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Abstract: Cyclic anhydrides are versatile synthons and functional comonomers. Herein we reported an 

organic base-promoted carboxylative cyclization of 2-butenoates with carbon dioxide to produce 

important glutaconic anhydrides in good yields. This metal-free reaction showed broad substrate scopes 

and proceeded under mild reaction conditions.
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Cyclic anhydrides are important acylating agents in organic synthesis1 and functional monomers for 

the ring-opening copolymerization with epoxides2. Among their diverse derivatives, glutaconic 

anhydrides are frequently used as formal cycloaddition partners and allenoate precursors to construct 

various compounds of synthetic and biological interest.3,4 With regard to the preparation of glutaconic 

anhydrides, traditional approach heavily relies on the dehydration of dicarboxylic acids4 (Scheme 1, a). 

Despite its reliability, this method requires the synthesis of dicarboxylic acid in advance via laborious 

multistep reactions using stoichiometric oxidants, strong base and other harsh reaction conditions. 

Therefore, it is highly desirable to develop a more convenient and efficient synthetic route toward 

glutaconic anhydride in terms of green chemistry.

Scheme 1. Synthesis of Cyclic Anhydrides
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Utilization of carbon dioxide (CO2) as a renewable C1 building block in organic synthesis has been 

extensively studied over the past decades.5 Compared with the previously reported many strategies to 

convert CO2 into carboxylic acids, ester, amide and other heterocyclic compounds, direct synthesis of 

cyclic anhydrides using CO2 has been less explored. Maleic anhydrides can be accessed by cathodic 
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dicarboxylation of phenylacetylene with CO2 using aluminum as the anode6, or by Ni-catalyzed double 

carboxylation of alkynes with CO2 using excess zinc powder as the reductant7 (Scheme 1, b). Isatoic and 

other anhydrides can be synthesized by transition-metal catalyzed cyclization reactions with the combined 

use of CO2 and CO under redox-neutral conditions8. In 2016, we developed a carboxylative cyclization 

reaction of propenyl ketones with CO2,9 in which the cyclization step proceeded via an intramolecular 

attack of enolate oxygen on the carboxylate group, thus only one oxygen atom of carbon dioxide was 

incorporated into the α-pyrone product10 (Scheme 1, c). We envisioned that if 2-butenoates were used as 

substrates for the base-promoted carboxylative cyclization reaction, the γ-carboxylation of in situ formed 

enolate I with CO2 and the followed intramolecular cyclization of intermediate II via the nucleophilic 

attack of the carboxylate oxygen would give glutaconic anhydride (Scheme 1, d). Herein, we describe the 

realization of the above hypothesis via an organic base-promoted metal-free reaction to construct 

glutaconic anhydride from carbon dioxide in excellent selectivity.

The initial exploration selected the pentafluorophenyl 3-phenyl-2-butenoate (1aa) as the model 

substrates to optimize the reaction conditions due to that pentafluorophenoxide should be a good leaving 

group (Table 1). When 3.0 equivalent of DBU was used as base and acetonitrile as solvent, the 

carboxylative cyclization reaction of 1aa with 1.0 MPa of CO2 proceeded successfully at the room 

temperature in the absence of any metal catalyst, affording the desired product 4-phenyl glutaconic 

anhydride (2a) in 90% yield (entry 1).  DBN and MTBD were also found to be effective for this reaction 

despite that the decreased yields of 2a were obtained (entries 2 and 3). Triethylamine, DMAP, and tested 

inorganic bases such as cesium carbonate, cesium fluoride or sodium hydride could not promote the 

reaction and no carboxylated product was observed (entries 4 to 8).  THF and DMF were also suitable 

solvent for this reaction (entries 9 and 10), while the reaction in toluene gave the moderate yields of 2a 

(entry 11). The decrease of DBU amount to 1.0 equivalent resulted in the obviously lower yield (32%) 

(entry 12). The combination use of 1.0 equivalent of DBU and 2.0 equivalent of Cs2CO3 gave the same 

result as the only use of 1.0 equivalent of DBU (entry 13). When DBU amount was slightly increased to 

1.5 equivalent, an enhanced yield (64%) of 2a was obtained (entry 14). This indicated that excess DBU 
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would be crucial for the formation of anhydride product. It’s well-known that CO2 could be activated by 

DBU and other strong organic bases by the formation of base–CO2 adducts.11 Probably, the excess DBU 

in this reaction would also capture and activate CO2, and thus promote the carboxylative cyclization 

reaction. It is noteworthy that the reaction using CO2 balloon still underwent efficiently although a slightly 

decreased yield (84%) of 2a was obtained (entry 15).

Table 1. Optimization of the reaction conditions a

Ph OC6F5

O Base (3 equiv.)

Solvent, r.t, 18 h
Ph

O

O

O
1aa 2a

CO2+

Entry Base Solvent Yield (%)

1 DBU CH3CN 90

2 DBN CH3CN 77

3 MTBD CH3CN 60

4 NEt3 CH3CN <1

5 DMAP CH3CN <1

6 Cs2CO3 CH3CN <1

7 CsF CH3CN <1

8 NaH CH3CN <1

9 DBU THF 78

10 DBU DMF 80

11 DBU Toluene 55

12b DBU CH3CN 32

13c DBU CH3CN 32

14d DBU CH3CN 64

15e DBU CH3CN 84
a Reaction conditions: 1aa (0.1 mmol), CO2 (1.0 MPa), base (0.3 mmol), solvent (2 mL ), r.t, 18 h. b 0.1 mmol 

DBU was used. c 0.1 mmol DBU and 0.2 mmol Cs2CO3 were used. d 0.15 mmol DBU was used.  e CO2 balloon 

was used. DBU: 1,8-diazabicyclo [5.4.0]undec-7-ene. DBN: 1,5-diazabicyclo[4.3.0]non-ene. MTBD: 7-metyl-

1,5,7-triazabicyclo[4.4.0]dec-5-ene. DMAP: 4- dimethylaminopyridine.

Since the leaving group played a vital role in the formation of cyclic anhydride products, the 

carboxylative cyclization of various 2-butenoates bearing different leaving groups were then tested 

(Scheme 2). 2,4-Difluorophenyl (1ab), 4-trifluoromethylphenyl (1ae), 2,4-dinitrophenyl (1af) and 

hexafluoroisopropanyl (1aj) esters participated in the carboxylative cyclization reaction smoothly and 
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gave 86-90% yields comparable to pentafluorophenyl ester substrate 1aa. Mono fluorophenoxide (1ac, 

1ad) and mononitrophenyloxide (1ag and 1ah) were found to be good leaving groups, while the 

unsubstituted phenoxide proved to be less effective and only 68% yield of 2a was obtained when phenyl 

3-phenyl-2-butenoate (1ai) was used. Another advantage for the use of those electron-deficient leaving 

groups is to suppress the alcoholysis of the anhydride product to generate hemiesters by-product. 2-

Butenoyl chloride (1ak), imidazole (1al) and phthalimide (1am) were also verified as suitable substrates 

for this reaction. Considering the easy availability of pentafluorophenyl esters, and facile recovery of 

pentafluorophenol after the reaction, our explorations still selected pentafluorophenyl 2-butenoate as the 

substrates.

Scheme 2. Carboxylative Cyclization of Various 2-Butenoates with Carbon Dioxide a
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a Reaction conditions: 1a (0.1 mmol), CO2 (1.0 MPa), DBU (0.3 mmol), CH3CN (2 mL ), r.t, 18 h.

With the optimized reaction conditions in hands, we next investigated the substrate scopes with regard 

to pentafluorophenyl 2-butenoate using 3.0 equivalent of DBU as base at room temperature in acetonitrile 

(Scheme 3). 3-Aryl-2-butenoate (1) containing various functional groups such as electron-donating alkyl 

and alkoxy substituents, electron-withdrawing fluoride, chloride, and bromide substituents all conducted 
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the reaction smoothly to produce the corresponding cyclization products 2b−2l in good yields. The 

structures of cyclic anhydride products 2b and 2e were further confirmed by X-ray crystallography (See 

SI).12 4-Furanyl glutaconic anhydride (2m) and 4-thiophenyl glutaconic anhydride (2n) could be 

synthesized by this reaction in 86% and 80% yields respectively. 3-Alkyl-2-butenoate gave the desired 

products  2o−2p in satisfactory yields and cyclopropanyl group was tolerated (2q). Besides the mono-

substituted products, 3,4-disubstituted glutaconic anhydrides 2r and 2s were obtained in good yields.

Scheme 3. Carboxylative Cyclization of Various 2-Butenoates with Carbon Dioxide a
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a Reaction conditions: 1 (0.1 mmol), CO2 (1.0 MPa), DBU (0.3 mmol), CH3CN (2 mL ), r.t, 18 h. 
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The synthetic utility of this carboxylative cyclization reaction was firstly demonstrated through the 

gram-scale synthesis of 2a in 84% yield (Scheme 4, up).  Then the obtained cyclic anhydride 2a was 

employed as a versatile intermediate to easily transform into other important compounds by simple 

organic reactions (Scheme 4, down). The hydrolytic reaction of 2a under basic conditions generated 

glutaconate 3a in 90% yield. The reduction of 2a with lithium aluminum hydride furnished 3-phenyl-2-

pentene-1,5-diol 4a in 70% yield. DMAP promoted cycloaddition of 2a and 4-nitrobenzaldehyde gave 3,

6-dihydro-6-oxo-2H-pyran-3-carboxylate 5a in moderated yield,13 while the reaction of 2a with excess 

dimethyl acetylenedicarboxylate resulted in an unexpected compound 6a, which might formed by a 

cycloaddition-nucleophilic addition reaction sequence. The structure of product 6a was determined by X-

ray crystallography.12 The hydrogenation of 2a with H2 using Pd/C as catalyst readily gave 3-

phenylglutaric anhydride 7a in good yield.

Scheme 4. Gram-Scale Reaction and Synthetic Applications
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To illustrate which carbonyl group in the anhydride product come from CO2, the isotopic labelling 

reaction was carried out (Scheme 5). According to the 13C{1H} NMR spectroscopy (See SI), the reaction 

of 1aa with 13CO2 gave 2a’ and 2a’’ in 1:1 ratio, probably due to the rapid 1,3-hydrogen shift of in the 
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presence of a base. For the reaction of 1ra with 13CO2, the more stable isomer 2r’’ was obtained according 

to the 13C{1H} NMR and 1H-13C{1H} gHMBC spectroscopy (See SI), while 2r’ was not observed. 

Scheme 5. Isotopic Labelling Reaction
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Based on the control experiments in Table 1, the above labelling experiments and previous reports,9,10 

a possible mechanism for this carboxylative cyclization reaction was proposed (Scheme 6). The reaction 

of pentafluorophenyl 2-butenoate with DBU would firstly form the substituted vinylketene A,14,15 which 

continued to react with another DBU to generate zwitterionic dienolate B.14,15 Meanwhile, CO2 would be 

activated by the formation of DBU-CO2 adduct. Then intermediate B would conduct γ-carboxylation with 

DBU-CO2 to give glutaconate C, in which the intramolecular attack of carboxylate group to the carbonyl 

next to DBU would finally yield the anhydride product.

Scheme 6. Possible Mechanism
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A B C

DBUH
C6F5O

DBU + CO2
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In conclusions, we have developed a straightforward access to synthetically important glutaconic 

anhydrides via an organic base-promoted carboxylative cyclization of 2-butenoate with carbon dioxide. 

A variety of 2-butenoates bearing electro-deficient leaving groups such as fluorophenoxide, 

trifluoromethylphenoxide, and nitrophenoxide underwent this reaction smoothly and gave anhydride 
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9

products in good yields. This metel-free reaction showed broad substrate scopes and proceeded under 

very mild reaction conditions.

EXPERIMENTAL SECTION

Unless otherwise stated, all manipulations were performed using standard Schlenk techniques under a 

dry nitrogen or carbon dioxide atmosphere. CH3CN was distilled with P2O5. THF and toluene were 

distilled from sodium/benzophenone. All of the solvents were stored over 4A molecular sieves before 

used. NMR spectra were recorded on 400M or 500M (1H NMR, 400 MHz or 500MHz; 13C NMR, 101 

MHz or 126MHz) spectrometer in CDCl3 or DMSO at ambient temperature and chemical shifts are 

expressed in parts per million (δ, ppm). Proton chemical shifts are referenced to 7.26 ppm (CHCl3) or 

2.50 ppm (DMSO) and carbon chemicalshifts are referenced to 77.0 ppm (CHCl3) or 39.5 ppm (DMSO). 

High resolution mass spectra (HRMS) were recorded on a Q-TOF mass spectrometry equipped with Z-

spray ionization source. Infrared spectra (IR) were measured using a Nicolet NEXUS FT-IR 

spectrophotometer. Carbon dioxide (99.999%), and other commercially available chemicals were used 

without further purification.

General Procedure for the Preparation of 2-Butenoate Substrate. Except 3-phenyl-2-butenoyl 

chloride (1ak),14a 3-phenyl-2-butenoylimidazole (1al),16 3-phenyl-2-butenoyl phthalimide (1am)17 were 

prepared according to the literature procedure, Other 2-butenoate substrates were prepared using the 

following procedure.18 

A mixture of carboxylic acid (5 mmol), pentafluorophenol or phenol derivatives (6 mmol), DMAP 

(61.0 mg, 0.5 mmol), and EDCI (1.1 g, 5.5 mmol) in THF (20 mL) was stirred overnight at room 

temperature. The mixture was diluted cautiously with saturated NaHCO3, and then extracted with EtOAc 

(3 x 30 mL). The combined organic phase was washed with brine (100 mL). After drying over Na2SO4 

and filtration, the solvent was removed under reduced pressure. The residue was purified by flash 

chromatography on silica gel (hexanes /ethyl acetate) to afford the desired ester products.
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Perfluorophenyl (E)-3-phenylbut-2-enoate (1aa). white solid, 1.31 g, 80% yield, Rf = 0.50 (petroleum 

ether/EtOAc 50:1). 1H NMR (400 MHz, CDCl3) δ 7.61–7.54 (m, 2H), 7.47–7.42 (m, 2H), 6.45–6.42 (m, 

1H), 2.68–2.66 (m, 3H). 13C{1H} NMR (126 MHz, CDCl3) δ 162.4, 161.9, 141.4 (dm, J = 252.5 Hz), 

141.2, 139.3 (dm, J = 252.9 Hz), 137.9 (dm, J = 252.5 Hz), 130.0, 128.7, 126.5, 125.2 (m),113.0, 18.6. 

19F NMR (470 MHz, CDCl3) δ -152.53 – -153.60 (m), -158.70 (t, J = 21.7 Hz), -162.73 – -162.84 (m). IR 

(neat cm-1) ν 2929, 2855, 1759, 1620, 1518, 1005, 896. HRMS (EI-TOF) m/z: [M]+ Calcd for C16H9F5O2 

328.0523; Found 328.0515.

2,4-Difluorophenyl (E)-3-phenyl but-2-enoate (1ab). white solid, 0.86 g, 63% yield, Rf = 0.50 

(petroleum ether/EtOAc 50:1). 1H NMR (400 MHz, CDCl3) δ 7.56–7.54 (m, 1H), 7.43–7.41 (m, 4H), 

7.19–7.13 (m, 2H), 6.98–6.87 (m, 1H), 6.39 (s, 1H), 2.64 (s, 3H). 13C{1H} NMR (126 MHz, CDCl3) δ 

163.9, 160.0 (dd, J = 196.9, 10.5 Hz), 159.9, 154.3 (dd, J = 251.8, 12.5 Hz), 141.7, 134.5 (dd, J = 12.9, 

4.0 Hz), 129.6, 128.6, 126.4, 124.5 (dd, J = 9.9, 2.0 Hz), 114.7, 111.1 (dd, J = 23.0, 3.8 Hz), 105.0 (dd, J 

= 26.9, 22.5 Hz), 18.3. 19F NMR (470 MHz, CDCl3) δ -113.05 – -113.08 (m), -123.25 – -123.28 (m). IR 

(neat cm-1) ν 2912, 2852, 1743, 1624, 1119, 850. HRMS (EI-TOF) m/z: [M]+ Calcd for C16H12F2O2 

274.0805; Found 274.0807.

2-Fluorophenyl (E)-3-phenyl but-2-enoate (1ac). white solid, 0.67 g, 52% yield, Rf = 0.55 (petroleum 

ether/EtOAc 50:1). 1H NMR (400 MHz, CDCl3) δ 7.57–7.55 (m, 2H), 7.43–7.41 (m, 3H), 7.23–7.16 (m, 

4H), 6.41 (d, J = 1.2 Hz, 1H), 2.64 (d, J = 4.3 Hz, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ 163.9, 159.4, 

154.3 (d, J = 249.0 Hz), 141.7, 138.1 (d, J = 12.7 Hz), 129.5, 128.6, 126.8 (d, J = 7.2 Hz), 126.4, 124.4 

(d, J = 3.8 Hz), 124.0, 116.6 (d, J = 18.4 Hz), 115.0, 18.3. 19F NMR (470 MHz, CDCl3) δ -128.20 (dd, J 

= 14.0, 7.5 Hz). IR (neat cm-1) ν 2954, 2925, 2843, 1744, 1625, 1102, 996, 764. HRMS (EI-TOF) m/z: 

[M]+ Calcd for C16H13FO2 256.0900; Found 256.0897.

4-Fluorophenyl (E)-3-phenyl but-2-enoate (1ad). white solid, 0.77 g, 60% yield, Rf = 0.55 (petroleum 

ether/EtOAc 50:1). 1H NMR (400 MHz, CDCl3) δ 7.56–7.54 (m, 2H), 7.43–7.41 (m, 3H), 7.14–7.06 (m, 

4H), 6.36 (d, J = 1.1 Hz, 1H), 2.65 (d, J = 1.0 Hz, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ 165.0, 161.3, 

158.9, 146.5 (d, J = 2.8 Hz), 141.8, 129.5, 128.6, 126.4, 123.1 (d, J = 8.4 Hz), 116.1, 115.8 (d, J = 13.9 
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Hz), 18.2. 19F NMR (470 MHz, CDCl3) δ -117.35 (dd, J = 9.9, 5.6 Hz). IR (neat cm-1) ν 2949, 2925, 1732, 

1625, 999, 868. HRMS (EI-TOF) m/z: [M]+ Calcd for C16H13FO2 256.0900; Found 256.0891.

4-Trifluoromethylphenyl (E)-3-phenylbut-2-enoate (1ae). white solid, 1.06 g, 69% yield, Rf = 0.50 

(petroleum ether/EtOAc 50:1). 1H NMR (400 MHz, CDCl3) δ 7.68 (d, J = 8.5 Hz, 2H), 7.57–7.54 (m, 

2H), 7.43–7.42 (m, 3H), 7.29 (d, J = 8.5 Hz, 1H)., 6.38 (d, J = 1.2 Hz, 1H), 2.65 (d, J = 1.2 Hz, 3H). 

13C{1H} NMR (101 MHz, CDCl3) δ 164.4, 159.8, 153.3, 141.7, 129.6, 128.7, 127.8 (q, J = 32.8 Hz), 

126.7 (q, J = 3.7 Hz), 126.4, 124.0 (q, J = 284.0 Hz), 122.3, 115.4, 18.3. 19F NMR (470 MHz, CDCl3) δ 

-62.18 (s). IR (neat cm-1) ν 2954, 2913, 1737, 1626, 999, 865. HRMS (EI-TOF) m/z: [M]+ Calcd for 

C17H13F3O2 306.0868; Found 306.0869.

2,4-Dinitrophenyl (E)-3-phenylbut-2-enoate (1af). white solid, 1.23 g, 75% yield, Rf = 0.30 (petroleum 

ether/EtOAc 50:1). 1H NMR (400 MHz, CDCl3) δ 8.96 (d, J = 2.6 Hz, 1H), 8.53 (dd, J = 8.9, 2.7 Hz, 1H), 

7.59–7.54 (m, 3H), 7.45-7.43 (m, 3H), 6.42 (d, J = 1.0 Hz, 1H), 2.62 (d, J = 0.9 Hz, 3H). 13C{1H} NMR 

(101 MHz, CDCl3) δ 162.8, 162.6, 148.8, 144.8, 142.1, 141.1, 132.0, 130.1, 128.8, 126.7, 126.5, 121.5, 

113.6, 18.6. IR (neat cm-1) ν 1747, 1605, 1537, 1098, 986. HRMS (EI-TOF) m/z: [M]+ Calcd for 

C16H12N2O6 328.0695; Found 328.0704.

2-Nitrophenyl (E)-3-phenylbut-2-enoate (1ag). white solid, 0.99 g, 70% yield, Rf = 0.35 (petroleum 

ether/EtOAc 50:1). 1H NMR (400 MHz, CDCl3) δ 8.10 (dd, J = 8.2, 1.6 Hz, 1H), 7.69–7.65 (m, 1H), 7.58–

7.56 (m, 2H), 7.44–7.38 (m, 4H), 7.31 (dd, J = 8.1, 1.2 Hz, 1H), 6.43 (d, J = 1.3 Hz, 1H), 2.64 (d, J = 1.2 

Hz, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ 163.8, 160.5, 144.1, 142.2, 141.4, 134.5, 129.7, 128.6, 

126.4, 126.3, 125.6, 125.3, 114.7, 18.3. IR (neat cm-1) ν 1744, 1625, 1529, 1349, 1113, 993. HRMS (ESI-

TOF) m/z: [M+Na]+ Calcd for C16H13NNaO4 306.0742; Found 306.0755.

4-Nitrophenyl (E)-3-phenylbut-2-enoate (1ah). white solid, 1.10 g, 78% yield, Rf = 0.40 (petroleum 

ether/EtOAc 50:1). 1H NMR (400 MHz, CDCl3) δ 8.32–8.28 (m, 2H), 7.57–7.54 (m, 2H), 7.44–7.43 (m, 

3H), 7.37–7.33 (m, 2H), 6.37 (d, J = 1.3 Hz, 1H), 2.66 (d, J = 1.2 Hz, 3H). 13C{1H} NMR (101 MHz, 

CDCl3) δ 164.8, 160.6, 155.6, 145.1, 141.5, 129.8, 128.7, 126.4, 125.1, 122.5, 114.9, 18.4. IR (neat cm-1) 
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ν 2974, 2913, 2847, 1736, 1614, 1525, 997, 856. HRMS (ESI-TOF) m/z: [M+Na]+ Calcd for 

C16H13NNaO4 306.0742; Found 306.0751.

Phenyl (E)-3-phenylbut-2-enoate (1ai). white solid, 0.67 g, 56% yield, Rf  = 0.50 (petroleum 

ether/EtOAc 50:1). 1H NMR (400 MHz, CDCl3) δ 7.62–7.60 (m, 2H), 7.49–7.45 (m, 5H), 7.32–7.29 (m, 

1H), 7.25–7.22 (m, 2H), 6.46 (dd, J = 2.5, 1.2 Hz, 1H), 2.72 (d, J = 1.3 Hz, 3H). 13C{1H} NMR (101 

MHz, CDCl3) δ 165.0, 158.5, 150.7, 141.9, 129.4, 129.3, 128.6, 126.4, 125.6, 121.7, 116.0, 18.2. IR (neat 

cm-1) ν 2933, 1729, 1626, 1592, 994. HRMS (ESI-TOF) m/z: [M+Na]+ Calcd for C16H14NaO2 261.0891; 

Found 261.0899.

1,1,1,3,3,3-Hexafluoropropan-2-yl (E)-3-phenylbut-2-enoate (1aj). white solid, 1.30 g, 83% yield, Rf 

= 0.40 (petroleum ether/EtOAc 50:1). 1H NMR (400 MHz, CDCl3) δ 7.55–7.52 (m, 2H), 7.43–7.40 (m, 

3H), 6.26 (d, J = 0.9 Hz, 1H), 5.92–5.86 (m, 1H), 2.65 (d, J = 0.8 Hz, 3H). 13C{1H} NMR (101 MHz, 

CDCl3) δ 162.6, 162.3, 141.2, 130.0, 128.7, 126.5, 120.7 (q, J = 284.7 Hz), 113.1, 66.0 (dt, J = 69.1, 34.5 

Hz), 18.6. 19F NMR (470 MHz, CDCl3) δ -73.29 (d, J = 6.2 Hz). IR (neat cm-1) ν 2962, 1743, 1624, 1112, 

926, 905, 765. HRMS (EI-TOF) m/z: [M]+ Calcd for C13H10F6O2 312.0585; Found 312.0579.

(E)-2-(3-phenylbut-2-enoyl)isoindoline-1,3-dione (1am). white solid, 0.67g, 68% yield, Rf = 0.30 

(petroleum ether/EtOAc 5:1). 1H NMR (400 MHz, CDCl3) δ 8.01–7.99 (m, 2H), 7.80–7.78 (m, 2H), 7.64–

7.62 (m, 2H), 7.45–7.43 (m, 3H), 6.96–6.94 (m, 1H), 2.70 (d, J = 1.1 Hz, 3H). 13C{1H} NMR (101 MHz, 

DMSO-d6) δ 169.6, 165.9, 163.3, 157.4, 141.4, 135.8, 134.6, 132.7, 131.3, 130.2, 129.0, 126.7, 124.2, 

123.2, 120.0, 18.4. IR (neat cm-1) ν 2910, 2860, 1734, 1689, 1281, 1052, 712. HRMS (ESI-TOF) m/z: 

[M+Na]+ Calcd for C18H13NNaO3 314.0793; Found 314.0803.

Perfluorophenyl (E)-3-(p-tolyl)but-2-enoate (1ba). white solid, 1.28 g, 75% yield, Rf = 0.50 (petroleum 

ether/EtOAc 50:1). 1H NMR (400 MHz, CDCl3) δ 7.50 (d, J = 8.2 Hz, 2H), 7.27 (d, J = 8.2 Hz, 2H), 6.44 

(s, 1H), 2.67 (s, 3H), 2.43 (s, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ 162.3, 162.1, 141.5 (dm, J = 253.4 

Hz), 140.5, 138.2, 139.4, 139.1 (dm, J = 252.0 Hz), 137.9 (dm, J = 253.4 Hz), 126.4, 125.3 (m), 112.0, 

21.2, 18.4. 19F NMR (470 MHz, CDCl3) δ -152.58 – -152.64 (m), -158.88 (t, J = 21.6 Hz), -162.84 – -
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162.95 (m). IR (neat cm-1) ν 2962, 2929, 2864, 1756, 1619, 1517, 1098, 896. HRMS (EI-TOF) m/z: [M]+ 

Calcd for C17H11F5O2 342.0679; Found 342.0675.

Perfluorophenyl (E)-3-(4-(tert-butyl)phenyl)but-2-enoate (1ca). white solid, 1.50 g, 78% yield, Rf = 

0.50 (petroleum ether/EtOAc 50:1). 1H NMR (400 MHz, CDCl3) δ 7.53 (d, J = 8.1 Hz, 2H), 7.46 (d, J = 

8.1 Hz, 2H), 6.43 (d, J = 1.1 Hz, 1H), 2.66 (d, J = 1.1 Hz, 3H), 1.36 (s, 9H). 13C{1H} NMR (126 MHz, 

CDCl3) δ 162.2, 162.1, 153.7, 141.5 (dm, J = 252.8 Hz), 139.3 (dm, J = 252.7 Hz), 138.1, 137.9 (dm, J = 

252.8 Hz), 126.3, 125.7, 125.3 (m), 112.1, 34.8, 31.2, 18.4. 19F NMR (470 MHz, CDCl3) δ -152.52 – -

152.58 (m), -158.82 (t, J = 21.7 Hz), -162.79 – -162.90 (m). IR (neat cm-1) ν 2966, 2872, 1757, 1619, 

1007, 832. HRMS (EI-TOF) m/z: [M]+ Calcd for C20H17F5O2 384.1149; Found 384.1157.

Perfluorophenyl (E)-3-(4-cyclohexylphenyl)but-2-enoate (1da). white solid, 1.33 g, 65% yield, Rf = 

0.50 (petroleum ether/EtOAc 50:1). 1H NMR (400 MHz, CDCl3) δ 7.52 (d, J = 8.3 Hz, 2H), 7.28 (d, J = 

8.3 Hz, 2H), 6.42 (d, J = 1.0 Hz, 1H), 2.65 (d, J = 1.0 Hz, 3H). 2.56 (t, J = 8.1 Hz, 1H), 1.92–1.77 (m, 

5H), 1.51–1.27 (m, 5H). 13C{1H} NMR (126 MHz, CDCl3) δ 162.4, 162.1, 150.6, 141.4 (dm, J = 251.7 

Hz), 139.3 (dm, J = 252.4 Hz), 138.5, 137.9 (dm, J = 251.7 Hz), 127.2, 126.5, 125.3 (m), 112.0, 44.4, 

34.3, 26.8, 26.1, 18.4. 19F NMR (470 MHz, CDCl3) δ -152.55 (d, J = 17.8 Hz), -158.83 (t, J = 21.6 Hz), -

162.80 – -162.89 (m). IR (neat cm-1) ν 2928, 2853, 1759, 1618, 1606, 1518, 1100, 896. HRMS (EI-TOF) 

m/z: [M-C6F5O]+ Calcd for C16H19O 227.1430; Found 227.1437.

Perfluorophenyl (E)-3-(4-methoxyphenyl) but-2-enoate (1ea). white solid, 1.52 g, 85% yield, Rf = 0.40 

(petroleum ether/EtOAc 50:1). 1H NMR (400 MHz, CDCl3) δ 7.58–7.54 (m, 2H), 6.97–6.93 (m, 2H), 6.40 

(d, J = 1.2 Hz, 1H), 3.87 (s, 3H), 2.65 (d, J = 1.2 Hz, 3H). 13C{1H} NMR (126 MHz, CDCl3) δ 162.2, 

161.4, 141.5 (dm, J = 252.4 Hz), 139.2 (dm, J = 252.5 Hz), 137.9 (dm, J = 252.4 Hz), 133.2, 128.1, 125.4 

(m), 114.1, 110.8, 55.4, 18.2. 19F NMR (470 MHz, CDCl3) δ -152.60 – -152.68 (m), -158.95 (t, J = 21.6 

Hz), -162.88 – -162.98 (m). IR (neat cm-1) ν 2937, 2831, 1754, 1600, 1518, 1098, 896. HRMS (EI-TOF) 

m/z: [M]+ Calcd for C17H11F5O3 358.0628; Found 358.0648.

Perfluorophenyl (E)-3-(2,3-dihydrobenzo[b] [1,4] dioxin-6-yl) but-2-enoate (1fa). white solid, 1.58 g, 

82% yield, Rf = 0.35 (petroleum ether/EtOAc 50:1). 1H NMR (400 MHz, CDCl3) δ 7.12–7.10 (m, 2H), 
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6.91–6.89 (m, 1H), 6.37 (d, J = 1.2 Hz, 1H), 4.32–4.28 (m, 4H), 2.60 (d, J = 1.2 Hz, 3H). 13C{1H} NMR 

(101 MHz, CDCl3) δ 162.1, 161.5, 145.5, 143.5, 141.4 (dm, J = 253.8 Hz), 139.2 (dm, J = 252.5 Hz), 

137.9 (dm, J = 253.9 Hz), 134.2, 125.3 (m), 120.0, 117.4, 115.7, 111.3, 64.6, 64.3, 18.2. 19F NMR (470 

MHz, CDCl3) δ -152.56 – -152.62 (m), -158.91 (t, J = 21.7 Hz), -162.85 – -162.96 (m). IR (neat cm-1) ν 

2978, 2933, 2880, 1751, 1604, 1578, 1007, 891. HRMS (EI-TOF) m/z: [M]+ Calcd for C18H11F5O4 

386.0577; Found 386.0574.

Perfluorophenyl (E)-3-(naphthalen-2-yl) but-2-enoate (1ga). white solid, 1.23 g, 65% yield, Rf = 0.45 

(petroleum ether/EtOAc 50:1). 1H NMR (400 MHz, CDCl3) δ 8.06 (s, 1H), 7.93–7.86 (m, 3H), 7.68 (d, J 

= 8.6 Hz, 1H), 7.57–7.54 (m, 2H), 6.58 (s, 1H), 2.77 (s, 3H). 13C{1H} NMR (126 MHz, CDCl3) δ 164.4, 

161.6, 141.4 (dm, J = 251.1 Hz), 141.1, 139.3 (dm, J = 252.3 Hz), 137.9 (dm, J = 252.8 Hz), 133.8, 129.7, 

128.9, 128.6, 126.7, 126.2, 125.3 (m), 125.2, 125.0, 124.3, 116.8, 22.4. 19F NMR (470 MHz, CDCl3) δ -

152.50 – -152.56 (m), -158.49 (t, J = 21.7 Hz), -162.60 – -162.69 (m). IR (neat cm-1) ν 2966, 2925, 1761, 

1630, 1519, 1130, 1003, 899. HRMS (EI-TOF) m/z: [M]+ Calcd for C20H11F5O2 378.0679; Found 

378.0690.

Perfluorophenyl (E)-3-(naphthalen-1-yl) but-2-enoate (1ha). white solid, 1.66 g, 88% yield, Rf = 0.40 

(petroleum ether/EtOAc 50:1). 1H NMR (400 MHz, CDCl3) δ 7.94–7.89 (m, 2H), 7.87 (s, 1H), 7.59–7.52 

(m, 2H), 7.52–7.49 (m, 1H), 7.38 (d, J = 7.0 Hz, 1H), 6.32 (d, J = 1.3 Hz, 1H), 2.74 (d, J = 1.3 Hz, 3H). 

13C{1H} NMR (101 MHz, CDCl3) δ 162.1, 162.0, 141.4 (dm, J = 250.9 Hz), 139.3 (dm, J = 252.6 Hz),  

138.2, 137.9 (dm, J = 253.7 Hz), 134.0, 133.0, 128.7, 127.6, 127.3, 126.7, 126.6, 125.2 (m), 123.6, 113.2, 

18.5. 19F NMR (470 MHz, CDCl3) δ -152.38 – -152.44 (m), -158.68 (t, J = 21.6 Hz), -162.70 – -162.80 

(m). IR (neat cm-1) ν 2921, 1748, 1613, 1517, 1098, 990, 894. HRMS (EI-TOF) m/z: [M]+ Calcd for 

C20H11F5O2 378.0679; Found 378.0669.

Perfluorophenyl (E)-3-([1,1'-biphenyl]-4-yl) but-2-enoate (1ia). white solid, 1.66 g, 82% yield, Rf = 

0.40 (petroleum ether/EtOAc 50:1). 1H NMR (400 MHz, CDCl3) δ 7.68–7.65 (m, 6H), 7.52–7.48 (m, 2H), 

7.44–7.40 (m, 1H), 6.51 (d, J = 1.0 Hz, 1H), 2.71 (d, J = 0.9 Hz, 3H). 13C{1H} NMR (101 MHz, CDCl3) 

δ 161.7, 143.0, 141.4 (dm, J = 250.7 Hz), 140.0, 139.8, 139.3 (dm, J = 252.8 Hz), 137.9 (dm, J = 253.5 
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Hz), 128.9, 127.9, 127.3, 127.1, 127.0, 125.3 (m), 112.7, 18.4. 19F NMR (470 MHz, CDCl3) δ -152.50 – 

-152.56 (m), -158.68 (t, J = 21.6 Hz), -162.70 – -162.80 (m). IR (neat cm-1) ν 2917, 2880, 1753, 1603, 

1518, 1031, 1002, 898. HRMS (EI-TOF) m/z: [M]+ Calcd for C22H13F5O2 404.0836; Found 404.0844.

Perfluorophenyl (E)-3-(4-fluorophenyl) but-2-enoate (1ja). white solid, 1.35 g, 78% yield, Rf = 0.50 

(petroleum ether/EtOAc 50:1). 1H NMR (400 MHz, CDCl3) δ 7.58–7.55 (m, 2H), 7.14–7.10 (m, 2H), 6.38 

(s, 1H), 2.64 (s, 3H). 13C{1H} NMR (126 MHz, CDCl3) δ 163.9 (d, J = 251.0 Hz), 161.8, 161.0, 141.4 

(dm, J = 251.1 Hz), 139.3 (dm, J = 252.7 Hz), 137.9 (dm, J = 253.5 Hz), 137.2 (d, J = 3.3 Hz), 128.5 (d, 

J = 8.5 Hz), 125.2 (m), 115.8 (d, J = 21.7 Hz), 112.9, 18.5. 19F NMR (470 MHz, CDCl3) δ -110.55 (s), -

152.60 – -152.67 (m), -158.58 – -158.68 (m), -162.70 – -162.82 (m). IR (neat cm-1) ν 2958, 2929, 2851, 

1759, 1624, 1518, 1025, 1009, 834. HRMS (EI-TOF) m/z: [M]+ Calcd for C16H8F6O2 346.0428; Found 

346.0419.

Perfluorophenyl (E)-3-(4-chlorophenyl) but-2-enoate (1ka). white solid, 1.51 g, 83% yield, Rf = 0.45 

(petroleum ether/EtOAc 50:1). 1H NMR (400 MHz, CDCl3) δ 7.51 (d, J = 8.5 Hz, 2H), 7.41 (d, J = 8.5 

Hz, 2H), 6.40 (s, 1H), 2.63 (s, 3H). 13C{1H} NMR (126 MHz, CDCl3) δ 161.7, 160.8, 141.4 (dm, J = 

251.1 Hz), 139.5, 139.3 (dm, J = 252.8 Hz), 137.9 (dm, J = 252.8 Hz), 136.2, 129.0, 127.8, 125.2 (m), 

113.4, 18.4. 19F NMR (470 MHz, CDCl3) δ -152.53 – -152.59 (m), -158.50 (t, J = 21.6 Hz), -162.61 – -

162.73 (m). IR (neat cm-1) ν 2958, 2913, 2847, 1758, 1622, 1520, 1025, 894. HRMS (EI-TOF) m/z: [M]+ 

Calcd for C16H8ClF5O2 362.0133; Found 362.0128.

Perfluorophenyl (E)-3-(4-bromophenyl) but-2-enoate (1la). white solid, 1.42 g, 70% yield, Rf = 0.45 

(petroleum ether/EtOAc 50:1). 1H NMR (400 MHz, CDCl3) δ 7.58–7.54 (m, 2H), 7.45–7.41 (m, 2H), 6.41 

(d, J = 1.3 Hz, 1H), 2.63 (d, J = 1.3 Hz, 3H).  13C{1H} NMR (126 MHz, CDCl3) δ 161.7, 160.8, 141.4 

(dm, J = 251.6 Hz), 140.0, 139.4 (dm, J = 253.2 Hz), 137.9 (dm, J = 253.5 Hz),  132.0, 128.0, 124.5, 

125.1 (m), 113.4, 18.4. 19F NMR (470 MHz, CDCl3) δ -152.52 – -152.57 (m), -158.46 (t, J = 21.6 Hz), -

162.59 – -162.68 (m). IR (neat cm-1) ν 2962, 2917, 2843, 1757, 1621, 1518, 1025, 902. HRMS (EI-TOF) 

m/z: [M]+ Calcd for C16H8BrF5O2 405.9628; Found 405.9625.
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Perfluorophenyl (E)-3-(furan-2-yl) but-2-enoate (1ma). white solid, 1.18 g, 74% yield, Rf = 0.40 

(petroleum ether/EtOAc 50:1). 1H NMR (400 MHz, CDCl3) δ 7.54 (d, J = 1.5 Hz, 1H), 6.83 (d, J = 3.5 

Hz, 1H), 6.63 (d, J = 1.0 Hz, 1H), 6.53 (dd, J = 3.5, 1.8 Hz, 1H), 2.52 (d, J = 1.1 Hz, 3H). 13C{1H} NMR 

(126 MHz, CDCl3) δ 162.4, 153.7, 147.7, 145.1, δ 141.5 (dm, J = 251.0 Hz), 139.3 (dm, J = 252.5 Hz), 

137.9 (dm, J = 253.2 Hz), 125.3 (m), 113.6, 112.5, 108.1, 15.3. 19F NMR (470 MHz, CDCl3) δ -152.59 – 

-152.64 (m), -158.93 (t, J = 21.6 Hz), -162.89 – -162.99 (m). IR (neat cm-1) ν 1752, 1615, 1519, 1022, 

1006, 890. HRMS (EI-TOF) m/z: [M]+ Calcd for C14H7F5O3 318.0315; Found 318.0322.

Perfluorophenyl (E)-3-(thiophen-2-yl) but-2-enoate (1na). white solid, 1.47 g, 88% yield, Rf = 0.40 

(petroleum ether/EtOAc 50:1). 1H NMR (400 MHz, CDCl3) δ 7.48–7.45 (m, 2H), 7.13–7.11 (m, 1H), 6.51 

(d, J = 0.9 Hz, 1H), 2.68 (d, J = 1.0 Hz, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ 162.0, 154.0, 144.5, 

141.4 (dm, J = 250.9 Hz), 139.3 (dm, J = 252.8 Hz), 137.9 (dm, J = 253.9 Hz), 128.9, 128.4, 128.31, 

125.2 (m), 109.7, 17.9. 19F NMR (470 MHz, CDCl3) δ -152.54 – -152.60 (m), -158.76 (t, J = 21.6 Hz), -

162.77 – -162.88 (m). IR (neat cm-1) ν 2929, 2847, 1754, 1606, 1518, 1003, 947. HRMS (EI-TOF) m/z: 

[M]+ Calcd for C14H7F5O2S 334.0087; Found 334.0084.

Perfluorophenyl 3-methyl but-2-enoate (1oa). colorless oil, 0.89 g, 67% yield, Rf = 0.30 (petroleum 

ether/EtOAc 100:1). 1H NMR (400 MHz, CDCl3) δ 5.98 (s, 1H), 2.25 (d, J = 1.1 Hz, 3H), 2.04 (d, J = 1.2 

Hz, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ 164.3, 161.6, 141.4 (dm, J = 250.8 Hz), 139.2 (dm, J = 

252.3 Hz), 137.9 (dm, J = 253.8 Hz), 125.3 (m), 112.7, 27.7, 20.8. 19F NMR (470 MHz, CDCl3) δ -152.86 

– -153.90 (m), -159.15 (t, J = 21.6 Hz), -163.07 – -163.18 (m). IR (neat cm-1) ν 2986, 2921, 1763, 1644, 

1519, 1001, 909. HRMS (EI-TOF) m/z: [M-C6F5O]+ Calcd for C5H7O 83.0491; Found 83.0491.

Perfluorophenyl (E)-3,7-dimethylocta-2,6-dienoate (1pa). colorless oil, 1.39 g, 83% yield, Rf = 0.30 

(petroleum ether/EtOAc 100:1). 1H NMR (400 MHz, CDCl3) δ 5.96 (s, 1H), 5.14–5.09 (m, 1H), 2.31–

2.17 (m, 7H), 1.72–1.68 (m, 3H), 1.64–1.61 (m, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ 167.7, 161.8, 

141.4 (dm, J = 250.8 Hz), 139.2 (dm, J = 252.6 Hz), 137.9 (dm, J = 253.8 Hz), 133.1, 125.3 (m), 122.4, 

112.1, 41.3, 26.0, 19.6, 17.7. 19F NMR (470 MHz, CDCl3) δ -152.74 – -153.80 (m), -159.03 (t, J = 22.3 
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Hz), -162.96 – -163.07 (m). IR (neat cm-1) ν 2978, 2917, 2855, 1762, 1634, 1519, 1099, 1003, 902. HRMS 

(EI-TOF) m/z: [M]+ Calcd for C16H15F5O2 334.0992; Found 334.0981.

Perfluorophenyl (E)-3-cyclopropyl but-2-enoate (1qa). colorless oil, 1.17 g, 80% yield, Rf = 0.35 

(petroleum ether/EtOAc 100:1). 1H NMR (400 MHz, CDCl3) δ 5.99 (d, J = 3.8 Hz, 1H), 2.02 (d, J = 0.9 

Hz, 3H), 1.66 (d, J = 1.0 Hz, 1H), 0.97–0.91 (m, 2H), 0.89–0.81 (m, 2H). 13C{1H} NMR (101 MHz, 

CDCl3) δ 169.8, 161.6, 141.5 (dm, J = 250.8 Hz), 139.1 (dm, J = 252.6 Hz), 137.9 (dm, J = 252.7 Hz), 

125.4 (m), 109.6, 20.8, 15.4, 7.9. 19F NMR (470 MHz, CDCl3) δ -152.78 – -152.89 (m), -159.28 (td, J = 

21.6, 7.3 Hz), -163.13 – -163.24 (m). IR (neat cm-1) ν 2925, 2851, 1758, 1621, 1521, 1025, 1005, 930, 

837. HRMS (EI-TOF) m/z: [M-C6F5O]+ Calcd for C7H9O 109.0648; Found 109.0645.

Perfluorophenyl (E)-2-(chroman-4-ylidene) acetate (1ra). white solid, 1.30 g, 73% yield, Rf = 0.35 

(petroleum ether/EtOAc 50:1). 1H NMR (400 MHz, CDCl3) δ 7.72–7.70 (m, 1H), 7.38–7.34 (m, 1H), 

7.00–6.92 (m, 2H), 6.60 (s, 1H), 4.28 (t, J = 6.2 Hz, 2H), 3.42–3.39 (m, 2H). 13C{1H} NMR (101 MHz, 

CDCl3) δ 162.0, 157.4, 154.0, 141.4 (dm, J = 250.9 Hz), 139.3 (dm, J = 252.8 Hz), 137.9 (dm, J = 253.7 

Hz), 133.3, 125.2 (m), 124.9, 121.3, 120.0, 118.5, 105.5, 65.3, 27.3. 19F NMR (470 MHz, CDCl3) δ -

152.57 – -152.63 (m), -158.61 (t, J = 21.6 Hz), -162.68 – -162.78 (m). IR (neat cm-1) ν 2994, 2884, 1753, 

1602, 1518, 1002, 874. HRMS (EI-TOF) m/z: [M]+ Calcd for C17H9F5O3 356.0472; Found 356.0465.

Perfluorophenyl (E)-3-phenylpent-2-enoate (1sa). white solid, 1.37 g, 80% yield, Rf = 0.50 (petroleum 

ether/EtOAc 50:1). 1H NMR (500 MHz, CDCl3) δ 7.55–7.45 (m, 5H), 6.32 (s, 1H), 3.16 (q, J = 7.5 Hz, 

2H), 1.14 (t, J = 7.5 Hz, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ 168.9, 161.5, 141.4 (dm, J = 251.1 Hz), 

140.1, 139.3 (dm, J = 252.8 Hz), 137.9 (dm, J = 254.0 Hz), 129.9, 128.8, 126.8, 125.3 (m), 112.5, 25.0, 

13.4. 19F NMR (470 MHz, CDCl3) δ -152.53 – -152.59 (m), -158.77 (t, J = 21.6 Hz), -162.77 – -162.87 

(m). IR (neat cm-1) ν 2937, 2872, 1763, 1615, 1518, 1097, 1026, 955. HRMS (EI-TOF) m/z: [M]+ Calcd 

for C17H11F5O2 342.0679; Found 342.0689.

General Procedure for Carboxylative Cyclization of 2-Butenoates with CO2. A 20 mL oven dried 

autoclave containing a stir bar was charged with 2-butenoate (0.10 mmol), DBU (46 mg, 0.30 mmol) and 

2 mL dry CH3CN in a glove box. After removal from the glove box, the autoclave was purged three times, 
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and then pressurized to appropriate pressure with carbon dioxide. The reaction mixture was stirred at 

room temperature for 18 h, and the remaining carbon dioxide was vented slowly. The reaction mixture 

was then directly loaded into silica gel column, and the products were isolated by flash column 

chromatography using EtOAc or EtOAc/acetic acid as the eluent.

4-Phenyl-2H-pyran-2,6(3H)-dione (2a). white solid, 16.9 mg, 90% yield, Rf = 0.35 (EtOAc/acetic acid 

30:1). 1H NMR (400 MHz, CDCl3) δ 7.57–7.51 (m, 5H), 6.62 (s, 1H), 3.92 (s, 2H). 13C{1H} NMR (126 

MHz, CDCl3) δ 164.7, 160.2, 152.7, 133.8, 132.1, 129.5, 126.1, 112.1, 33.4. IR (neat cm-1) ν 2956, 2922, 

2854, 1794, 1726, 1466, 1122, 974, 767. HRMS (ESI-TOF) m/z: [M+H]+ Calcd for C11H9O3 189.0552; 

Found 189.0552..

4-(p-Tolyl)-2H-pyran-2,6(3H)-dione (2b). white solid, 18.4 mg, 91% yield, Rf = 0.35 (EtOAc/acetic 

acid 30:1). 1H NMR (400 MHz, CDCl3) δ 7.46 (d, J = 8.2 Hz, 2H), 7.30 (d, J = 8.2 Hz, 2H), 6.58 (s, 1H), 

3.90 (s, 2H), 2.42 (s, 3H). 13C{1H} NMR (126 MHz, CDCl3) δ 164.9, 160.4, 152.6, 142.9, 130.8, 130.1, 

126.1, 110.9, 33.3, 21.4. IR (neat cm-1) ν 2923, 2852, 1787, 1728, 1143, 999, 818, 621. HRMS (ESI-TOF) 

m/z: [M+H]+ Calcd for C12H11O3 203.0708; Found 203.0705.

4-(4-(tert-Butyl)phenyl)-2H-pyran-2,6(3H)-dione(2c). white solid, 22.5 mg, 92% yield, Rf = 0.35 

(EtOAc/acetic acid 30:1). 1H NMR (400 MHz, CDCl3) δ 7.51 (s, 4H), 6.59 (s, 1H), 3.91 (s, 2H), 1.35 (s, 

9H). 13C{1H} NMR (126 MHz, CDCl3) δ 164.9, 160.4, 156.0, 152.6, 130.8, 126.4, 126.0, 111.0, 35.0, 

33.2, 31.0. IR (neat cm-1) ν 2960, 2924, 1790, 1723, 1629, 1125, 970, 868, 620. HRMS (ESI-TOF) m/z: 

[M+H]+ Calcd for C15H17O3 245.1178; Found 245.1174.

4-(4-Cyclohexylphenyl)-2H-pyran-2,6(3H)-dione (2d). white solid, 24.8 mg, 92% yield, Rf = 0.35 

(EtOAc/acetic acid 30:1). 1H NMR (400 MHz, CDCl3) δ 7.49 (d, J = 8.3 Hz, 2H), 7.33 (d, J = 8.3 Hz, 

2H), 6.58 (s, 1H), 3.91 (s, 2H), 2.56 (d, J = 2.6 Hz, 1H), 1.88–1.76 (m, 6H), 1.44–1.39 (m, 6H). 13C{1H} 

NMR (126 MHz, CDCl3) δ 165.1, 160.6, 152.9, 152.8, 131.1, 128.0, 126.2, 110.8, 44.5, 34.1, 33.3, 26.7, 

26.0. IR (neat cm-1) ν 2925, 2852, 1795, 1737, 1607, 1448, 1122, 1016, 996, 825, 618. HRMS (ESI-TOF) 

m/z: [M+H]+ Calcd for C17H19O3 271.1334; Found 271.1326.
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4-(4-Methoxyphenyl)-2H-pyran-2,6(3H)-dione (2e). white solid, 20.7 mg, 95% yield, Rf = 0.25 

(EtOAc/acetic acid 30:1). 1H NMR (400 MHz, CDCl3) δ 7.53 (d, J = 8.9 Hz, 2H), 7.00 (d, J = 8.9 Hz, 

2H), 6.53 (s, 1H), 3.89–3.88 (m, 5H). 13C{1H} NMR (126 MHz, CDCl3) δ 165.0, 162.8, 160.5, 151.9, 

127.9, 125.8, 114.8, 109.4, 55.6, 33.2. IR (neat cm-1) ν 2924, 2852, 1791, 1732, 16256, 1515, 1185, 868, 

619. HRMS (ESI-TOF) m/z: [M+H]+ Calcd for C12H11O4 219.0657; Found 219.0652.

4-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-2H-pyran-2,6(3H)-dione (2f). white solid, 23.2 mg, 94% 

yield, Rf = 0.25 (EtOAc/acetic acid 30:1). 1H NMR (400 MHz, DMSO-d6) δ 7.36–7.32 (m, 2H), 6.95 (d, 

J = 8.5 Hz, 1H), 6.70 (s, 1H), 4.29 (d, J = 6.1 Hz, 4H), 4.10 (s, 2H). 13C{1H} NMR (126 MHz, DMSO-

d6) δ 166.2, 161.4, 153.5, 146.4, 143.5, 64.4, 63.9, 33.3. IR (neat cm-1) ν 2924, 2853, 1786, 1732, 1626, 

1127, 975, 887, 609. HRMS (ESI-TOF) m/z: [M+H]+ Calcd for C13H11O5 247.0606; Found 247.0604.

4-(Naphthalen-2-yl)-2H-pyran-2,6(3H)-dione (2g). white solid, 18.6 mg, 78% yield, Rf = 0.35 

(EtOAc/acetic acid 30:1). 1H NMR (400 MHz, DMSO-d6) δ 8.42 (s, 1H), 8.04–7.97 (m, 4H), 7.62 (s, 2H), 

6.98 (s, 1H), 4.30 (s, 2H). 13C{1H} NMR (101 MHz, DMSO-d6) δ 166.2, 161.4, 153.7, 134.0, 132.5, 

131.2, 129.0, 128.5, 128.0, 127.7, 127.5, 126.9, 123.2, 111.0, 33.4. IR (neat cm-1) ν 2973, 2929, 1784, 

1723, 1622, 1384, 1122, 975, 814, 618. HRMS (ESI-TOF) m/z: [M+H]+ Calcd for C15H11O3 239.0708; 

Found 239.0701.

4-(Naphthalen-1-yl)-2H-pyran-2,6(3H)-dione (2h). white solid, 16.4 mg, 69% yield, Rf = 0.25 

(EtOAc/acetic acid 30:1). 1H NMR (400 MHz, CDCl3) δ 7.97–793 (m, 2H), 7.88–7.85 (m, 1H), 7.60–7.57 

(m, 2H), 7.56–7.52 (m, 1H), 7.39–7.37 (m, 1H), 6.45 (t, J = 1.7 Hz, 1H), 3.94 (d, J = 1.7 Hz, 2H). 13C{1H} 

NMR (101 MHz, CDCl3) δ 164.6, 159.8, 155.0, 133.8, 133.6, 130.7, 129.4, 129.0, 127.6, 126.8, 125.1, 

124.8, 123.9, 117.8, 36.8. IR (neat cm-1) ν 2964, 2926, 2876, 1794, 1739, 1684, 1519, 1207, 776, 700. 

HRMS (ESI-TOF) m/z: [M-H]- Calcd for C15H9O3 237.0552; Found 237.0553.

4-([1,1'-Biphenyl]-4-yl)-2H-pyran-2,6(3H)-dione (2i). white solid, 20.6 mg, 78% yield, Rf = 0.30 

(EtOAc/acetic acid 30:1). 1H NMR (400 MHz, DMSO-d6) δ 7.91 (d, J = 8.1 Hz, 2H), 7.82–7.75 (m, 4H), 

7.50 (t, J = 7.5 Hz, 2H), 7.42 (t, J = 7.2 Hz, 1H), 6.87 (s, 1H), 4.21 (s, 2H). 13C{1H} NMR (101 MHz, 

DMSO-d6) δ 166.2, 161.4, 153.6, 142.9, 138.8, 132.9, 129.1, 128.2, 127.5, 127.0, 126.8, 110.5, 33.4. IR 
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(neat cm-1) ν 2953, 2923, 2851, 1788, 1723, 1630, 1165, 797, 769, 622. HRMS (ESI-TOF) m/z: [M+H]+ 

Calcd for C17H13O3 265.0865; Found 265.0859.

4-(4-Fluorophenyl)-2H-pyran-2,6(3H)-dione (2j). white solid, 19.1 mg, 92% yield, Rf = 0.30 

(EtOAc/acetic acid 30:1). 1H NMR (500 MHz, CDCl3) δ 7.57 (dd, J = 8.2, 5.2 Hz, 2H), 7.20 (t, J = 8.3 

Hz, 2H), 6.57 (s, 1H), 3.89 (s, 2H). 13C{1H} NMR (126 MHz, CDCl3) δ 164.8 (d, J = 255.4 Hz), 164.4, 

160.0, 151.4, 129.9, 128.3 (d, J = 8.9 Hz), 116.8 (d, J = 22.1 Hz), 111.9 (d, J = 1.4 Hz), 33.4. IR (neat 

cm-1) ν 2952, 2854, 1793, 1738, 1635, 1416, 873, 836, 619. HRMS (ESI-TOF) m/z: [M+H]+ Calcd for 

C11H8FO3 207.0457; Found 207.0448.

4-(4-Chlorophenyl)-2H-pyran-2,6(3H)-dione (2k). white solid, 19.6 mg, 88% yield, Rf = 0.30 

(EtOAc/acetic acid 30:1). 1H NMR (500 MHz, CDCl3) δ 7.49 (s, 4H), 6.60 (s, 1H), 3.88 (s, 2H). 13C{1H} 

NMR (126 MHz, CDCl3) δ 164.3, 159.9, 151.2, 138.5, 132.1, 129.8, 127.4, 33.2. IR (neat cm-1) ν 2960, 

2920, 2850, 1800, 1740, 970, 829. HRMS (ESI-TOF) m/z: [M+H]+ Calcd for C11H8ClO3 223.0162; Found 

223.0156.

4-(4-Bromophenyl)-2H-pyran-2,6(3H)-dione (2l). yellow solid, 20.0 mg, 75% yield, Rf = 0.35 

(EtOAc/acetic acid 30:1). 1H NMR (400 MHz, CDCl3) δ 7.65 (d, J = 8.5 Hz, 2H), 7.42 (d, J = 8.5 Hz, 

2H), 6.61 (s, 1H), 3.89 (s, 2H). 13C{1H} NMR (101 MHz, CDCl3) δ 164.2, 159.9, 151.4, 132.8, 132.6, 

131.5, 127.5, 126.8, 112.5, 33.2. IR (neat cm-1) ν 2959, 2917, 2851, 1796, 1741, 1458, 1379, 822, 725. 

HRMS (ESI-TOF) m/z: [M+H]+ Calcd for C11H8BrO3 266.9657; Found 266.9654.

4-(Furan-2-yl)-2H-pyran-2,6(3H)-dione (2m). white solid, 15.3 mg, 86% yield, Rf = 0.35 

(EtOAc/acetic acid 30:1). 1H NMR (400 MHz, DMSO-d6) δ 8.00 (s, 1H), 7.29 (s, 1H), 6.74 (s, 1H), 6.42 

(s, 1H), 4.04 (s, 2H). 13C{1H} NMR (126 MHz, DMSO-d6) δ 165.6, 161.3, 148.8, 147.4, 142.8, 116.1, 

113.2, 105.9, 31.5. IR (neat cm-1) ν 2925, 2854, 1790, 1733, 1629, 1562, 1004, 971, 841, 617. HRMS 

(ESI-TOF) m/z: [M+H]+ Calcd for C9H7O4 179.0344; Found 179.0339.

4-(Thiophen-2-yl)-2H-pyran-2,6(3H)-dione (2n). white solid, 15.5 mg, 80% yield, Rf = 0.35 

(EtOAc/acetic acid 30:1). 1H NMR (400 MHz, DMSO-d6) δ 7.91 (s, 1H), 7.77 (s, 1H), 7.24 (s, 1H), 6.52 

(s, 1H), 4.16 (s, 2H). 13C{1H} NMR (126 MHz, DMSO-d6) δ 165.6, 161.1, 148.0, 138.0, 131.8, 130.7, 
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128.9, 33.6. IR (neat cm-1) ν 2954, 2924, 2852, 1684, 1610, 1459, 1377, 855, 703. HRMS (ESI-TOF) m/z: 

[M+H]+ Calcd for C9H7O3S 195.0116; Found 195.0119.

4-Methyl-2H-pyran-2,6(3H)-dione (2o). white solid, 11.3 mg, 89% yield, Rf = 0.25 (EtOAc/acetic acid 

50:1). 1H NMR (500 MHz, CDCl3) δ 6.07 (s, 1H), 3.44 (s, 2H), 2.07 (s, 3H). 13C{1H} NMR (101 MHz, 

CDCl3) δ 164.7, 159.7, 155.4, 114.7, 36.3, 22.2. IR (neat cm-1) ν 2955, 2925, 2854, 1794, 1733, 1659, 

1114, 961, 847, 594. HRMS (ESI-TOF) m/z: [M+H]+ Calcd for C6H7O3 127.0395; Found 127.0389.

4-(4-Methylpent-3-en-1-yl)-2H-pyran-2,6(3H)-dione (2p). white solid, 14.2 mg, 73% yield, Rf = 0.25 

(EtOAc/acetic acid 50:1). 1H NMR (500 MHz, CDCl3) δ 6.06 (s, 1H), 5.03 (t, J = 6.4 Hz, 1H), 3.43 (s, 

2H), 2.34 (t, J = 7.2 Hz, 2H), 2.28–2.24 (m, 2H), 1.70 (s, 3H), 1.62 (s, 3H). 13C{1H} NMR (126 MHz, 

CDCl3) δ 164.9, 159.9, 159.1, 134.4, 121.3, 113.9, 35.7, 35.2, 25.6, 25.0, 17.8. IR (neat cm-1) ν 2960, 

2929, 2855, 1799, 1741, 1653, 1380, 1278, 1118, 966, 598. HRMS (ESI-TOF) m/z: [M+H]+ Calcd for 

C11H15O3 195.1021; Found 195.1018.

4-Cyclopropyl-2H-pyran-2,6(3H)-dione (2q). white solid, 12.5 mg, 82% yield, Rf = 0.25 (EtOAc/acetic 

acid 30:1). 1H NMR (400 MHz, CDCl3) δ 5.94 (t, J = 1.5 Hz, 1H), 3.34–3.32 (m, 2H), 1.69–1.62 (m, 1H), 

1.13–1.08 (m, 2H), 0.88–0.84 (m, 2H). 13C{1H} NMR (101 MHz, CDCl3) δ 164.9, 162.0, 159.8, 110.1, 

33.2, 16.6, 9.3. IR (neat cm-1) ν 2954, 2918, 2852, 1792, 1734. HRMS (ESI-TOF) m/z: [M+H]+ Calcd for 

C8H9O3 153.0552; Found 153.0546.

4a,5-Dihydro-2H,4H-pyrano[3,4-c]chromene-2,4-dione (2r). white solid, 14.7 mg, 68% yield, Rf = 

0.25 (EtOAc/acetic acid 30:1). 1H NMR (400 MHz, CDCl3) δ 7.40 (t, J = 7.8 Hz, 1H), 7.21 (d, J = 7.8 Hz, 

1H), 7.05 (t, J = 7.6 Hz, 1H), 6.97 (d, J = 8.2 Hz, 1H), 5.09 (s, 2H), 3.86 (s, 2H). 13C{1H} NMR (126 

MHz, CDCl3) δ 163.7, 158.8, 155.8, 141.8, 134.3, 124.8, 122.4, 118.6, 117.4, 113.4, 30.8. IR (neat cm-1) 

ν 2929, 2854, 1796, 1723, 1603, 758, 734. HRMS (ESI-TOF) m/z: [M+H]+ Calcd for C12H9O4 217.0501; 

Found 217.0495.

3-Methyl-4-phenyl-2H-pyran-2,6(3H)-dione (2s). white solid, 14.2 mg, 70% yield, Rf = 0.25 

(EtOAc/acetic acid 30:1). 1H NMR (400 MHz, CDCl3) δ 7.46–7.45 (m, 2H), 7.39–7.37 (m, 3H), 6.06 (s, 

1H), 3.12 (q, J = 7.4 Hz, 1H), 1.08 (t, J = 7.4 Hz, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ 171.4, 164.7, 
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140.9, 129.1, 128.6, 127.1, 116.1, 24.5, 13.6. IR (neat cm-1) ν 2969, 2926, 2871, 1798, 1739, 1684, 1616, 

1515, 767, 700. HRMS (ESI-TOF) m/z: [M+H]+ Calcd for C12H11O3 203.0708; Found 203.0700.

Gram-Scale Synthesis of 2a. A 60 mL oven dried autoclave containing a stir bar was charged with 

pentafluorophenyl 2-butenoate 1aa (1.97 g, 6.0 mmol), DBU (2.70 g, 18.0 mmol) and 40 mL dry CH3CN 

in a glove box. After removal from the glove box, the autoclave was purged three times, and then 

pressurized to appropriate pressure with carbon dioxide. The reaction mixture was stirred at room 

temperature for 18 h, and the remaining carbon dioxide was vented slowly. Then the pH of reaction 

mixture was adjusted to 3~4 with 0.5 M HCl and extracted with EtOAc (3 × 100 mL). The combined 

organic layer was washed with brine, dried over Na2SO4, filtered, concentrated in vacuo and then 

subjected to column chromatography using EtOAc/acetic acid to afford  2a as a pale yellow solid. 0.95 g, 

84% yield.

Hydrolytic Reaction of 2a. A 25 mL round-bottom flask was charged with 2a (0.3 mmol, 56 mg) and 

MeOH (5 mL), then NaOH (2 M, 4 mL) was added with stirring. The reaction mixture was stirred at room 

temperature until no starting material was detected by TLC. Then the pH of reaction mixture was adjusted 

to 1.0 with HCl (1 M). The mixture was extracted with diethyl ether (3 × 30 mL). The combined organic 

layer was washed with brine, dried over Na2SO4 and filtration. The solvent was removed under reduced 

pressure. To the crude product in a mixture solvent (MeOH/DCM=1:1, 6 mL) at room temperature was 

added TMSCHN2 (1M in hexane, 1 mL) and the reaction mixture was stirred at room temperature for 1 

h. The mixture was carefully quenched with HCl (1 M). The organics were extracted EtOAc (5 × 15 mL), 

dried over Na2SO4, filtered, concentrated in vacuo and then subjected to column chromatography using 

EtOAc-hexane to afford the diester 3a as a pale yellow oil. 63.2 mg, 90% yield, Rf = 0.25 (petroleum 

ether/EtOAc 20:1). 1H NMR (400 MHz, CDCl3) δ 7.46–7.42 (m, 2H), 7.39–7.36 (m, 3H), 4.18 (s, 1H), 

3.75 (s, 3H), 3.68 (s, 3H). 13C{1H} NMR (101 MHz, CDCl3) δ 170.7, 166.6, 151.2, 140.5, 129.3, 128.7, 

126.4, 119.5, 52.1, 51.4, 36.8. HRMS (ESI-TOF) m/z: [M+H]+ Calcd for C13H14O4 235.0970; Found 

235.0957.
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Reduction of 2a with Lithium Aluminum Hydride.19 The 2a (0.3 mmol, 56 mg) was dissolved in 

THF (10 mL) under nitrogen and the reaction mixture was cooled to 0 °C. LiAlH4 (1 M in THF, 0.6 mL) 

was added dropwise with stirring. After the addition was complete, the reaction mixture was heated by 

oil bath at reflux overnight. The mixture was carefully quenched with EtOAc. Then the pH was adjusted 

to 4.0 with HCl (1 M). The reaction mixture were extracted with EtOAc (3 × 20 mL), dried over Na2SO4, 

filtered, concentrated in vacuo and then subjected to column chromatography using EtOAc-hexane to 

afford the diol product 4a as yellow oil. 37.4 mg, 70% yield, Rf = 0.20 (petroleum ether/EtOAc 1:1). 1H 

NMR (500 MHz, CDCl3) δ 7.37–7.36 (m, 2H), 7.36–7.30 (m, 2H), 7.28–7.25 (m, 1H), 6.13 (t, J = 7.4 Hz, 

1H), 4.23 (d, J = 7.4 Hz, 2H), 3.59 (t, J = 5.9 Hz, 2H), 3.33 (bs, 2H), 2.81 (t, J = 5.9 Hz, 2H). 13C{1H} 

NMR (126 MHz, CDCl3) δ 141.5, 141.0, 128.9, 128.4, 127.5, 126.5, 59.8, 58.2, 32.8. HRMS (ESI-TOF) 

m/z: [M+H]+ Calcd for C11H15O2 179.1072; Found 179.1068.

DMAP Promoted Cycloaddition of 2a and 4-Nitrobenzaldehyde.13 To a mixture of 2a (0.2 mmol, 

37.5 mg) and p-nitrobenzaldehyde (0.22 mmol, 33 mg) in dry chloroform (2 ml), DMAP (0.2 mmol, 25 

mg) was added. The reaction mixture was stirred at room temperature for 15 h. The mixture was added 

TMSCHN2 (1M in hexane, 1 mL) and the reaction mixture was stirred at room temperature for 1 h. The 

mixture was carefully quenched with HCl (1 M) and extracted with EtOAc (3 × 20 mL), dried over 

Na2SO4, filtered, concentrated in vacuo and then subjected to column chromatography using EtOAc-

hexane to afford 5a as a yellow solid. 48.1 mg, 68% yield, Rf = 0.25 (petroleum ether/EtOAc 4:1).1H 

NMR (400 MHz, CDCl3) δ 8.66 (d, J = 16.8 Hz, 1H), 8.18 (d, J = 7.6 Hz, 2H), 7.61 (d, J = 7.6 Hz, 2H), 

7.45–7.35 (m, 5H), 6.64 (d, J = 16.8 Hz, 1H), 5.93 (s, 1H), 3.81 (d, J = 5.1 Hz, 3H). 13C{1H} NMR (101 

MHz, CDCl3) δ 166.6, 155.0, 147.5, 143.0, 139.1, 136.7, 130.1, 128.9, 128.9, 128.5, 127.9, 123.8, 119.7, 

51.5. HRMS (ESI-TOF) m/z: [M+H]+ Calcd for C19H15NO6 354.0978; Found 354.0972.

Reaction of 2a with Excess Dimethyl Acetylenedicarboxylate.20 The 2a (0.3 mmol, 56 mg) was 

dissolved in dry DCM (15 mL) under nitrogen atmosphere and then Et3N (0.06 mmol, 6 mg) was added, 

and the mixture was stirred for 5 min. DMAD (0.7 mmol, 99 mg) was added dropwise and the mixture 

was stirred overnight. The mixture was quenched with HCl (1 M) and extracted with ethyl acetate (3 × 20 
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mL), dried over Na2SO4, filtered, concentrated in vacuo and then subjected to column chromatography 

using EtOAc-hexane to afford 6a as a white solid. 89.8 mg, 70% yield, Rf = 0.30 (petroleum ether/EtOAc 

10:1). 1H NMR (400 MHz, CDCl3) δ 8.14 (d, J = 1.6 Hz, 1H), 7.60–7.56 (m, 3H), 7.50–7.43 (m, 3H), 

5.25 (s, 1H), 3.96 (s, 3H), 3.93 (s, 3H), 3.93 (s, 3H), 3.68 (s, 3H). 13C{1H} NMR (126 MHz, CDCl3) δ 

165.7, 165.3, 165.0, 159.6, 150.4, 144.5, 137.8, 130.8, 129.2, 128.9, 127.2, 127.1, 126.5, 100.9, 53.17, 

53.0, 52.9, 51.8. HRMS (ESI-TOF) m/z: [M+H]+ Calcd for C22H21O9 429.1186; Found 429.1178.

Hydrogenation of 2a with H2. A 100 mL oven dried autoclave containing a stir bar was charged with 

2a (0.14 g, 0.76 mmol), Pd/C (5%, 36 mg) and 30 mL dry EtOAc. The autoclave was purged three times 

with nitrogen, degased at 0 oC, and then pressurized to 2.0 MPa with H2. The reaction mixture was stirred 

at room temperature for 15 h, and the remaining H2 was vented slowly. After Pd/C was filtered off, the 

organic solution was concentrated in vacuo and then subjected to column chromatography using 

EtOAc/hexane to afford  7a as a white solid. 0.12 g, 83% yield, Rf = 0.25 (petroleum ether/EtOAc 1:1). 

1H NMR (400 MHz, CDCl3) δ 7.43–7.36 (m, 2H), 7.36–7.30 (m, 1H), 7.21 (d, J = 7.8 Hz, 2H), 3.47–3.39 

(m, 1H), 3.11 (dd, J = 17.3, 4.5 Hz, 2H), 2.87 (dd, J = 17.3, 11.4 Hz, 2H). 13C{1H} NMR (101 MHz, 

CDCl3) δ 165.8, 139.1, 129.36, 128.1, 126.2, 37.1, 34.1. IR (neat cm-1) ν 1800, 1758, 1078, 957, 766, 704. 

HRMS (ESI-TOF) m/z: [M+Na]+ Calcd for C11H10NaO3 213.0528; Found 213.0517.

X-ray Crystallography. Single crystals of 2b and 2e were obtained by recrystallization from 

EtOAc/hexane at room temperature. Recrystallization from EtOAc at 5-10 oC afforded the single crystal 

of 6a. The intensities were collected on a Bruker SMART APEX CCD diffractometer equipped with a 

graphitemonochromated Mo−Kα (λ = 0.71073 Å) radiation source; the data were acquired using the 

SMART and SAINT programs. The structures were solved by direct methods and refined on F2 by 

fullmatrix least-squares methods using the SHELXTL version 5.1 software.

ASSOCIATED CONTENT

Supporting Information. 

The Supporting Information is available free of charge via the Internet at http://pubs.acs.org.

Page 24 of 29

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

http://pubs.acs.org


25

X-ray crystallographic data (CIF)

Copies of 1H NMR, 13C{1H} NMR, 19F NMR spectra for substrates and products 

Thermal ellipsoid plots of 2b, 2e and 6a

Spectra of labelled products
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