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Synthesis and evaluation of peptidic maleimides as
transglutaminase inhibitors
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Abstract—A series of novel transglutaminase inhibitors was prepared, based on the scaffold of a commonly used peptide substrate
and bearing an electrophilic maleimide group. These compounds were evaluated in vitro and shown to lead to irreversible inacti-
vation of tissue transglutaminase. Comparison with inhibitors studied previously provides insight into the steric environment of
the enzyme active site.
� 2006 Elsevier Ltd. All rights reserved.
Transglutaminases (TGases, EC 2.3.2.13) are Ca2+-de-
pendent enzymes that catalyze the formation of isopep-
tide cross-links between the c-carboxamide group of a
protein- or peptide-bound glutamine residue and a pri-
mary amino group, such as the e-amino group of pro-
tein- or peptide-bound lysine residues (Scheme 1).1–3

Tissue TGase (tTG) has been identified as a contributor
to the formation of cataracts and to Celiac disease, and
a growing body of evidence suggests that it may be in-
volved in atherosclerosis, inflammation, fibrosis, diabe-
tes, cancer metastases, autoimmune diseases, lamellar
ichthyosis, and psoriasis (for a review, see 4). TGase
has also been implicated in neurodegenerative diseases
associated with an increase in polyglutamine-containing
peptides in the brain such as Huntington’s disease,
Alzheimer disease, Parkinson disease, and supranuclear
palsy.5–7

A number of potential TGase inactivators have been
developed in order to regulate excess TGase activity.
These include dihydroisoxazole derivatives,8 gluten pep-
tide analogs,9 and dipeptide-bound a,b-unsaturated
amides, epoxides, and 1,2,4-thiadiazoles.10–12 The design
of the latter inhibitors was based on the structure of car-
bobenzyloxy-LL-glutaminylglycine (Cbz-Gln-Gly), a
commonly used dipeptide acyl-donor substrate.13 Here-
in we report the synthesis of a series of novel maleimides
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based on the same peptidic scaffold, and their in vitro
evaluation as irreversible tTG inhibitors (Scheme 2).

The starting points of our syntheses of the peptidic
maleimides were the Cbz-protected diamino acids 2a–
4a, numbered according to side-chain length. Com-
pounds 3a and 4a were commercially available,14

whereas compound 2a was obtained from the Hoffmann
rearrangement of the corresponding amide, as previous-
ly reported.10 Ensuing protection of the pendant amino
group,15 esterification16 or peptide coupling17 and
deprotection of the side-chain amine18 were accom-
plished by straightforward synthetic routes, affording
amines 2c–4c and 2d–4d. Hydrophobic ester groups
were incorporated into the inhibitor design both for syn-
thetic simplicity and in consideration of their effect on
enzyme affinity as observed previously.8,11,12 These
amines were then transformed into the final maleimide
inhibitors by the typical two-step condensation reaction
with maleic anhydride.18,19 Reaction conditions and
yields were not optimized, but ample quantities of the fi-
nal products were obtained for subsequent kinetic
analyses.

Recombinant guinea pig liver TGase was expressed in
Escherichia coli and subsequently purified according to
a procedure developed in our laboratories.20,21 Guinea
pig liver tTG was chosen for this study because it can
be obtained easily in excellent yield and solubility, and
shows high homology with human tTG,22 thereby vali-
dating its use as a model for the evaluation of inhibitors
of potential therapeutic utility.
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Scheme 2. Synthesis of inhibitors studied herein. Reagents and conditions: (A) 7 (Boc)2O/Et3N/MeOH/24 h, rt; (B) Bn–Br/Et3N/DMF/24 h, rt; (C)

Gly-OMe/DIEA/TBTU/DMF/24 h, rt; (D) i—TFA/1 h, rt; ii—maleic anhydride/CHCl3/24 h, rt; iii—acetic anhydride/NaOAc/24 h, 95 �C.

Scheme 1. Cross-linking reaction catalyzed by TGase.
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All peptidic maleimides demonstrated time-dependent
inhibition. Kinetic parameters were determined by incu-
bating TGase with inhibitor and measuring residual
TGase activity in the absence of excess inhibitor (upon
40-fold dilution) as a function of time.23 First-order rate
constants of inactivation (kobs) were thus measured with
respect to inhibitor concentration. However, saturating
concentrations could not be attained, owing to the rela-
tively low solubility of the inhibitors with respect to their
apparent affinity constants. Therefore, the apparent
second-order rate constants for inactivation (kinact/KI,
Table 1) were determined from the initial slopes of the
plots of kobs versus inhibitor concentration.23
Table 1. Kinetic parameters determined for inhibition of tTG

Compound kinact/KI (mM�1 min�1)a kinact (min�1) KI (lM)

2e 0.67 ± 0.08 — —

3e 6.26 ± 1.69 — —

4e 17.08 ± 0.12 — —

2f 0.28 ± 0.03 — —

3f 0.43 ± 0.05 — —

4f 0.83 ± 0.01 — —

2gb 1180 0.60 0.51

3gb 890 0.75 0.85

4gb 2200 0.49 0.23

a Std. error from fitting of data.
b Kinetic parameters given as ‘kinact’, ‘kcat’ and KI, respectively, in Ref.

11.
Despite the lack of saturation kinetics, two lines of evi-
dence suggest that inactivation is taking place through
reaction at the active site. First, although homology
modeling24 of guinea pig tTG suggests that Cys229
may be solvent exposed, and therefore theoretically
capable of reacting with a maleimide in a second-order
fashion, its distance from the substrate binding site
(>15 Å) makes its putative reaction with even the lon-
gest inhibitor unlikely to inactivate the enzyme. Second,
incubation with inhibitor in the presence of substrate
afforded temporary protection, slowing inactivation
appreciably. For example, in the presence of 12 mM
Cbz-Gln-Gly (four times its Km value) inactivation by
100 lM 2e was roughly 2-fold slower than in the absence
of substrate.

Comparison of the relative efficiencies of benzyl esters
2e–4e and dipeptides 2f–4f reveals the latter series to
be �2- to 20-fold less efficient. Previous docking studies
from our group25 have suggested the peptide backbone
of acyl-donor substrates are bound in a shallow, rather
hydrophobic groove on the surface of the enzyme. The
specificity of tTG with respect to the peptide sequence
of its Gln substrates is consistent with the nature of this
putative binding site, as noted previously.26 The greater
efficiency of the benzyl esters, compared to the glycine
methyl esters, may reflect higher affinity for, or better
positioning in, this binding site.



Figure 1. Acrylamide inhibitors studied previously.10,11
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Within each series it can be noted that efficiency increas-
es with chain length. This trend has also been observed
for three other series of inhibitors based on the same
peptide scaffold.10,12 Since TGases are designed to ex-
clude asparagine residues as acyl-donor substrates,
reacting only with glutamine residues, they are capable
of discriminating against substrate analogs having short
side chains. However, tTG cannot exclude longer acyl-
donor substrates (or irreversible inhibitors) having the
conformational flexibility necessary to properly position
their pendant reactive groups near the active site thiol.

It is also instructive to draw a comparison with a series
of acrylamide inhibitors studied previously. As shown in
Figure 1, acrylamides 2g–4g also comprise a dipeptide
scaffold having a comparable C-terminal ester, and their
pharmacophore differs from maleimide by only one car-
bonyl completing the heterocycle. Compounds 2g–4g
were determined11 to have KI values in the range of
0.23–0.85 lM, and their efficiency constants are shown
in Table 1. From this comparison it is evident that the
maleimides are �103- to 104-fold less efficient inhibitors.
Although direct comparison of reactivity and affinity
constants is not possible, one may presume that the
maleimides possess inherently greater reactivity (larger
kinact values), given the activation of the double bond to-
ward nucleophilic addition by two conjugated carbonyl
groups. By this reasoning, it would appear that the affin-
ity constants of the maleimides are well above those
measured for the acrylamides (even larger KI values).
This is consistent with the lack of complete saturation
that was observed for the maleimides, for concentrations
up to 750 lM. Our modeling of the glutamine substrate
binding tunnel of tTG25 suggests that it is a sterically
constrained environment that may not easily accommo-
date the greater volume of the cyclic maleimide group.
Furthermore, this hypothesis is supported by our obser-
vation that any substitution for example, by methyl or
phenyl, on the c-carboxamide nitrogen of glutamine re-
sults in the complete loss of donor substrate activity.27

In summary, the series of novel maleimide inhibitors
presented herein confirm the validity of the peptidic
scaffold, bearing an electrophilic ‘warhead’ on a long
side-chain, for the design of small molecule inhibitors
that target the active site of tTG. The maleimide group
itself, although well known for inactivation of thiol-de-
pendent enzymes, appears to be just large enough to de-
crease the ease of its insertion and productive
orientation in the narrow donor substrate binding tun-
nel of tTG.
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