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Herein, we report the discovery and structure–activity relationships (SAR) of 2-substituted glutamylan-
ilides as novel probes of the steric environment comprising the amino acid binding domain of alanine–
serine–cysteine transporter subtype 2 (ASCT2). Focused library development led to three novel, highly
potent ASCT2 inhibitors, with N-(2-(morpholinomethyl)phenyl)-L-glutamine exhibiting the greatest
potency in a live-cell glutamine uptake assay. This level of potency represents a three-fold improvement
over the most potent, previously reported inhibitor in this series, GPNA. Furthermore, this and other
compounds in the series exhibit tractable chemical properties for further development as potential
therapeutic leads.

� 2014 Elsevier Ltd. All rights reserved.
Emerging evidence implicates oncogenic signaling pathways
with nutrient uptake in cancer cells. The natural amino acid gluta-
mine is essential for cell growth and proliferation. In addition to
glucose, cancer cells utilize glutamine as a carbon source for ATP
production and biosynthesis. Mammalian cells can internalize glu-
tamine through an evolutionary redundant repertoire of cell surface
transporters, though a primary sodium-dependent transporter of
glutamine, ASCT2 (gene symbol SLC1A5), stands out as a promising
target for probe development. In cancer cells, SLC1A5 expression is
associated with oncogenic MYC1,2 and KRAS,3,4 suggesting its rele-
vance in many clinically important tumors, including those of the
lung, colon, and pancreas.5–7 Demonstrating that ASCT2/SCL1A5
activity might be ‘actionable’ in variety of settings in oncology,
Fuchs and co-workers first demonstrated that SLC1A5 antisense
RNA triggered apoptosis in human hepatocellular carcinoma cells.8

Furthermore, Hassanein et al. more recently reported that SLC1A5
was expressed in 95% of squamous cell carcinomas (SCC), 74% of
adenocarcinomas (ADC), and 50% of neuroendocrine tumors. In
those studies, siRNA down-regulation of ASCT2 in lung cancer cells
resulted in significant growth inhibition.9 Collectively, these stud-
ies suggest the potential fruitfulness of developing small molecules
capable of inhibiting ASCT2 activity as precision cancer medicines.

To date, few pharmacological inhibitors of ASCT2 have been
reported. Grewer and Grabsch described a series of serine and
cysteine derivatives as inhibitors of ASCT2. The benzyl analogs of
serine and cysteine were reported to have Ki values equal to
0.9 mM and 0.78 mM, respectively.10 Further elaboration within
this series led to serine biphenyl-4-carboxylate which inhibits
ASCT2 function with an apparent affinity of 30 lM.11 As an early
entrant to the field, in 2004, Esslinger et al. described L-c-glutam-
yl-p-nitroanilide (GPNA), a glutamine analog, as a commercially
available probe of the ASCT2 amino acid binding site.12 While this
work illustrated that GPNA could inhibit glutamine uptake in cells
at millimolar levels and ascribes certain potential electronic
requirements possessed by GPNA and similar analogues from
that series, this work did not address the steric requirements for
binding to ASCT2 within this class of glutamine analogs.

To discover ASCT2 inhibitors with greater potency and to
elucidate SAR around this target, we merged structure-based design
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Figure 1. Synthetic route towards 2-substituted Nc-glutamylanilides.
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SAR of Nc-glutamylanilides
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Table 1 (continued)

Compound IC50 Compound IC50
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Figure 2. Concentration response curves for compounds 4, 5, 20, and GPNA.

Figure 3. Docking of potential leads into ASCT2 homology model. The most potent
lead, compound 5 (brown all atom colored, capped sticks) fits the homology model
(protein ribbons) generated for the inhibited form of human ASCT2 and is
consistent with the displacement of a key loop region (grey, right). The docked
pose shown represents the best scoring SurflexDock conformation (Total score,
Table S1) for compound 5 (IC50 = �312 lM) that contains a morpholino moiety
occupying an hydrophobic pocket adjacent to the amino acid zwitter ion binding
site. One of the two reported sodium binding sites in the SLC1A5 family (purple van
der Waals dotted surface) is shown centered beneath the amino acid binding site. A
potential weak hydrogen bond between the morpholine oxygen of compound 5 to
ASCT2 residue Cys 467 sulfhydryl side chain (yellow dashed line) is highlighted.
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with technology-enabled medicinal chemistry and high-throughput
screening to identify novel ASCT2 probes with improved potency.
We also sought to explore the steric environment of the ASCT2
amino acid binding pocket to encourage future probe development.
Since the crystal structure of human ASCT2 has not been elucidated,
we employed computational approaches similar to the approach of
Albers et al.11 to explore potential points of intermolecular
interaction and binding pockets accessible to candidate probes.
From a homology model based on the open structure of the bacterial
aspartate transporter GltPh in complex with inhibitor D,L-threo-
benzyloxyaspartate (TBOA), PDB ID 2NWW, a number of targetable
structural motifs were identified including a lipophilic pocket
adjacent to the amino acid zwitterion binding site and potential
hydrophilic points of contact within a loop region that was displaced
by the inhibitor in the open form of the transporter. Based upon
these structural elements, we expanded a focused library of
candidate small molecules based on the Nc-glutamylanilide series
to generate novel chemical matter to test the hypothesis that
targeting at least a portion of these elements would result in ASCT2
inhibitors with greater potency. In support of this structure-based
approach, we herein report several novel leads from this series that
exhibit potency similar to or modestly greater than GPNA in live cell
assays.

Initially, we developed an improved synthetic scheme to yield
target Nc-glutamylanilides. The previously reported synthesis
of GPNA and related analogs required 6 steps starting from
L-glutamate in overall yields ranging from 10% to 54%.12 In order
to achieve a more facile synthesis, we took advantage of micro-
wave-assisted organic synthesis (MAOS), which has been shown
to improve reaction yields and shorten reaction times.13–15 Utilizing
this approach, we were able to rapidly generate Nc-glutamylanilide
analogs in just two steps starting from the commercially available
Boc-L-glutamic acid-tert-butyl ester with typical yields ranging
from 23% to 75% over two steps (Fig. 1).16

Initial compound libraries focused on 2, 3, and 4 substituted
Nc-glutamylanilides with aryl, alicyclic, and heterocyclic substitu-
tions (Table 1). To evaluate the biological activity, compounds were
initially screened at a single concentration for their ability to
inhibit 3H-glutamine uptake in live HEK-293 cells, an established
model suitable for evaluating ASCT2 activity.18,19 Full concentra-
tion response curves were developed for compounds that exhibited
evidence of glutamine inhibition; inactive compounds were not
pursued further. From early library development efforts, we were
able to prioritize the 2-substitution as a determinant of ASCT2
activity among this series. For example, N-(2-morpholinophenyl)-
L-glutamine (Table 1, compound 3)17 emerged as a potential lead
compound of interest, exhibiting a potency roughly equivalent to
that of GPNA (Table 1, compound 1). In contrast, the analogous
4-morpholinophenyl and 3-morpholinophenyl anilides proved to
be inactive, leading us to pursue 2-substituted glutamylanilides
for the remainder of this study. Further development of the
2-substituted series led to three novel compounds with modestly
greater potency than GPNA, N5-(2-(benzo[d]thiazol-2-yl)phenyl)-
L-glutamine (Table 1, compound 4),20 N-(2-(morpholinomethyl)
phenyl)-L-glutamine (Table 1, compound 5),21 and N5-(2-((4-meth-
ylpiperazin-1-yl)methyl)benzyl)-L-glutamine (Table 1, compound
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20). Furthermore, 4 novel compounds among the series exhibited
potencies equivalent to GPNA. Full Concentration response curves
for compounds 4, 5, and 20 are shown in Figure 2.

Biologically active compounds were also evaluated computa-
tionally in the open human ASCT2 model. The best scoring poses
for the most potent compounds identified demonstrated a compat-
ible fit with the human ASCT2 model and, interestingly, a tendency
to exhibit points of interaction with both the amino acid zwitterion
binding site and an adjacent hydrophobic pocket (Fig. 3).22

In summary, we report three novel Nc-glutamylanilides as
inhibitors of cellular glutamine uptake via ASCT2 with modestly
greater potency than GPNA. Evaluation of this chemical series
within the context of ligand docking to a homology model of human
ASCT2 revealed reasonable compatibility with the ASCT2 binding
site based on SurflexDock Total Scores. Based upon our data, we
anticipate that compounds with the greatest potency may interact
with multiple structural elements within the ASCT2 binding site,
including the amino acid zwitterion binding site and the adjacent
hydrophobic pocket. Ongoing efforts employing a combination of
these effects may lead to compounds with even greater potency.
Uniquely, previous work in the Nc-glutamylanilide series sug-
gested that reduction of the glutamine amide pKa was required
for ASCT2 inhibition;10 we did not observe this trend in our study.
Advances from these studies will be reported in due course.
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