Eur. J. Org. Chem.* **2019**, 6383–6395. (b) Traboni, S.; Bedini, E.; Iadonisi, A. Orthogonal Protection of Saccharide Polyols Through

pubs.acs.org/joc

Solvent-Free One-Pot Sequences Based on Regioselective Silvlations. Beilstein J. Org. Chem. 2016, 12, 2748-2756. (c) Ko, Y.-C.; Tsai, C.-F.; Wang, C.-C.; Dhurandhare, V. M.; Hu, P.-L.; Su, T.-Y.; Lico, L. S.; Zulueta, M. M. L.; Hung, S.-C. Microwave-Assisted One-Pot Synthesis of 1,6-Anhydrosugars and Orthogonally Protected Thioglycosides. J. Am. Chem. Soc. 2014, 136, 14425-14431. (d) Patil, P. S.; Lee, C.-C.; Huang, Y.-W.; Zulueta, M. M. L.; Hung, S.-C. Regioselective and Stereoselective Benzylidene Installation and One-Pot Protection of D-Mannose. Org. Biomol. Chem. 2013, 11, 2605-2612. (e) Joseph, A. A.; Verma, V. P.; Liu, X. Y.; Wu, C. H.; Dhurandhare, V. M.; Wang, C. C. TMSOTf-Catalyzed Silylation: Streamlined Regioselective One-Pot Protection and Acetylation of Carbohydrates. Eur. J. Org. Chem. 2012, 744-753. (f) Tran, A. T.; Jones, R. A.; Pastor, J.; Boisson, J.; Smith, N.; Galan, M. C. Copper (II) Triflate: A Versatile Catalyst for the One-Pot Preparation of Orthogonally Protected Glycosides. Adv. Synth. Catal. 2011, 353, 2593-2598. (g) Bourdreux, Y.; Lemétais, A.; Urban, D.; Beau, J.-M. Iron(III)-Chloride-Tandem Catalysis for a One-Pot Regioselective Protection of Glycopyranosides. Chem. Commun. 2011, 47, 2146-2148. (h) Français, A.; Urban, D.; Beau, J. M. Tandem Catalysis for a One-Pot Regioselective Protection of Carbohydrates: The Example of Glucose. Angew. Chem., Int. Ed. 2007, 46, 8662-8665. (i) Wang, C.-C.; Lee, J. C.; Luo, S. Y.; Kulkarni, S.-S.; Huang, Y. W.; Lee, C.-C.; Chang, K. L.; Hung, S. C. Regioselective One-Pot Protection of Carbohydrates. Nature 2007, 446, 896-899.

(4) (a) Blaszczyk, S. A.; Homan, T. C.; Tang, W. Recent advances in site-selective functionalization of carbohydrates mediated by organocatalysts. Carbohydr. Res. 2019, 471, 64-77. (b) Xiao, G.; Cintron-Rosado, G. A.; Glazier, D. A.; Xi, B.-M.; Liu, C.; Liu, P.; Tang, W. Catalytic Site-Selective Acylation of Carbohydrates Directed by Cation-n Interaction. J. Am. Chem. Soc. 2017, 139, 4346-4349. (c) Yanagi, M.; Imayoshi, A.; Ueda, Y.; Furuta, T.; Kawabata, T. Carboxylate Anions Accelerate Pyrrolidinopyridine (PPy)-Catalyzed Acylation: Catalytic Site-Selective Acylation of a Carbohydrate by in Situ Counteranion Exchange. Org. Lett. 2017, 19, 3099-3102. (d) Huber, F.; Kirsch, S. F. Site-Selective Acylations with Tailor-Made Catalysts. Chem. - Eur. J. 2016, 22, 5914-5918. (e) Chen, I.-H.; Kou, K. G. M.; Le, D. N.; Rathbun, C. M.; Dong, V. M. Recognition and Site-Selective Transformation of Monosaccharides by Using Copper (II) Catalysis. Chem. - Eur. J. 2014, 20, 5013-5018. (f) Sun, X.; Lee, H.; Lee, S.; Tan, K. L. Catalyst Recognition of Cis-1,2-Diols Enables Site-Selective Functionalization of Complex Molecules. Nat. Chem. 2013, 5, 790-795. (g) Allen, C. L.; Miller, S. J. Chiral Copper(II) Complex-Catalyzed Reactions of Partially Protected Carbohydrates. Org. Lett. 2013, 15, 6178-6181. (h) Kawabata, T.; Muramatsu, W.; Nishio, T.; Shibata, T.; Schedel, H. A Catalytic One-Step Process for the Chemo- and Regioselective Acylation of Monosaccharides. J. Am. Chem. Soc. 2007, 129, 12890-12895. (i) Mazet, C.; Roseblade, S.; Köhler, V.; Pfaltz, A. Kinetic Resolution of Diols and Pyridyl Alcohols by Cu(II)(borabox)-Catalyzed Acylation. Org. Lett. 2006, 8, 1879-1882. (j) Matsumura, Y.; Maki, T.; Murakami, S.; Onomura, O. Copper Ion-Induced Activation and Asymmetric Benzoylation of 1,2-Diols: Kinetic Chiral Molecular Recognition. J. Am. Chem. Soc. 2003, 125, 2052-2053.

(5) (a) Dimakos, V.; Taylor, M. S. Site-Selective Functionalization of Hydroxyl Groups in Carbohydrate Derivatives. *Chem. Rev.* **2018**, *118*, 11457–11517. (b) Lee, D.; Taylor, M. S. Borinic Acid-Catalyzed Regioselective Acylation of Carbohydrate Derivatives. *J. Am. Chem. Soc.* **2011**, *133*, 3724–3727. (c) Chan, L.; Taylor, M. S. Regioselective Alkylation of Carbohydrate Derivatives Catalyzed by a Diarylborinic Acid Derivative. *Org. Lett.* **2011**, *13*, 3090–3093. (d) Cramer, D. L.; Bera, S.; Studer, A. Exploring Cooperative Effects in Oxidative NHC Catalysis: Regioselective Acylation of Carbohydrates. *Chem. – Eur. J.* **2016**, *22*, 7403–7407.

(6) Grindley, T. B. Applications of Tin-Containing Intermediates to Carbohydrate Chemistry. *Adv. Carbohydr. Chem. Biochem.* **1998**, *53*, 17–142.

(7) Ren, B.; Lv, J.; Zhang, Y.; Tian, J.; Dong, H. Highly Efficient Selective Benzylation of Carbohydrates Catalyzed by Iron(III) with

Silver Oxide and Bromide Anion as Co-catalysts. *ChemCatChem* 2017, 9, 950–953.

(8) Lv, J.; Ge, J. T.; Luo, T.; Dong, H. An Inexpensive Catalyst, Fe(acac)₃, for Regio/Siteselective Acylation of Diols and Carbohydrates Containing a 1,2-*Cis*-Diol. *Green Chem.* **2018**, *20*, 1987–1991.

(9) Ren, B.; Yan, N.; Gan, L. Regioselective Alkylation of Carbohydrates and Diols: a Cheaper Iron Catalyst, New Applications and Mechanism. *RSC Adv.* **2017**, *7*, 46257–46262.

(10) (a) Ge, J.-T.; Zhou, L.; Zhao, F.-L.; Dong, H. Straightforward S-S Bond Formation via the Oxidation of S-Acetyl by Iodine in the Presence of N-Iodosuccinimide. J. Org. Chem. 2017, 82, 12613-12623. (b) Sanapala, S. R.; Kulkarni, S. S. Expedient Route to Access Rare Deoxy Amino L-Sugar Building Blocks for the Assembly of Bacterial Glycoconjugates. J. Am. Chem. Soc. 2016, 138, 4938-4947. (c) Rosen, B. M.; Quasdorf, K. W.; Wilson, D. A.; Zhang, N.; Resmerita, A.-M.; Garg, N. K.; Percec, V. Nickel-Catalyzed Cross-Couplings Involving Carbon-Oxygen Bonds. Chem. Rev. 2011, 111, 1346-1416. (d) Law, H.; Benito, J. M.; García Fernández, J. M.; Jicsinszky, L.; Crouzy, S.; Defaye, J. Copper(II)-Complex Directed Regioselective Mono-p-Toluenesulfonylation of Cyclomaltoheptaose at a Primary Hydroxyl Group Position: an NMR and Molecular Dynamics-Aided Design. J. Phys. Chem. B 2011, 115, 7524-7532. (e) Robins, M. J.; Nowak, I.; Wnuk, S. F.; Hansske, F.; Madej, D. Deoxygenative [1,2]-Hydride Shift Rearrangements in Nucleoside and Sugar Chemistry: Analogy with the [1,2]-Electron Shift in the Deoxygenation of Ribonucleotides by Ribonucleotide Reductases¹. J. Org. Chem. 2007, 72, 8216-8221. (f) Terao, J.; Watanabe, H.; Ikumi, A.; Kuniyasu, H.; Kambe, N. Nickel-Catalyzed Cross-Coupling Reaction of Grignard Reagents with Alkyl Halides and Tosylates: Remarkable Effect of 1,3-Butadienes. J. Am. Chem. Soc. 2002, 124, 4222-4223. (g) Netherton, M. R.; Fu, G. C. Suzuki Cross-Couplings of Alkyl Tosylates that Possess β Hydrogen Atoms: Synthetic and Mechanistic Studies. Angew. Chem., Int. Ed. 2002, 41, 3910-3912.

(11) (a) Tsuda, Y.; Nishimura, M.; Kobayashi, T.; Sato, Y.; Kanemitsu, K. Utilization of Sugars in Organic Synthesis. XXIV. Regioselective Monotosylation of Non-Protected and Partially Protected Glycosides by the Dibutyltin Oxide Method. Chem. Pharm. Bull. 1991, 39, 2883-2887. (b) Martinelli, M. J.; Nayyar, N. K.; Moher, E. D.; Dhokte, U. P.; Pawlak, J. M.; Vaidyanathan, R. Dibutyltin Oxide Catalyzed Selective Sulfonylation of α -Chelatable Primary Alcohols. Org. Lett. 1999, 1, 447-450. (c) Kawana, M.; Tsujimoto, M.; Takahashi, S. One-Pot p-Toluenesulfonylation of Adenosine and Methyl Glycosides with a Substoichiometric Amount of Organotin Mediators. J. Carbohydr. Chem. 2000, 19, 67-78. (d) Martinelli, M. J.; Vaidyanathan, R.; Pawlak, J. M.; Nayyar, N. K.; Dhokte, U. P.; Doecke, C. W.; Zollars, L. M. H.; Moher, E. D.; Van Khau, V.; Košmrlj, B. Catalytic Regioselective Sulfonylation of a-Chelatable Alcohols: Scope and Mechanistic Insight. J. Am. Chem. Soc. 2002, 124, 3578-3585. (e) Muramatsu, W. Chemo- and Regioselective Monosulfonylation of Nonprotected Carbohydrates Catalyzed by Organotin Dichloride under Mild Conditions. J. Org. Chem. 2012, 77, 8083-8091. (f) Xia, L.; Lowary, T. L. Regioselective Polymethylation of α -(1 \rightarrow 4)-Linked Mannopyranose Oligosaccharides. J. Org. Chem. 2013, 78, 2863-2880.

(12) (a) Kuwano, S.; Hosaka, Y.; Arai, T. Chiral Benzazaborole-Catalyzed Regioselective Sulfonylation of Unprotected Carbohydrate Derivatives. *Chem. – Eur. J.* 2019, 25, 12920–12923. (b) Lee, D.; Williamson, C. L.; Chan, L.; Taylor, M. S. Regioselective, Borinic Acid-Catalyzed Monoacylation, Sulfonylation and Alkylation of Diols and Carbohydrates: Expansion of Substrate Scope and Mechanistic Studies. *Am. Chem. Soc.* 2012, 134, 8260–8267.

(13) Lv, J.; Luo, T.; Zhang, Y.; Pei, Z.; Dong, H. Regio/Site-Selective Benzoylation of Carbohydrates by Catalytic Amounts of FeCl₃. ACS Omega **2018**, *3*, 17717–17723.

(14) Dong, H.; Pei, Z.; Ramström, O. Supramolecular Activation in Triggered Cascade Inversion. *Chem. Commun* **2008**, 1359–1361.

(15) Baer, H. H.; Mekarska-Falicki, M. Stereochemical Dependence of the Mechanism of Deoxygenation, with Lithium Triethylborohydride, in 4,6-O-Benzylidenehexopyranoside *p*-Toluenesulfonates. *Can. J. Chem.* **1985**, *63*, 3043–3052.

(16) Zhao, W.; Kong, F. Synthesis of a Hexasaccharide Fragment of the O-Deacetylated GXM of C. Neoformans Serotype B. *Carbohydr. Res.* **2004**, 339, 1779–1786.

(17) Boultadakis-Arapinis, M.; Lemoine, P.; Turcaud, S.; Micouin, L.; Lecourt, T. Rh(II) Carbene-Promoted Activation of the Anomeric C-H Bond of Carbohydrates: a Stereospecific Entry toward α - and β -Ketopyranosides. J. Am. Chem. Soc. **2010**, 132, 15477–15479.

(18) Konda, S.; Rao, P.; Oruganti, S. Click Chemistry Route to Tricyclic Monosaccharide Triazole Hybrids: Design and Synthesis of Substituted Hexahydro-4H-Pyrano[2,3-f][1,2,3]triazolo[5,1-c][1,4]-oxazepines. RSC Adv **2014**, 4, 63962–63965.

(19) Zhang, X.; Ren, B.; Ge, J.; Pei, Z.; Dong, H. A Green and Convenient Method for Regioselective Mono and Multiple Benzoylation of Diols and Polyols. *Tetrahedron* **2016**, *72*, 1005–1010. (20) Chida, N.; Ohtsuka, M.; Ogura, K.; Ogawa, S. Synthesis of Optically Active Substituted Cyclohexenones from Carbohydrates by Catalytic Ferrier Rearrangement. *Bull. Chem. Soc. Jpn.* **1991**, *64*, 2118–2121.

(21) Kondo, Y. Partial Tosylation of Methyl α - and β -D-Galactopyranosides. Agric. Biol. Chem. **1988**, 52, 1313–1315.

(22) Muhizi, T.; Grelier, S.; Coma, V. Synthesis and Antibacterial Activity of Aminodeoxyglucose Derivatives against Listeria Innocua and Salmonella Typhimurium. *J. Agric. Food Chem.* **2009**, *57*, 8770–8775.

(23) Moussa, I. A.; et al. Design, Synthesis, and Structure-Affinity Relationships of RegioisomericN-benzyl Alkyl ether Piperazine Derivatives as σ -1 Receptor Ligands. *J. Med. Chem.* **2010**, *53*, 6228–6239.

(24) Turgut, Y.; Aral, T.; Karakaplan, M.; Deniz, P.; Hosgoren, H. Synthesis of C2-Symmetric Chiral Amino Alcohols. Their Usage as Organocatalysts for Enantioselective Opening of Epoxide Ring. *Synthetic Commun.* **2010**, *40*, 3365–3377.

(25) Pederson, R. L.; Liu, K. K.-C.; Rutan, J. F.; Chen, L.; Wong, C. H. Enzymes in Organic Synthesis: Synthesis of Highly Enantiomerically Pure 1,2-Epoxy Aldehydes, Epoxy Alcohols, Thiirane, Aziridine, and Glyceraldehyde 3-Phosphate. J. Org. Chem. **1990**, 55, 4897–4901.